Praktisch modulo n rechnen
|
|
|
- Maya Weber
- vor 8 Jahren
- Abrufe
Transkript
1 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 1 Praktisch modulo n rechnen Addition und Multiplikation modulo n sind auch dann algorithmisch kein großes Problem, wenn mit großen Zahlen gerechnet wird (z.b stellig). Das Verwalten sehr großer Zwischenergebnisse kann vermieden werden, wenn auch Zwischenergebnisse modulo n reduziert werden. Mit Hilfe des Euklidischen Algorithmus kann auch schnell dividiert werden (wo möglich). Selbst das Potenzieren ist einfach:
2 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 2 Wie berechnet man mod 41633? Man stellt zuerst den Exponenten als Binärzahl dar: = = % Sukzessives Ausklammern ergibt = ((((2+1) 2 2+1) 2 2+1) ) 2+1)
3 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 3 a = a ((((2+1) 2 2+1) 2 2+1) ) 2+1)
4 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 4 a = a ( ((((2+1) 2 2+1) 2 2+1) ) 2+1) = a ((((2+1) 2 2+1) 2 2+1) ) 2+1) ) a
5 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 5 a = a ( ((((2+1) 2 2+1) 2 2+1) ) 2+1) = a ((((2+1) 2 2+1) 2 2+1) ) 2+1) ) a = (((((a (((2+1) 2 2+1) 2 2+1) ) 2+1 ) 2 ) 2 ) 2 ) 2 ) 2 a
6 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 6 a = a ( ((((2+1) 2 2+1) 2 2+1) ) 2+1) = a ((((2+1) 2 2+1) 2 2+1) ) 2+1) ) a = (((((a (((2+1) 2 2+1) 2 2+1) ) 2+1 ) 2 ) 2 ) 2 ) 2 ) 2 a = (((((a (((2+1) 2 2+1) 2 2+1) ) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a
7 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 7 a = a ( ((((2+1) 2 2+1) 2 2+1) ) 2+1) = a ((((2+1) 2 2+1) 2 2+1) ) 2+1) ) a = (((((a (((2+1) 2 2+1) 2 2+1) ) 2+1 ) 2 ) 2 ) 2 ) 2 ) 2 a = (((((a (((2+1) 2 2+1) 2 2+1) ) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = ((((((a ((2+1) 2 2+1) 2 2+1) ) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a
8 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 8 a = a ( ((((2+1) 2 2+1) 2 2+1) ) 2+1) = a ((((2+1) 2 2+1) 2 2+1) ) 2+1) ) a = (((((a (((2+1) 2 2+1) 2 2+1) ) 2+1 ) 2 ) 2 ) 2 ) 2 ) 2 a = (((((a (((2+1) 2 2+1) 2 2+1) ) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = ((((((a ((2+1) 2 2+1) 2 2+1) ) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = ((((((a ((2+1) 2 2+1) 2 2+1) a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a
9 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 9 a = a ( ((((2+1) 2 2+1) 2 2+1) ) 2+1) = a ((((2+1) 2 2+1) 2 2+1) ) 2+1) ) a = (((((a (((2+1) 2 2+1) 2 2+1) ) 2+1 ) 2 ) 2 ) 2 ) 2 ) 2 a = (((((a (((2+1) 2 2+1) 2 2+1) ) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = ((((((a ((2+1) 2 2+1) 2 2+1) ) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = ((((((a ((2+1) 2 2+1) 2 2+1) a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = (((((((((a ((2+1) 2 2+1) ) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a
10 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 10 a = a ( ((((2+1) 2 2+1) 2 2+1) ) 2+1) = a ((((2+1) 2 2+1) 2 2+1) ) 2+1) ) a = (((((a (((2+1) 2 2+1) 2 2+1) ) 2+1 ) 2 ) 2 ) 2 ) 2 ) 2 a = (((((a (((2+1) 2 2+1) 2 2+1) ) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = ((((((a ((2+1) 2 2+1) 2 2+1) ) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = ((((((a ((2+1) 2 2+1) 2 2+1) a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = (((((((((a ((2+1) 2 2+1) ) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = (((((((((a ((2+1) 2 2+1) 2 2 a) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a
11 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 11 a = (((((((((a ((2+1) 2 2+1) 2 2 a) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a
