Kontextfreie (Typ-2) Sprachen
|
|
|
- Karlheinz Maus
- vor 8 Jahren
- Abrufe
Transkript
1 Kontextfreie (Typ-2) prachen Bsp.: L 1 = { n 1 n n>} с {,1}* 1 1 L 2 = {w wє{,1}* und w=w rev } с {,1}* 11 1 ε L 3 = {w w hat genausoviele Nullen wie Einsen} с {,1}* B 1 ε 1 B 1 1 BB B B
2 yntaxbaum für kontextfreie prachen Def.: ei G=(Σ,V,,R) Typ-2 Grammatik. Baum T heisst yntaxbaum für G, falls Wurzel mit beschriftet innere Knoten mit V beschriftet Blätter mit {ε} Σ beschriftet Markierung der inneren Knoten und aller Kinder entspricht einer Regel aus R T heisst yntaxbaum für wєl(g), falls Beschriftung der Blätter von T (von links nach rechts gelesen) w ergibt 2
3 Bsp. yntaxbaum für Typ-2 prachen B 1, 1, B 1 1 BB 1 1 B 1 3
4 Linksableitung Bem.: bleitung, bei der immer die linkeste Regel angewendet wird, heisst Linksableitung yntaxbaum kann mehrere bleitungen darstellen: B B B (aber nur eine Linksableitung)
5 Eindeutige kontextfreie prachen Def.: Typ-2 Grammatik G=(Σ,V,,R) heisst eindeutig, falls es für jedes Wort wєl(g) genau einen yntaxbaum gibt Typ-2 prache L heisst eindeutig, falls es eine eindeutige Typ-2 Grammatik G mit L=L(G) gibt; ansonsten heisst L inhärent mehrdeutig Motivation: Wortproblem für eindeutige Grammatiken sollte einfacher sein 5
6 6 Bsp. Mehrdeutige Grammatik B 1, 1, B 1 1 BB B 1 1
7 Chomsky-Normalform (CNF) Def.: Typ-2 Grammatik G=(Σ,V,,R) ist in Chomsky- Normalform (CNF), falls alle Regeln folgende Form haben: BC mit,b,cєv oder a mit єv, aєσ Bem.: ε kann von Grammatik in CNF nicht erzeugt werden T yntaxbaum für CNF-Grammatik alle inneren Knoten haben Grad 2, Väter der Blätter haben Grad 1 7
8 Herstellen der Chomsky-Normalform atz: Jede Typ-2 prache L mit εєl c, kann von einer Typ-2 Grammatik in CNF erzeugt werden Bew.: Idee: Überführe Regeln einer Typ-2 Grammatik G=(Σ,V,,R) mit L=L(G) schrittweise in CNF Erinnerung: alle Regeln von G haben Form w mit єv und wє(v Σ)* 8
9 Herstellen der Chomsky-Normalform 1. chritt: für alle aєσ neue Variable Y a und neue Regel Y a a ersetze in Regeln von G (rechte eite) a durch Y a Konsequenz: alle Regeln haben Form w mit єv und wєv + oder wєσ {ε} 9
10 Herstellen der Chomsky-Normalform 2. chritt: für Regel B 1...B m mit m>2 ersetze durch neue Regeln B 1 C 1, C i B i+1 C i+1 für 1 i m-3 und C m-2 B m-1 B m mit neuen Variablen C 1,...,C m-2 Konsequenz: alle Regeln haben Form w mit єv und wєv 2, wєv oder wєσ {ε} 1
11 Herstellen der Chomsky-Normalform 3. chritt ( Eliminieren von ε-regeln ): sei E := {єv * ε} ersetze Regeln BC mit BєE durch C ersetze Regeln BC mit CєE durch B streiche Regeln ε Konsequenz: alle Regeln haben Form w mit єv und wєv 2, wєv oder wєσ 11
12 Herstellen der Chomsky-Normalform 4. chritt ( Eliminieren von Kettenregeln ): () solange es Kreis r 1 gibt ersetze 2,..., r durch 1, streiche Regel 1 1 (B) bestimme Nummerierung 1,..., m der Variablen, so dass gilt: falls i j, so ist i < j für alle i = k,k-1,...,1 und für alle j=i+1,...,k mit i j streiche Regel i j falls j a mit aєσ Regel ist, Konsequenz: G ist in CNF führe neue Regel i a ein 12
