9.3 Ortsspezifische Rekombination

Größe: px
Ab Seite anzeigen:

Download "9.3 Ortsspezifische Rekombination"

Transkript

1 340 Rekombination.3 Ortsspezifische Rekombination Die ortsspezifische Rekombination erfordert Rekombinasen, die spezifische DNA-Motive erkennen und den Strangaustausch zwischen zwei Stellen katalysieren, was zur Inversion, Deletion oder Integration von DNA führen kann. Es gibt zwei große Familien von ortsspezifischen Rekombinasen, die Tyrosin-Rekombinasen und die Serin-Rekombinasen. Bei beiden entsteht ein Intermediat mit kovalent an die jeweils namensgebende Aminosäure gebundene DNA. Die Beteiligung weiterer Proteine kann die Richtung des eigentlich reversiblen Prozesses bestimmen. Ortsspezifische Rekombination ist an Auflösung von Chromosomendimeren während der Replikation, an der Integration von Phagen ins Wirtsgenom und an der Genregulation durch Phasenvariation beteiligt..3.1 Formaler Ablauf Ortsspezifische Rekombinasen haben jeweils enzymspezifische Erkennungsmotive. Die Rekombinasen binden zwei Motive und katalysieren die Spaltung der DNA an beiden Motiven sowie die kreuzweise Wiederverknüpfung. Die Motive sind nicht symmetrisch (im Gegensatz zu den Erkennungsmotiven der meisten Restriktionsenzyme, S. 482), und sie besitzen daher eine Richtung. Befinden sich zwei Erkennungsstellen auf einem DNA-Molekül, die unterschiedliche Richtungen aufweisen, so führt die ortsspezifische Rekombination zwischen ihnen zu einer Inversion des zwischen ihnen liegenden DNA-Bereichs (Abb..11a). Befinden sich zwei Stellen mit derselben Richtung auf einem DNA- Molekül, so führt die ortsspezifische Rekombination zur Deletion des zwischen ihnen liegenden DNA-Bereichs (Abb..11b). Findet die ortsspezifische Rekombination zwischen zwei Erkennungsmotiven statt, die sich auf unterschiedlichen DNA-Molekülen befinden, so kommt es zur Fusion beider Moleküle, die meist als Integration bezeichnet wird, da die beiden Moleküle typischerweise eine sehr unterschiedliche Größe aufweisen (Abb..11c). Ein typisches biologisches Beispiel ist die Integration eines Phagengenoms in das Genom der Wirtszelle. Integration und Deletion sind gegenläufige Prozesse, die bei symmetrischen Systemen beide von derselben ortsspezifischen Rekombinase katalysiert werden. Bei den biologischen Beispielen (s. u.) werden Mechanismen beschrieben, wie die Richtung der Reaktion reguliert wird.

2 .3 Ortsspezifische Rekombination 341 Abb..11 Drei unterschiedliche Folgen ortsspezifischer Rekombination. Ortsspezifische Rekombination: Rekombinase bindet an zwei Wiederholungen eines nichtsymmetrischen DNA-Motivs, spaltet die DNA und verknüpft sie kreuzweise neu. Inversion: zwei Motive mit gegenläufiger Richtung auf einem DNA-Molekül. Deletion: zwei Motive mit identischer Richtung auf einem DNA-Molekül. Integration: zwei Motive auf zwei unterschiedlichen DNA-Molekülen..3.2 Biochemie von zwei konservierten Proteinfamilien Die ortsspezifische Rekombination wurde schon vor Jahrzehnten bei der Untersuchung der Vermehrungszyklen von temperenten Phagen entdeckt, die nach Infektion in das Genom der Wirtszelle integrieren, und es akkumulierte eine immer unübersichtlicher werdende Liste von Einzelbeispielen. Vor einigen Jahren wurde jedoch deutlich, dass sämtliche ortsspezifischen Rekombinasen zu einer von nur zwei Proteinfamilien gehören. Die beiden Proteinfamilien sind nicht homolog zueinander. Sie werden nach einer jeweils für den Mechanismus wichtigen Aminosäure im aktiven Zentrum als Tyrosin- bzw. als Serin-Rekom-