12 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 12 a = (((((((((a ((2+1) 2 2+1) 2 2 a) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = (((((((((((a (2+1) ) 2 ) 2 a) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a
13 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 13 a = (((((((((a ((2+1) 2 2+1) 2 2 a) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = (((((((((((a (2+1) ) 2 ) 2 a) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = (((((((((((a (2+1) 2 2 a) 2 ) 2 a) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a
14 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 14 a = (((((((((a ((2+1) 2 2+1) 2 2 a) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = (((((((((((a (2+1) ) 2 ) 2 a) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = (((((((((((a (2+1) 2 2 a) 2 ) 2 a) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = (((((((((((((a 2+1 ) 2 ) 2 a) 2 ) 2 a) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a
15 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 15 a = (((((((((a ((2+1) 2 2+1) 2 2 a) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = (((((((((((a (2+1) ) 2 ) 2 a) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = (((((((((((a (2+1) 2 2 a) 2 ) 2 a) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = (((((((((((((a 2+1 ) 2 ) 2 a) 2 ) 2 a) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = (((((((((((((a 2 a) 2 ) 2 a) 2 ) 2 a) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a
16 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 16 a = (((((((((a ((2+1) 2 2+1) 2 2 a) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = (((((((((((a (2+1) ) 2 ) 2 a) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = (((((((((((a (2+1) 2 2 a) 2 ) 2 a) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = (((((((((((((a 2+1 ) 2 ) 2 a) 2 ) 2 a) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a = (((((((((((((a 2 a) 2 ) 2 a) 2 ) 2 a) 2 ) 2 ) 2 a) 2 a) 2 ) 2 ) 2 ) 2 ) 2 a Die Exponentiation mit kann also durchgeführt werden, indem vierzehn mal quadriert und fünf mal multipliziert wird.
17 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 17 Potenzieren modulo n Das Potenzieren mit dem Exponenten e N kann mit (log 2 e)-maligem Quadrieren und Multiplizieren durchgeführt werden. Beim Rechnen modulo n kann dabei bei jedem Rechenschritt modn reduziert werden.
18 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 18 Potenzieren modulo n Das Potenzieren mit dem Exponenten e N kann mit (log 2 e)-maligem Quadrieren und Multiplizieren durchgeführt werden. Beim Rechnen modulo n kann dabei bei jedem Rechenschritt modn reduziert werden. Kein auch nur halbwegs schnelles Verfahren ist bekannt, um aus der Angabe von 2 e mod n den Exponenten e zu bestimmen ( binary log ).
19 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 19 Öffentlich ein Geheimnis vereinbaren Problemstellung: Zwei Teilnehmer möchten abhörsicher miteinander kommunizieren und dazu ein Verschlüsselungsverfahren benutzen. Dazu müssen sie einen gemeinsamen geheimen Schlüssel verwenden. Wie können sie sich über eine nicht abhörsichere Verbindung auf ein gemeinsames Geheimnis einigen?
20 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 20 Öffentlich ein Geheimnis vereinbaren Lösung: Die beiden Teilnehmer A und B einigen sich öffentlich auf eine grosse Zahl n. Jeder Teilnehmer erzeugt eine große Zahl: Teilnehmer A erzeugt die Zahl a und berechnet 2 a mod n Teilnehmer B erzeugt die Zahl b und berechnet 2 b mod n Die Zahlen a und b behalten die Teilnehmer geheim für sich. Die Zahlen 2 a mod n und 2 b mod n teilen sie sich mit. Danach kennt Teilnehmer A die Zahlen a und 2 b mod n, kennt Teilnehmer B die Zahlen b und 2 a mod n, kennt ein Angreifer die Zahlen 2 a mod n und 2 b mod n.