13 Herstellen der Chomsky-Normalform Beh.: Die modifizierte Grammatik erzeugt die prache L Bew.: ( Übung) Bsp.: L 1 = { n 1 n n>}, 1 1 Herstellen der CNF: Y 1 1, Y, Y Y 1 Y Y 1 Y 1 1, Y, Y C Y Y 1, C Y 1 13
14 Wortproblem für Typ-2 prachen atz: Wortproblem einer Typ-2 Grammatik G=(Σ,V,,R) in CNF kann in O( R w 3 ) Zeit entschieden werden Gegeben: G, w = w 1...w n є Σ* Entscheide, ob wєl(g) Bew.: (lg. von Cooke-Younger-Kasami '67 - CYK) Idee: wєl(g) ( BC)єR und B *p, C *s, w=ps berechne V i,j mit dynamischem Programmieren: mit V i,j := {єv * w i...w j } gilt wєl(g) єv 1,n 14
15 CYK-lgorithmus berechne V i,j := {єv * w i...w j } mit dynamischem Programmieren: V i,i = {єv * w i } = {єv w i }, da G in CNF V i,j = {єv ( BC)єR kє{i,j-1} : BєV i,k und CєV k+1,j } dynamisches Programmieren: for l=2,..,n for i=1,..,n-l+1 j = i+(l-1) V i,j := i k j-1 {єv BєV i,k, CєV k+1,j und ( BC)єR} 15
16 CYK-lgorithmus for l=2,..,n for i=1,..,n-l+1 j = i+(l-1) V i,j := i k j-1 {єv BєV i,k, CєV k+1,j und ( BC)єR} ufwand zur Berechnung von V i,j : O( R n) (betrachte R Regeln und n Werte für k) Gesamtaufwand: O( R n 3 ) 16
17 Bsp. CYK-lgorithmus L 1 = {a n b n n>} a, B b, B T, T B a (j=1) a (j=2) b (j=3) b (j=4) B B a (i=1) a (i=2) b (i=3) b (i=4) w = aabb 17
18 Bsp. CYK-lgorithmus L 1 = {a n b n n>} a, B b, B T, T B a (j=1) a (j=2) b (j=3) b (j=4) B B a (i=1) a (i=2) b (i=3) b (i=4) w = aabb 18
19 Bsp. CYK-lgorithmus L 1 = {a n b n n>} a, B b, B T, T B a (j=1) a (j=2) b (j=3) b (j=4) T B B a (i=1) a (i=2) b (i=3) b (i=4) w = aabb 19
20 Bsp. CYK-lgorithmus L 1 = {a n b n n>} a, B b, B T, T B a (j=1) a (j=2) b (j=3) b (j=4) T B B a (i=1) a (i=2) b (i=3) b (i=4) w = aabb 2
I.5. Kontextfreie Sprachen
I.5. Kontextfreie prachen Zieht man in Betracht, dass BNF-yteme gerade so beschaffen sind, dass auf der linken eite immer genau ein Nichtterminal steht, so sind das also gerade die Ableitungsregeln einer
Umformung NTM DTM. Charakterisierung rek. aufz. Spr. Chomsky-3-Grammatiken (T5.3) Chomsky-0-Grammatik Rek. Aufz.
Chomsky-0-Grammatik Rek. Aufz. Satz T5.2.2: Wenn L durch eine Chomsky-0- Grammatik G beschrieben wird, gibt es eine NTM M, die L akzeptiert. Beweis: Algo von M: Schreibe S auf freie Spur. Iteriere: Führe
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik
Übungsblatt 7. Vorlesung Theoretische Grundlagen der Informatik im WS 16/17
Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 7 Vorlesung Theoretische Grundlagen der Informatik im W 16/17 Ausgabe 17. Januar 2017 Abgabe 31. Januar 2017, 11:00 Uhr (im
4.2 Die Chomsky Normalform
4.2 Die Chomsky Normalform Für algorithmische Problemstellungen (z.b. das Wortproblem) aber auch für den Nachweis von Eigenschaften kontextfreier Sprachen ist es angenehm, von CFG in Normalformen auszugehen.
Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive
Lemma Für jede monotone Grammatik G gibt es eine kontextsensitive Grammatik G mit L(G) = L(G ). Beweis im Beispiel (2.): G = (V,Σ, P, S) : P = {S asbc, S abc, CB BC, ab ab, bb bb, bc bc, cc cc}. (i) G
Chomsky-Grammatiken 16. Chomsky-Grammatiken
Chomsky-Grammatiken 16 Chomsky-Grammatiken Ursprünglich von Chomsky in den 1950er Jahren eingeführt zur Beschreibung natürlicher Sprachen. Enge Verwandschaft zu Automaten Grundlage wichtiger Softwarekomponenten
Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19
Inhalt 1 inführung 2 Automatentheorie und ormale prachen Grammatiken Reguläre prachen und endliche Automaten Kontextfreie prachen und Kellerautomaten Kontextsensitive und yp 0-prachen 3 Berechenbarkeitstheorie
4. Grammatiken. 4.1. Grundlegende Definitionen. Wie lassen sich formale Sprachen beschreiben?
4. Grammatiken 4.1. Grundlegende Definitionen Wie lassen sich formale prachen beschreiben? im endlichen Fall: Aufzählung der Wörter der prache im unendlichen Fall: akzeptierende Automaten, Mengenausdrücke:
Kontextfreie Sprachen
Kontextfreie Sprachen Bedeutung: Programmiersprachen (Compilerbau) Syntaxbäume Chomsky-Normalform effiziente Lösung des Wortproblems (CYK-Algorithmus) Grenzen kontextfreier Sprachen (Pumping Lemma) Charakterisierung
Kapitel 2: Formale Sprachen Kontextfreie Sprachen. reguläre Grammatiken/Sprachen. kontextfreie Grammatiken/Sprachen
reguläre Grammatiken/prachen Beschreibung für Bezeichner in Programmiersprachen Beschreibung für wild cards in kriptsprachen (/* reguläre Ausdrücke */)?; [a-z]; * kontextfreie Grammatiken/prachen Beschreibung
kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung
Theoretische Informatik Rainer Schrader Zentrum für Angewandte Informatik Köln 14. Juli 2009 1 / 40 2 / 40 Beispiele: Aus den bisher gemachten Überlegungen ergibt sich: aus der Chomsky-Hierarchie bleiben
Grammatiken und die Chomsky-Hierarchie
Grammatiken und die Chomsky-Hierarchie Def.: Eine Grammatik G=(Σ,V,S,R) besteht aus endlichem Alphabet Σ endlicher Variablenmenge V mit V Σ= Startsymbol SєV endlicher Menge R с (V Σ) + x(v Σ)* von Ableitungsregeln
Dank. 1 Ableitungsbäume. 2 Umformung von Grammatiken. 3 Normalformen. 4 Pumping-Lemma für kontextfreie Sprachen. 5 Pushdown-Automaten (PDAs)
ank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert iese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen
Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen
Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen (Kontextsensitive) Sprachen L 2 Menge aller kontextfreien
Aufgabentypen: Spickerblatt: kontextfrei (Typ 2): zusätzlich: u ist eine!"# v 1
Info4 Stoff Aufgabentypen: Grammatik CH einordnen NFA DFA Grammatik Chomsky-NF CYK-Algorithmus: Tabelle / Ableitungsbäume Grammatik streng kf. Grammatik Grammatik Pumping Lemma Beweis, dass Gr. nicht reg,
Grundlagen der Theoretischen Informatik
1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Kontextfreie Grammatiken Definition: Eine Grammatik G
A : z z A : z z : ( z, x, z ) δ
Informatik IV, SoS2003 1 Definition 1.1 Ein Quintupel A =(X,Z,z 0,δ,Z f )heißt nichtdeterministischer endlicher Automat (NEA): 1. X, Z sind endliche nichtleere Mengen. 2. z 0 Z 4. δ Z X Z Informatik IV,
Übungen zur Vorlesung Einführung in die Theoretische Informatik, Blatt 12 LÖSUNGEN
Universität Heidelberg / Institut für Informatik 7. Juli 24 Prof. Dr. Klaus Ambos-Spies Nadine Losert Übungen zur Vorlesung Einführung in die Theoretische Informatik, Blatt 2 LÖSUNGEN Aufgabe Verwenden
Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie
Theorie der Informatik 17. März 2014 6. Formale Sprachen und Grammatiken Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 6.1 Einführung
a n b n c n ist kontextsensitiv kontextfreie Sprachen (Typ 2) Abschnitt 3.3 kontextfreie Sprachen: Abschlusseigenschaften Chomsky NF und binäre Bäume
Kap 3: Grammatiken Chomsky-Hierarchie 32 Kap 3: Grammatiken Kontextfreie 33 a n b n c n ist kontextsensiti Beispiel 3111 modifizieren: Σ = {a, b, c G = (Σ, V, P, X ) V = {X, Y, Z P : X ε X axyz ZY YZ ay
Maike Buchin 18. Februar 2016 Stef Sijben. Probeklausur. Theoretische Informatik. Bearbeitungszeit: 3 Stunden
Maike Buchin 8. Februar 26 Stef Sijben Probeklausur Theoretische Informatik Bearbeitungszeit: 3 Stunden Name: Matrikelnummer: Studiengang: Geburtsdatum: Hinweise: Schreibe die Lösung jeder Aufgabe direkt
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Übung am 02.02.2012 INSTITUT FÜR THEORETISCHE 0 KIT 06.02.2012 Universität des Andrea Landes Schumm Baden-Württemberg - Theoretische und Grundlagen der Informatik
Ein Satz der deutschen Sprache besitzt ein Subjekt, ein Prädikat und ein Objekt (SPO).