3 342 Rekombination binasen bezeichnet. In beiden Fällen müssen beide DNA-Stränge an beiden Erkennungsmotiven gespalten werden. Insgesamt werden also vier Stränge gespalten, entsprechend ist die aktive Konformation in beiden Fällen ein Proteintetramer, das beide Motive gebunden hat. Da die Proteine in Lösung typischerweise als Dimere vorliegen, ist anzunehmen, dass zunächst Dimere an die beiden Erkennungsmotive binden und anschließend der aktive Komplex gebildet wird. In beiden Fällen wird die DNA nicht hydrolysiert, sondern es findet eine Transveresterung der Phosphatgruppe mit der jeweils namensgebenden Aminosäure, Tyrosin bzw. Serin, im aktiven Zentrum der Rekombinase statt. Die energiereiche Bindung bleibt also erhalten, sodass der Prozess reversibel ist. Dies ist ähnlich wie bei den Topoisomerasen (S. 8). Obwohl die Produkte der Rekombination gleich sind, sind der jeweilige enzymatische Mechanismus der beiden Proteinfamilien sowie die Struktur des aktiven Komplexes unterschiedlich. Die Tyrosin-Rekombinasefamilie Tyrosin-Rekombinasen sind in Bacteria und Archaea weit verbreitet und kommen auch bei einigen Eukaryoten vor. Die Proteinfamilie ist entsprechend groß in Sequenzdatenbanken sind mehr als 1000 Mitglieder vertreten. Ein DNA-Erkennungsmotiv besteht aus zwei invertierten Monomerbindungsstellen, die durch einen Spacer von 6 8 Nucleotiden getrennt sind. Die Spacer sind unsymmetrisch und geben der Bindungsstelle daher eine Richtung. Die Spaltung erfolgt am 5 -Ende des Spacers. Der aktive Komplex ist ein Proteintetramer, an das zwei DNA-Stränge gebunden sind. Jedes Monomer bindet die DNA wie eine Klammer und wechselwirkt mit einer großen Furche und einer kleinen Furche auf beiden Seiten der DNA-Helix. Die Spaltung erfolgt durch einen nucleophilen Angriff des Tyrosins im aktiven Zentrum auf das Phosphat (Abb..12a). Es entsteht ein kovalentes Intermediat zwischen Tyrosin und Phosphat, wobei das Phosphat am 3 -Ende einer Ribose gebunden ist und ein freies 5 -OH an der benachbarten Ribose vorliegt. Vermutlich wird die Katalyse durch weitere Aminosäuren im aktiven Zentrum unterstützt, die als Säure bzw. Base wirken. In der Nähe des Tyrosins gibt es hochkonservierte Arginine und Histidine, die diese Rolle spielen könnten. Bei Tyrosin-Rekombinasen sind jeweils nur zwei der vier Monomere aktiv, sodass nur zwei der vier DNA-Stränge geschnitten werden (Abb..12b). Danach erfolgt eine Isomerisierung, die dazu führt, dass die freien 3 -Enden in die Nähe des Tyrosinphosphat-Intermediats des anderen Stranges gelangen. Aufgrund der quadratischen planaren Anordnung des synaptischen Komplexes ist dazu nur eine relativ geringe Konformationsänderung der Proteine nötig. Das 3 -OH kann nun durch einen nucleophilen Angriff auf das Phosphat den DNA-Strang wieder schließen und das Tyrosin freisetzen. Bis hierher ist die Reaktion zur Hälfte abgelaufen, und es wurde eine Holliday- Struktur in der DNA gebildet. Die beiden bislang aktiven Monomere werden nun

4 .3 Ortsspezifische Rekombination 343 Abb..12 Tyrosin-Rekombinasen. a Chemie der Spaltung; b Ablauf der Rekombination.