21 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 21 Das gemeinsame Geheimnis Die beiden Teilnehmer berechnen 2 a b (2 a ) b (2 b ) a (mod n). Dieses Ergebnis verwenden sie als gemeinsamen Schlüssel für das Verschlüsselungsverfahren. Der Angreifer kennt lediglich 2 a mod n und 2 b mod n. Es ist kein brauchbares Verfahren bekannt, daraus auszurechnen. 2 a b mod n
22 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 22 Der Satz von Lagrange Die Ordnung eines Elementes a einer Gruppe (G,, 1, 1) ist die kleinste natürliche Zahl n mit a n = 1, falls es überhaupt eine solche natürliche Zahl gibt, und sonst. Satz 1 Für jedes Element a einer endlichen Gruppe (G,, 1, 1) gilt: Die Ordnung von a ist ein Teiler der Anzahl G der Gruppenelemente.
23 Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 23 Das Lemma von Euler-Fermat Satz 2 Ist a zu n teilerfremd, dann gilt a ϕ(n) mod n = 1.
Vorlesung Diskrete Strukturen Gruppe und Ring
Vorlesung Diskrete Strukturen Gruppe und Ring Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung in
Zufallsprimzahlen und eine Revolution in der Kryptographie Stefan Edelkamp
Zufallsprimzahlen und eine Revolution in der Kryptographie Stefan Edelkamp Fakultät für Mathematik und Informatik Universität of Bremen Übersicht des Vortrags 1 Einfache Kryptosysteme 2 Einmalschlüssel
$Id: ring.tex,v /05/03 15:13:26 hk Exp $
$Id: ring.tex,v 1.13 2012/05/03 15:13:26 hk Exp $ 3 Ringe 3.1 Der Ring Z m In der letzten Sitzung hatten wir die sogenannten Ringe eingeführt, dies waren Mengen A versehen mit einer Addition + und einer
Lösungen der Aufgaben
Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.
Kanonische Primfaktorzerlegung
Mathematik I für Informatiker Zahlen p. 1 Kanonische Primfaktorzerlegung Jede natürliche Zahl n kann auf eindeutige Weise in der Form n = p α 1 1 pα 2 2... pα k k geschrieben werden, wobei k N 0, α i N
Das RSA Verfahren. Die Mathematik von RSA. Ganzzahl Arithmetik. Die Mathematik des RSA-Verfahrens
Das RSA Verfahren Das RSA-Verfahren beruht auf Modulo-Arithmetik mit riesigen ganzen Zahlen und der Berechnung modularer Potenzen bei der Verschlüsselung. Die genaue Mathematik wird in den folgenden Kapiteln
SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH
SCHRIFTLICHE ZUSAMMENFASSUNG ZUM VORTRAG DIE GRUNDLAGEN DER RSA-VERSCHLÜSSELUNG VON DANIEL METZSCH Freie Universität Berlin Fachbereich für Mathematik & Informatik Institut für Mathematik II Seminar über
Lösung zur Klausur zu Krypographie Sommersemester 2005
Lösung zur Klausur zu Krypographie Sommersemester 2005 1. Bestimmen Sie die zwei letzten Ziffern der Dezimaldarstellung von 12 34 Es gilt: 12 34 = 12 32+2 = 12 32 12 2 = 12 (25) 12 2 = ((((12 2 ) 2 ) 2
Mathematik 1 -Arbeitsblatt 1-8: Rechnen mit Potenzen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB. Potenzen mit negativer Basis
Schule Thema Personen Bundesgymnasium für Berufstätige Salzburg Mathematik -Arbeitsblatt -8: Rechnen mit Potenzen F Wintersemester 0/0 Unterlagen: LehrerInnenteam GFB ) Potenzen mit negativer Basis Zur
Lenstras Algorithmus für Faktorisierung
Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit
Über das Hüten von Geheimnissen
Über das Hüten von Geheimnissen Gabor Wiese Tag der Mathematik, 14. Juni 2008 Institut für Experimentelle Mathematik Universität Duisburg-Essen Über das Hüten von Geheimnissen p.1/14 Rechnen mit Rest Seien
Mathematik und Logik
Mathematik und Logik 6. Übungsaufgaben 2006-01-24, Lösung 1. Berechnen Sie für das Konto 204938716 bei der Bank mit der Bankleitzahl 54000 den IBAN. Das Verfahren ist z.b. auf http:// de.wikipedia.org/wiki/international_bank_account_number
2.4. Kongruenzklassen
DEFINITION 2.4.1. kongruent modulo 2.4. Kongruenzklassen Wikipedia:1707 wurde Euler als der älteste Sohn des Pfarrers Paul Euler geboren. Er besuchte das Gymnasium in Basel und nahm gleichzeitig Privatunterricht
Das RSA Kryptosystem
Kryptografie Grundlagen RSA Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA mit geheimem mit öffentlichem Schlüssel Realisierung Kryptografie mit geheimem Schlüssel Alice
Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n
Definitionen Die Ringe Z n für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: Beispiel n = 15 + n : Z n Z n Z n : (a, b) (a + b) mod n n : Z n Z n Z n : (a, b) (a b) mod n 9 + 15 11 = 5 9 15 11 = 9
Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor du dir die Lösungen anschaust!