1 Grammatiken Autor: Tilman Blumenbach Letzte Änderung: 28. Juni 2012 18:15 Ziel von Grammatiken Wollen die Struktur von Sprachen modellieren und charakterisieren. Beispiel Ein Satz der deutschen Sprache
Kapitel: Die Chomsky Hierarchie. Die Chomsky Hierarchie 1 / 14
Kapitel: Die Chomsky Hierarchie Die Chomsky Hierarchie 1 / 14 Allgemeine Grammatiken Definition Eine Grammatik G = (Σ, V, S, P) besteht aus: einem endlichen Alphabet Σ, einer endlichen Menge V von Variablen
Automaten und formale Sprachen Klausurvorbereitung
Automaten und formale Sprachen Klausurvorbereitung Rami Swailem Mathematik Naturwissenschaften und Informatik FH-Gießen-Friedberg Inhaltsverzeichnis 1 Definitionen 2 2 Altklausur Jäger 2006 8 1 1 Definitionen
Tutoraufgabe 1 (ɛ-produktionen):
Prof aa Dr J Giesl Formale Systeme, Automaten, Prozesse SS 2010 M Brockschmidt, F Emmes, C Fuhs, C Otto, T Ströder Hinweise: Die Hausaufgaben sollen in Gruppen von je 2 Studierenden aus dem gleichen Tutorium
2. Übungsblatt 6.0 VU Theoretische Informatik und Logik
2. Übungsblatt 6.0 VU Theoretische Informatik und Logik 25. September 2013 Aufgabe 1 Geben Sie jeweils eine kontextfreie Grammatik an, welche die folgenden Sprachen erzeugt, sowie einen Ableitungsbaum
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (III) 17.06.2015 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Übersicht 1. Motivation 2. Terminologie
Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ).
Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ). Beweis: Für jedes a Σ muss jede Position in der Tabelle nur konstant oft besucht werden.
Die Chomsky Hierarchie
Die Chomsky Hierarchie Slide 1 Die Chomsky Hierarchie Hans U. Simon (RUB) Email: [email protected] Homepage: http://www.ruhr-uni-bochum.de/lmi Die Chomsky Hierarchie Slide 2 Vorgeplänkel: Mathematische
Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen / Kontextfreie Sprachen und Kellerautomaten
Inhalt 1 Einführung 2 Automatentheorie und Formale Sprachen Grammatiken Reguläre Sprachen und endliche Automaten Kontextfreie Sprachen und Kellerautomaten Kontextsensitive und Typ 0-Sprachen 3 Berechenbarkeitstheorie
Formale Sprachen. Script, Kapitel 4. Grammatiken
Formale Sprachen Grammatiken Script, Kapitel 4 erzeugen Sprachen eingeführt von Chomsky zur Beschreibung natürlicher Sprache bedeutend für die Syntaxdefinition und -analyse von Programmiersprachen Automaten
Deterministischer Kellerautomat (DPDA)
Deterministische Kellerautomaten Deterministischer Kellerautomat (DPDA) Definition Ein Septupel M = (Σ,Γ, Z,δ, z 0,#, F) heißt deterministischer Kellerautomat (kurz DPDA), falls gilt: 1 M = (Σ,Γ, Z,δ,
Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie
Hochschuldozent Dr. Christian Schindelhauer Paderborn, den 21. 2. 2006 Lösungen zur 1. Klausur in Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie Name :................................