5 344 Rekombination inaktiv und aktivieren die beiden anderen Monomere. Diese spalten die beiden bislang noch ungespaltenen DNA-Stränge und verbinden sie nach einer Isomerisierung kreuzweise miteinander (Abb..12b). Die Strukturen der Komplexe mehrerer Tyrosin-Rekombinasen mit DNA sind so ähnlich, dass vermutet wird, dass dieser Mechanismus verallgemeinert werden kann. Zu individuellen Unterschieden kann es durch die Wechselwirkung mit weiteren Proteinen kommen, die die Reaktivität und die Richtung der Reaktion regulieren (s. u.). Die Serin-Rekombinasefamilie Die Serin-Rekombinasefamilie ist kleiner und weniger einheitlich als die Familie der Tyrosin-Rekombinasen. Die Größe der Proteine reicht von 180 bis zu 800 Aminosäuren, was daran liegt, dass die Rekombinasedomäne, die in allen Vertretern der Familie konserviert ist, N-terminal und/oder C-terminal mit anderen Domänen fusioniert ist. Auch in diesem Fall besteht der aktive Komplex aus einem Proteintetramer und zwei gebundenen DNA-Strängen. Ansonsten gibt es allerdings große Unterschiede zwischen den beiden nichthomologen Proteinfamilien. Die Spaltung erfolgt ebenfalls durch einen nucleophilen Angriff einer Aminosäure im aktiven Zentrum auf ein Phosphat, allerdings ist es ein Serin. Es entsteht also ein Serylphosphat, das an das 5 -C-Atom einer Ribose gebunden ist, und ein freies 3 -OH an der benachbarten Ribose (Abb..13a). Bei den Serin-Rekombinasen sind alle vier Untereinheiten gleichzeitig aktiv, so dass ein Doppelstrangbruch verursacht wird. Die Spaltung geschieht jeweils um zwei Nucleotide versetzt, sodass kurze Überhänge entstehen, die für eine produktive Rekombination bei beiden Erkennungsmotiven identisch sein müssen. Jede Untereinheit hat Kontakt zu allen drei anderen Untereinheiten des Tetramers, wodurch eine koordinierte Spaltung aller vier DNA-Stränge erreicht wird (Abb..13b). Bei den Tyrosin-Rekombinasen interagieren die Untereinheiten nicht mit den diagonal liegenden Untereinheiten. Auch der Aufbau des aktiven Komplexes ist unterschiedlich: Bei Serin-Rekombinasen bildet das Proteintetramer das Zentrum des Komplexes, und die beiden DNA-Stränge liegen auf der Außenseite. Damit die kreuzweise Verknüpfung der beiden DNA-Moleküle erfolgen kann, muss bei Serin-Rekombinasen eine große Konformationsänderung stattfinden, die einer Rotation eines Dimers gegenüber dem anderen Dimer von 180 h entspricht. Die Verknüpfung der DNA-Stränge geschieht durch nucleophilen Angriff der vier 3 -OH-Gruppen auf die vier Serylphosphate, wodurch die Serinreste wieder frei werden. Dieses Prinzip eint die Familie der Serin-Rekombinasen, aber auch hier gibt es individuelle Unterschiede durch Wechselwirkungen mit weiteren Proteinen oder durch spezifische Anforderungen an die Konformation des DNA-Substrates.

6 .3 Ortsspezifische Rekombination 345 Abb..13 Serin-Rekombinasen. a Chemie der Spaltung; b Ablauf der Rekombination. Ortsspezifische Rekombinasen: Die aktive Struktur ist ein Proteintetramer mit zwei gebundenen DNA-Erkennungsmotiven. Tyrosin-Rekombinasen: Sehr weit verbreitete große Proteinfamilie; in zwei Schritten werden jeweils zwei DNA-Stränge gespalten und kreuzweise wieder verknüpft; kovalente Tyrosylphosphate als Intermediate und freie 5 -OHs; Holliday-Struktur nach der Halbreaktion. Serin-Rekombinasen: Es werden alle vier DNA-Stränge gleichzeitig gespalten; versetzte Spaltung mit Überhang von zwei Nucleotiden; kovalente Serylphosphate und freie 3 -OHs; Protein im Zentrum und DNA außen; große Konformationsänderung der beiden Dimere gegeneinander..3.3 Ortsspezifische Rekombination in biologischen Prozessen Von den vielen Beispielen für ortsspezifische Rekombination werden nachfolgend einige ausgewählte Beispiele besprochen, die unterschiedliche Prinzipien illustrieren, wie ortsspezifische Rekombination in ihrer Richtung, in der Produktbildung sowie zeitlich und örtlich reguliert werden kann.