Chr.Nelius: Zahlentheorie (SoSe 2016) 1 14. Aufgabenblatt ZAHLENTHEORIE (für Master G und HRG) Lösungen Hast du auch wirklich versucht, die Aufgaben einmal selbständig zu lösen? Wenn nicht, tue es, bevor
Entwicklung der Asymmetrischen Kryptographie und deren Einsatz
Entwicklung der Asymmetrischen Kryptographie und deren Einsatz Peter Kraml, 5a hlw Facharbeit Mathematik Schuljahr 2013/14 Caesar-Verschlüsselung Beispiel Verschiebung der Buchstaben im Alphabet sehr leicht
Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA
Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche '-Funktion, RSA Manfred Gruber http://www.lrz-muenchen.de/~gruber SS 2009, KW 15 Kleiner Fermatscher Satz Satz 1. Sei p prim und a 2 Z p. Dann
Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n)
Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 4 Die Restklassenringe Z/(n) Satz 4.1. (Einheiten modulo n) Genau dann ist a Z eine Einheit modulo n (d.h. a repräsentiert eine Einheit in
WIEDERHOLUNG (BIS ZU BLATT 7)
Universität Bielefeld SS 2016 WIEDERHOLUNG (BIS ZU BLATT 7) JULIA SAUTER Wir wiederholen, welche Aufgabentypen bis zu diesem Zeitpunkt behandelt worden sind. Auf der nächsten Seite können Sie sich selber
4: Algebraische Strukturen / Gruppen
Stefan Lucks Diskrete Strukturen (WS 2009/10) 120 4: Algebraische Strukturen / Gruppen Definition 46 Sei G eine nichtleere Menge. Eine Funktion : G G G bezeichnen wir als Verknüpfung auf G. Das Paar (G,
11. Das RSA Verfahren und andere Verfahren
Chr.Nelius: Kryptographie (SS 2011) 31 11. Das RSA Verfahren und andere Verfahren Eine konkrete Realisierung eines Public Key Kryptosystems ist das sog. RSA Verfahren, das im Jahre 1978 von den drei Wissenschaftlern
Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck
Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Gesamtpunktzahl: 114 Punkte, 100 Punkte= 100 %, keine Abgabe 1. Es seien m = 1155 und n = 1280.
1 Das RSA-Verfahren und seine algorithmischen Grundlagen
1 Das RSA-Verfahren und seine algorithmischen Grundlagen Das wichtigste d. h., am weitesten verbreitete und am meisten analysierte asymmetrische Verfahren ist das RSA-Verfahren, benannt nach seinen Erfindern
n ϕ n
1 3. Teiler und teilerfremde Zahlen Euler (1707-1783, Gymnasium und Universität in Basel, Professor für Physik und Mathematik in Petersburg und Berlin) war nicht nur einer der produktivsten Mathematiker
Ganzzahlige Division mit Rest
Modulare Arithmetik Slide 1 Ganzzahlige Division mit Rest Für a,b Æ mit a b gibt es stets eine Zerlegung von a der Form a = q b+r mit 0 r b 1. Hierbei gilt q = a b (salopp formuliert: b passt q-mal in
5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)
Technische Universität München Zentrum Mathematik PD Dr. hristian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 5.1: In einer Implementierung
Oft kommt es darauf an, Potenzen a n mod m zu berechnen. Dabei kann n eine sehr groÿe Zahl sein.