Kapitel 2: Formale Sprachen Gliederung. 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie
Gliederung 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.1. 2.2. Reguläre Sprachen 2.3. Kontextfreie Sprachen 2/1, Folie 1 2015 Prof. Steffen
Kapitel 2: Formale Sprachen Gliederung
Gliederung 0. Einleitung und Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechnungstheorie 4. Komplexitätstheorie 2.1. Chomsky-Grammatiken 2.2. Reguläre Sprachen 2.3. Kontextfreie Sprachen
Wortproblem für kontextfreie Grammatiken
Wortproblem für kontextfreie Grammatiken G kontextfreie Grammatik. w Σ w L(G)? Wortproblem ist primitiv rekursiv entscheidbar. (schlechte obere Schranke!) Kellerautomat der L(G) akzeptiert Ist dieser effizient?
Theoretische Informatik I (Grundzüge der Informatik I)
Theoretische Informatik I (Grundzüge der Informatik I) Literatur: Buch zur Vorlesung: Uwe Schöning, Theoretische Informatik - kurzgefasst. Spektrum Akademischer Verlag, Heidelberg/Berlin, 4. Auflage, 2001.
Die Chomsky Hierarchie
Die Chomsky Hierarchie Slide 1 Die Chomsky Hierarchie Hans U. Simon (RUB) mit Modifikationen von Maike Buchin (RUB) Lehrstuhl Mathematik und Informatik Homepage: http://www.ruhr-uni-bochum.de/lmi Die Chomsky
24. Kontextfreie Sprachen
24. Kontextfreie Sprachen Obwohl das Wortproblem für kontextsensitive Sprachen entscheidbar ist, ist nicht bekannt, ob dieses auch tatsächlich d.h. in Polynomialzeit entscheidbar ist. Da man allgemein
Einführung in die Theoretische Informatik
echnische Universität München Fakultät für Informatik Prof. obias Nipkow, Ph.D. ascha öhme, Lars Noschinski ommersemester 2011 Lösungsblatt 5 6. Juni 2011 Einführung in die heoretische Informatik Hinweis:
Formale Sprachen, Automaten, Compiler
Formale Sprachen, Automaten, Compiler Berufsakademie Lörrach, TIT06-3. Semester Übung 1 -> LÖSUNGSVORSCHLAG ÜA1.1. Die "normalen" Dezimalziffern, also Σ = { 0, 1,..., 9, ist sicher ein Alphabet, aber auch
3 kontextfreie Sprachen
Hans U. Simon Bochum, den 7.10.2008 Annette Ilgen Beispiele zur Vorlesung Theoretische Informatik WS 08/09 Vorbemerkung: Hier findet sich eine Sammlung von Beispielen und Motivationen zur Vorlesung Theoretische
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 10.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik
5.7 Kontextfreie Grammatiken und Kellerautomaten
130 5.7 Kontextfreie Grammatiken und Kellerautomaten Im letzten Abschnitt haben wir gesehen, dass wir reguläre Sprachen auch mit Hilfe von endlichen Automaten charakterisieren können. Jetzt wollen wir
Grundlagen der Informatik II
Grundlagen der Informatik II Tutorium 2 Professor Dr. Hartmut Schmeck Miniaufgabe * bevor es losgeht * Finden Sie die drei Fehler in der Automaten- Definition. δ: A = E, S, δ, γ, s 0, F, E = 0,1, S = s
Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S)
Grammatiken Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V Startsymbol S V Produktionen P ( (V Σ) \ Σ ) (V Σ) Kurzschreibweise G = (V, Σ, P, S) Schreibweise für Produktion (α, β) P: α β 67 /
(Prüfungs-)Aufgaben zu formale Sprachen
(Prüfungs-)Aufgaben zu formale Sprachen (siehe auch bei den Aufgaben zu endlichen Automaten) 1) Eine Grammatik G sei gegeben durch: N = {S, A}, T = {a, b, c, d}, P = { (S, Sa), (S, ba), (A, ba), (A, c),
Teil V. Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie
Teil V Weiterführende Themen, Teil 1: Kontextsensitive Sprachen und die Chomsky-Hierarchie Zwei Sorten von Grammatiken Kontextsensitive Grammatik (CSG) (Σ, V, P, S), Regeln der Form αaβ αγβ α, β (Σ V ),
2.6 Deterministisches Top-Down-Parsen
48 2.6 Deterministisches Top-Down-Parsen Als nächstes wollen wir uns mit Methoden zur syntaktischen Analyse befassen. Der lexikale canner eines Compilers liest die Eingabe Zeichen für Zeichen und erzeugt
Pumping-Lemma. Beispiel. Betrachte die kontextsensitive Grammatik G mit den Produktionen. S asbc abc CB HB HB HC HC BC ab ab bb bb bc bc cc cc.
Pumping-Lemma Beispiel Betrachte die kontextsensitive Grammatik G mit den Produktionen S asbc abc CB HB HB HC HC BC ab ab bb bb bc bc cc cc. Sie erzeugt z.b. das Wort aabbcc: S asbc aabcbc aabhbc aabhcc
Isomorphie von Bäumen
Isomorphie von Bäumen Alexandra Weinberger 23. Dezember 2011 Inhaltsverzeichnis 1 Einige Grundlagen und Definitionen 2 1.1 Bäume................................. 3 1.2 Isomorphie..............................
Suche nach einem solchen Kreis. Endlichkeitstest. Vereinigung und Durchschnitt. Abschlusseigenschaften
Endlichkeitstest Eingabe: DFA/NFA M. Frage: Ist die von M akzeptierte Sprache endlich? Nahe liegende Beobachtung: In einem DFA/NFA, der eine unendliche Sprache akzeptiert, muss es einen Kreis geben, der
Rekursiv aufzählbare Sprachen
Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben
Informatik I WS 07/08 Tutorium 24
Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 3.2.07 astian Molkenthin E-Mail: [email protected] Web: http://infotut.sunshine2k.de Organisatorisches / Review is zum 2.2 müssen alle Praxisaufgaben
Berechenbarkeit und Komplexität
Berechenbarkeit und Komplexität Prof. Dr. Dietrich Kuske FG Theoretische Informatik, TU Ilmenau Wintersemester 2010/11 1 Organisatorisches zur Vorlesung Informationen, aktuelle Version der Folien und Übungsblätter
Übungsaufgaben zu Formalen Sprachen und Automaten
Universität Freiburg PD Dr. A. Jakoby Sommer 27 Übungen zum Repetitorium Informatik III Übungsaufgaben zu Formalen Sprachen und Automaten. Untersuchen Sie das folgende Spiel: A B x x 2 x 3 C D Eine Murmel
Theoretische Informatik Mitschrift
6. Kontextfreie Sprachen Theoretische Informatik Mitschrift Typ-2-Grammatiken: Regeln der Form A mit A N und N * Beispiel: Grammatik für arithmetische Ausdrücke G= {E,T,F },{,,,,a}, P, E, P : E ET T T
Einführung in die Theoretische Informatik
Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Dr. Alexander Krauss Sommersemester 2010 Lösungsblatt 7 15. Juni 2010 Einführung in die Theoretische
2.11 Kontextfreie Grammatiken und Parsebäume
2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle
Kapitel 3: Grundlegende Ergebnisse aus der Komplexitätstheorie Gliederung
Gliederung 1. Berechenbarkeitstheorie 2. Grundlagen 3. Grundlegende Ergebnisse aus der Komplexitätstheorie 4. Die Komplexitätsklassen P und NP 5. Die Komplexitätsklassen RP und BPP 3.1. Ressourcenkompression
Grundbegriffe. Grammatiken
Grammatiken Grammatiken in der Informatik sind ähnlich wie Grammatiken für natürliche Sprachen ein Mittel, um alle syntaktisch korrekten Sätze (hier: Wörter) einer Sprache zu erzeugen. Beispiel: Eine vereinfachte
Alphabet, formale Sprache
n Alphabet Alphabet, formale Sprache l nichtleere endliche Menge von Zeichen ( Buchstaben, Symbole) n Wort über einem Alphabet l endliche Folge von Buchstaben, die auch leer sein kann ( ε leere Wort) l
Theoretische Informatik. Kontextfreie Sprachen und Parser
Theoretische Informatik Kontextfreie Sprachen und Parser Inhalt 1. Grammatiken und Sprachen Kontextfreie Grammatiken Herleitungen, Linksherleitungen Sprachen zu einer Grammatik Äquivalenz Chomsky-Normalform
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik Sommersemester 2016 20.04.2016 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen
Kapitel: Kontextfreie Sprachen. Kontextfreie Sprachen 1 / 78
Kapitel: Kontextfreie Sprachen Kontextfreie Sprachen 1 / 78 Die Syntax von Programmiersprachen Wie lässt sich die Syntax einer Programmiersprache definieren, so dass die nachfolgende Syntaxanalyse effizient
Programmierkurs Python II
Programmierkurs Python II Michaela Regneri & tefan Thater FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des aarlandes ommersemester 2010 (Charniak, 1997) the dog biscuits N V N V the dog
Theoretische Informatik: Berechenbarkeit und Formale Sprachen
Prof. Dr. F. Otto 24.03.2011 Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen WS 2010/2011 Name:................................