Oft kommt es darauf an, Potenzen a n mod m zu berechnen. Dabei kann n eine sehr groÿe Zahl sein. 3 1384788374932954500363985493554603584759389 mod 28374618732464817362847326847331872341234 Wieso kann ein
Datensicherheit durch Kryptographie
Datensicherheit durch Kryptographie Dr. Michael Hortmann Fachbereich Mathematik, Universität Bremen T-Systems [email protected] 1 Kryptographie: Klassisch: Wissenschaft und Praxis der Datenverschlüsselung
Elementare Zahlentheorie & RSA
Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik Elementare Zahlentheorie & RSA Eine kurze Wiederholung im Rahmen der Vorlesung Mathematik für Informatiker
Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln
Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November 2009 1 Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt
Zahlentheorie. Vorlesung 14. Fermatsche Primzahlen
Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 14 Fermatsche Primzahlen Definition 14.1. Eine Primzahl der Form 2 s + 1, wobei s eine positive natürliche Zahl ist, heißt Fermatsche Primzahl.
RSA Verfahren. Kapitel 7 p. 103
RSA Verfahren RSA benannt nach den Erfindern Ron Rivest, Adi Shamir und Leonard Adleman war das erste Public-Key Verschlüsselungsverfahren. Sicherheit hängt eng mit der Schwierigkeit zusammen, große Zahlen
Kryptographie und Komplexität
Kryptographie und Komplexität Einheit 5.2 ElGamal Systeme 1. Verschlüsselungsverfahren 2. Korrektheit und Komplexität 3. Sicherheitsaspekte Das ElGamal Verschlüsselungsverfahren Public-Key Verfahren von
Probabilistische Primzahltests
23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl
Public-Key Kryptographie mit dem RSA Schema. Torsten Büchner
Public-Key Kryptographie mit dem RSA Schema Torsten Büchner 7.12.2004 1.Einleitung 1. symmetrische-, asymmetrische Verschlüsselung 2. RSA als asymmetrisches Verfahren 2.Definition von Begriffen 1. Einwegfunktionen
5. bis 10. Klasse. Schnell-Merk-System. Mathematik. Kompaktwissen Testfragen SMS. Mit Lernquiz fürs Handy
5. bis 10. Klasse SMS Schnell-Merk-System Mathematik Kompaktwissen Testfragen Mit Lernquiz fürs Handy 2 Zahlen und Rechnen Rechnen mit natürlichen Zahlen Multiplikation ist die mehrfache Addition gleicher
Der Zwei-Quadrate-Satz von Fermat
Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat
IT-Sicherheit. Jun.-Prof. Dr. Gábor Erdélyi. Siegen, 15. November 2016 WS 2016/2017
IT-Sicherheit WS 2016/2017 Jun.-Prof. Dr. Gábor Erdélyi Lehrstuhl für Entscheidungs- und Organisationstheorie, Universität Siegen Siegen, 15. November 2016 Wiederholung Warum IT-Sicherheit? Grundlagen
Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis
ARBEITSBLATT 8 RECHNEN MIT POTENZEN ) Potenzen mit negativer Basis Zur Erinnerung: = = 6 Der Eponent gibt also an, wie oft die Basis mit sich selbst multipliziert werden muss. Die Basis muss natürlich
3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.
3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es
Stichpunktezettel fürs Tutorium
Stichpunktezettel fürs Tutorium Moritz und Dorian 11. November 009 1 Kleiner Fermat Behauptung. Seien a, b N relativ prim und b eine Primzahl. Dann ist a b 1 = 1. Beweis. Wir definieren die Funktion f
Aufgabensammlung Klasse 8
Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................
Public-Key-Verschlüsselung und Diskrete Logarithmen
Public-Key-Verschlüsselung und Diskrete Logarithmen Carsten Baum Institut für Informatik Universität Potsdam 10. Juni 2009 1 / 30 Inhaltsverzeichnis 1 Mathematische Grundlagen Gruppen, Ordnung, Primitivwurzeln
9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie
9. Primitivwurzeln 9.1. Satz. Sei G eine zyklische Gruppe der Ordnung m und g G ein erzeugendes Element. Das Element a := g k, k Z, ist genau dann ein erzeugendes Element von G, wenn k zu m teilerfremd
Modul Diskrete Mathematik WiSe 2011/12
1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung
Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen
Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch
1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB
Mathematik -Arbeitsblatt -: Rechnen in Q F Wintersemester 0/0 Unterlagen: LehrerInnenteam GFB VERBINDUNG DER VIER GRUNDRECHNUNGSARTEN IN Q Dieser Punkt fällt in der Erklärung besonders leicht. Zusammengefasst
kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler
Modulare Arithmetik Slide 5 kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler Modulare Arithmetik Slide 6 kgv-berechnung
1 Zahlentheorie. 1.1 Kongruenzen
3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern
Computeralgebra in der Lehre am Beispiel Kryptografie
Kryptografie Grundlagen RSA KASH Computeralgebra in der Lehre am Beispiel Kryptografie Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA KASH Überblick Kryptografie mit
Grundzüge der Informatik Zahlendarstellungen (7)
Grundzüge der Informatik Zahlendarstellungen (7) Sylvia Swoboda [email protected] Überblick Konvertierung von ganzen Zahlen Konvertierung von Festkommazahlen Darstellung negativer Zahlen 1
3. Stegreifaufgabe aus der Mathematik Lösungshinweise
Schuljahr 08/09 3. Stegreifaufgabe aus der Mathematik Lösungshinweise Gruppe A Aufgabe 1 (a) Es gilt: Zwei Brüche werden multipliziert, indem man den Zähler des ersten Bruchs mit dem Zähler des zweiten
Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1
Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 1 Primzahltest 1.1 Motivation Primzahlen spielen bei zahlreichen Algorithmen, die Methoden aus der Zahlen-Theorie verwenden, eine zentrale Rolle. Hierzu
Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st
Primzahlen Herbert Koch Mathematisches Institut Universität Bonn 12.08.2010 1 Die Primfaktorzerlegung Wir kennen die natürlichen Zahlen N = 1, 2,..., die ganzen Zahlen Z, die rationalen Zahlen (Brüche
Primzahlzertifikat von Pratt
Primzahlzertifikat von Pratt Daniela Steidl TU München 17. 04. 2008 Primzahltests in der Informatik "Dass das Problem, die Primzahlen von den Zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren
AES und Public-Key-Kryptographie
Jens Kubieziel [email protected] Friedrich-Schiller-Universität Jena Fakultät für Mathem atik und Informatik 22. Juni 2009 Beschreibung des Algorithmus Angriffe gegen AES Wichtige Algorithmen im 20. Jahrhundert
Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens
Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................