Was bisher geschah: Formale Sprachen
Was bisher geschah: Formale Sprachen Alphabet, Wort, Sprache Operationen und Relationen auf Wörtern und Sprachen Darstellung unendlicher Sprachen durch reguläre Ausdrücke (Syntax, Semantik, Äquivalenz)
Fachseminar Compilerbau
Fachseminar Compilerbau WS 08/09 Matthias Schiller Syntaktische Analyse 1. Prinzip der Top-Down-Analyse 2. LL(1)-Grammatiken Modell-Vorstellung Der Scanner liefert als Ergebnis der lexikalischen Analyse,
Grundlagen der Theoretischen Informatik
Grundlagen der Theoretischen Informatik Sommersemester 2015 22.04.2015 Viorica Sofronie-Stokkermans e-mail: [email protected] 1 Bis jetzt 1. Terminologie 2. Endliche Automaten und reguläre Sprachen
Tutorium zur theoretischen Informatik Übungsblatt 4 (2006-12-13)
Ein verständiges Herz erwirbt Kenntnisse, und das Ohr der Weisen lauscht dem Wissen. (Die Bibel, "Buch der Sprüche", Kapitel 18 Vers 15) Inhalt 1. Empfehlenswerte Referenzen 2. Aufgabe 1 CF Grammatik für
Universität Karlsruhe (TH)
Universität Karlsruhe (TH) Lehrstuhl für Programmierparadigmen prachtechnologie und Compiler W 2008/2009 http://pp.info.uni-karlsruhe.de/ Dozent: Prof. Dr.-Ing. G. nelting [email protected]
Schwach kontextsensitive Grammatikformalismen
chwach kontextsensitive Grammatikformalismen! Vorlesung Grammatikformalismen Alexander Koller! 2. Juni 2015 Grammatikformalismen Parsingkomplexität O(n) O(n 3 ) polynomiell exponentiell PPACE-vollst. unentscheidbar
Theoretische Informatik I
Theoretische nformatik inheit 3 Kontextfreie Sprachen 1. Kontextfreie Grammatiken 2. Pushdown Automaten 3. igenschaften kontextfreier Sprachen Theoretische nformatik inheit 3.1 Kontextfreie Grammatiken
Funktionale Programmierung mit Haskell
Funktionale Programmierung mit Haskell Prof. Dr. Hans J. Schneider Lehrstuhl für Programmiersprachen und Programmiermethodik Friedrich-Alexander-Universität Erlangen-Nürnberg Sommersemester 2011 I. Die
RNA Strukturvorhersage
RNA Strukturvorhersage Christian Pölitz Hauptseminar AFS Institut für Theoretische Informatik Fakultät für Informatik und Automatisierung Technische Universität Ilmenau 17. Juli 2007 Christian Pölitz (TU
Grundbegriffe der Informatik Tutorium 12
Grundbegriffe der Informatik Tutorium 12 Tutorium Nr. 16 Philipp Oppermann 28. Januar 2015 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum
1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005
Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 2004/05 ILKD Prof. Dr. D. Wagner 24. Februar 2005 1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005 Aufkleber Beachten
Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen
Hoffmann (HAW Hamburg) Automatentheorie und formale Sprachen 18.4. 2012 176 Automatentheorie und formale Sprachen VL 5 Reguläre und nichtreguläre Sprachen Kathrin Hoffmann 18. Aptil 2012 Hoffmann (HAW
Grammatiken. Einführung
Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische
Algorithmen und Datenstrukturen I - Exkurs Formale Sprachen -
Algorithmen und Datenstrukturen I - Exkurs Formale Sprachen - Thies Pfeiffer Technische Fakultät [email protected] Vorlesung, Universität Bielefeld, Winter 2012/2013 1 / 1 Exkurs: Formale