5. Äquivalenzrelationen
5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)
3. Diskrete Mathematik
Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,
Rechnen modulo n. Bernhard Ganter. Institut für Algebra TU Dresden D-01062 Dresden
Rechnen modulo n Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] Kanonische Primfaktorzerlegung Jede natürliche Zahl n > 0 kann auf eindeutige Weise in der
1 Modulare Arithmetik
$Id: modul.tex,v 1.10 2012/04/12 12:24:19 hk Exp $ 1 Modulare Arithmetik 1.2 Euklidischer Algorithmus Am Ende der letzten Sitzung hatten wir den größten gemeinsamen Teiler zweier ganzer Zahlen a und b
Terme und Gleichungen
Terme und Gleichungen Rainer Hauser November 00 Terme. Rekursive Definition der Terme Welche Objekte Terme genannt werden, wird rekursiv definiert. Die rekursive Definition legt zuerst als Basis fest,
3: Zahlentheorie / Primzahlen
Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,
Potenzen mit ganzzahligen Exponenten: Rechenregeln
Lüneburg, Fragment Potenzen mit ganzzahligen Exponenten: Rechenregeln 5-E1 5-E2 Potenzen: Rechenregeln Regel 1: Potenzen mit gleicher Basis können dadurch miteinander multipliziert werden, dass man die
Grundwissen 5. Klasse
Grundwissen 5. Klasse 1/5 1. Zahlenmengen Grundwissen 5. Klasse Natürliche Zahlen ohne Null: N 1;2;3;4;5;... mit der Null: N 0 0;1;2;3;4;... Ganze Zahlen: Z... 3; 2; 1;0;1;2;3;.... 2. Die Rechenarten a)
Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik
UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 100
Grundlagen der Arithmetik und Zahlentheorie
Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend
1.2 Eigenschaften der ganzen Zahlen
Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen
Angewandte Diskrete Mathematik
Vorabskript zur Vorlesung Angewandte Diskrete Mathematik Wintersemester 2010/ 11 Prof. Dr. Helmut Maier Dipl.-Math. Hans- Peter Reck Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Universität
Primzahlen und RSA-Verschlüsselung
Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also
Sicherheit von hybrider Verschlüsselung
Sicherheit von hybrider Verschlüsselung Satz Sicherheit hybrider Verschlüsselung Sei Π ein CPA-sicheres PK-Verschlüsselungsverfahren und Π ein KPA-sicheres SK-Verschlüsselungsverfahren. Dann ist das hybride
3 Das RSA-Kryptosystem
Stand: 15.12.2014 Vorlesung Grundlagen und Methoden der Kryptographie Dietzfelbinger 3 Das RSA-Kryptosystem RSA: Erfunden von Ronald L. Rivest, Adi Shamir und Leonard Adleman, 1977. (Ein ähnliches Verfahren
Technische Informatik - Eine Einführung
Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine
ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen
ELEMENTARE ZAHLENTHEORIE FÜR LAK Kapitel 2: Kongruenzen und Restklassen 621.242 Vorlesung mit Übung im WS 2015/16 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität
Public-Key-Kryptosystem
Public-Key-Kryptosystem Zolbayasakh Tsoggerel 29. Dezember 2008 Inhaltsverzeichnis 1 Wiederholung einiger Begriffe 2 2 Einführung 2 3 Public-Key-Verfahren 3 4 Unterschiede zwischen symmetrischen und asymmetrischen
Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie
Proseminar: Electronic Commerce und Digitale Unterschriften Public-Key-Kryptographie Ziele der Kryptographie 1. Vertraulichkeit (Wie kann man Nachrichten vor Fremden geheim halten?) 2. Integrität (Wie
Einleitung Shor s Algorithmus Anhang. Thomas Neder. 19. Mai 2009
19. Mai 2009 Einleitung Problemstellung Beispiel: RSA Teiler von Zahlen und Periode von Funktionen Klassischer Teil Quantenmechanischer Teil Quantenfouriertransformation Algorithmus zur Suche nach Perioden
Quadrate und Wurzelziehen modulo p
Quadrate und Wurzelziehen modulo p Sei im Folgenden p eine Primzahl größer als. Wir möchten im Körper Z p Quadratwurzeln ziehen. Die Quadrierabbildung Q :Z p Z p ist aber nicht surjektiv, daher gibt es
Asymmetrische Kryptographie u
Asymmetrische Kryptographie u23 2015 Simon, Florob e.v. https://koeln.ccc.de Cologne 2015-10-05 1 Zahlentheorie Modulare Arithmetik Algebraische Strukturen Referenzprobleme 2 Diffie-Hellman Diffie-Hellman-Schlüsselaustausch
13. Der diskrete Logarithmus
13. Der diskrete Logarithmus 13.1. Definition. Sei p eine Primzahl. Wie wir in 9 bewiesen haben, ist die multiplikative Gruppe F p des Körpers F p = Z/p zyklisch. Sei g ein erzeugendes Element von F p
27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln
27. Algorithmus der Woche Public-Key-Kryptographie Verschlüsseln mit öffentlichen Schlüsseln Autor Dirk Bongartz, RWTH Aachen Walter Unger, RWTH Aachen Wer wollte nicht schon mal eine Geheimnachricht übermitteln?
Kryptographische Verfahren auf Basis des Diskreten Logarithmus
Kryptographische Verfahren auf Basis des Diskreten Logarithmus -Vorlesung Public-Key-Kryptographie SS2010- Sascha Grau ITI, TU Ilmenau, Germany Seite 1 / 18 Unser Fahrplan heute 1 Der Diskrete Logarithmus
Aufgabenblatt 5 (Schnellübung)
Frühlingssemester 0, Aufgabenblatt (Schnellübung) Aufgabenblatt (Schnellübung) 30 Punkte Aufgabe (Kettenbrüche) a) Bestimme [b 0, b,..., b ] = [,... ], die Kettenbruchentwicklung von r = 3/9. b) Bestimme
Mathematik III. (für Informatiker) Oliver Ernst. Wintersemester 2014/15. Professur Numerische Mathematik
Mathematik III (für Informatiker) Oliver Ernst Professur Numerische Mathematik Wintersemester 2014/15 Inhalt 10 Differentialgleichungen 11 Potenz- und Fourier-Reihen 12 Integraltransformationen 13 Algebraische
RSA Verfahren. Ghazwan Al Hayek Hochschule für Technik Stuttgart. 2. November 2008
RSA Verfahren Ghazwan Al Hayek Hochschule für Technik Stuttgart 2. November 2008 1 Inhaltsverzeichnis 1. Einleitung 1.1. Übersicht 1.2. Private-Key-Verfahren 1.3. Public-Key-Verfahren 1.4. Vor/ Nachteile
3. Diskrete Mathematik
Diophantos von Alexandria, um 250 Georg Cantor, 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,
Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne
Wiederholung Symmetrische Verschlüsselung klassische Verfahren: Substitutionschiffren Transpositionschiffren Vigenère-Chiffre One-Time-Pad moderne Verfahren: DES (Feistel-Chiffre) mehrfache Wiederholung
Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion
Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Nehmen wir die Menge A = {,,,,,,,,}, z.b. nummerierte Personen. Unter Berücksichtigung
Geheim bleibt geheim: Computeralgebra und Verschlüsselung mit RSA
Geheim bleibt geheim: Computeralgebra und Verschlüsselung mit RSA Prof. Dr. Wolfram Koepf Universität Kassel http://www.mathematik.uni-kassel.de/~koepf Nordhessischer Tag der Mathematik 16. Februar 2007
Elementare Zahlentheorie II
Schülerzirel Mathemati Faultät für Mathemati. Universität Regensburg Elementare Zahlentheorie II Der Satz von Euler-Fermat und die RSA-Verschlüsselung Die Mathemati ist die Königin der Wissenschaften,
Lernmodul Bruchrechnen. Brüche vollständig kürzen (ggt) Brüche gleichnahmig machen (kgv) Brüche addieren. Brüche subtrahieren. Brüche multiplizieren
Lernmodul Bruchrechnen Brüche vollständig kürzen (ggt) Brüche gleichnahmig machen (kgv) Brüche addieren Brüche subtrahieren Brüche multiplizieren Brüche dividieren Lernmodul Dezimalrechnung Dezimalzahlen
Rechnen mit natürlichen Zahlen
Addieren und Subtrahieren einer Zahl Fachausdrücke bei der Addition und Subtraktion: Addition (+) 52 + 27 = 79 1. Summand + 2. Summand = Summe Rechnen mit natürlichen Zahlen Subtraktion ( - ) Strichrechnungen