7 346 Rekombination Integration und Ausschneiden von Phagen Viele Phagen codieren ortsspezifische Rekombinasen, die für ihren Lebenszyklus wichtig sind. Ein einfaches Beispiel ist die Cre-Rekombinase des Phagen P1, die durch Rekombination an zwei DNA-Erkennungsmotiven, die loxp-stellen genannt werden, die Zirkularisierung des Phagengenoms nach der Infektion einer Zelle katalysiert. Das Protein gehört zur Tyrosin-Rekombinase-Familie. Das Protein und DNA-Moleküle mit zwei loxp-stellen sind ausreichend, um die Reaktion in vitro ablaufen zu lassen, und beide Richtungen werden katalysiert. Abb..14 zeigt einen Komplex aus Protein und zwei DNA-Strängen. Es ist zu erkennen, dass die DNA-Stränge im Komplex in räumliche Nähe gebracht werden und nach dem Einzelstrangbruch geringe Konformationsänderungen für den Strangaustausch ausreichend sind. Aufgrund seiner Einfachheit und Robustheit wird das Cre-Lox-System heute vielfach als Werkzeug in der Molekulargenetik angewendet, um Genome von Pro- und Eukaryoten gezielt zu verändern (S. 368). Eine andere Tyrosin-Rekombinase mit einem komplexeren Mechanismus ist die Integrase (Int) des Phagen Lambda. Nach Infektion einer Zelle kann der Phage einen lytischen Lebenszyklus einschlagen und die Zelle unter Bildung neuer Phagenpartikel zerstören, er kann sein Genom aber auch als lysogener Phage in das Genom der Wirtszelle integrieren. Dabei erfolgt die ortsspezifische Rekombination nur in einer Richtung, der Integration. Der Prophage wird nun mit dem Bakteriengenom repliziert und an die Nachkommen weitergegeben. Unter bestimmten Bedingungen schaltet Lambda vom lysogenen zum lytischen Ablauf um. Dazu muss das Phagengenom wieder aus dem Bakteriengenom ausgeschnitten werden. Auch das wird von der Integrase katalysiert, die nun aus- Abb..14 Strukturen von Komplexen ortsspezifischer Rekombinasen mit DNA. a die Tyrosin-Rekombinase Cre (ein Dimer blau, ein Dimer rot) mit LoxP-Stelle; b die Serin-Rekombinase gd-resolvase (ein Dimer rot, ein Dimer gelb) mit DNA. (pdb:1nzb, 1ZR4)

8 .3 Ortsspezifische Rekombination 347 schließlich in der zur Integration entgegengesetzten Richtung arbeitet. Die gezielte Katalyse der für den Phagen jeweils benötigten Richtung wird dadurch erreicht, dass ein Int-Tetramer allein die Rekombination nicht katalysieren kann, sondern zusätzliche Proteine für die Reaktion essentiell sind. Int erkennt dabei eine Stelle im Phagengenom, die attp genannt wird, und eine Stelle im Bakteriengenom, die attb genannt wird. Während attb eine klassische Bindestelle für ein Int-Dimer ist, ist attp komplexer aufgebaut (Abb..15). Die Affinität für Int zur Rekombinationsstelle (R-R ) ist nur sehr gering, dagegen bindet Int über eine zusätzliche N-terminale Domäne hochaffin an weiter außen liegende Stellen (P1, P2, P ). Zwischen den Bindestellen für Int ist eine Bindestelle für das Bakterienprotein IHF (integration host factor), das bei der Bindung eine Biegung in die DNA einführt. Dadurch kommen die P-Stellen in die Nähe der R-Stellen, Int kann nun die niederaffinen R-Stellen besetzen und die Rekombination mit attb kann stattfinden, was zur Integration führt. Nach der Integration ist der Prophage umgeben von zwei Stellen, die anders aufgebaut sind als beide vorherigen Stellen und die attr und attl genannt werden. Die Anwesenheit von IHF ist nicht ausreichend, um die Rekombination zwischen attr und attl zu ermöglichen, und daher bleibt der Prophage stabil integriert. Zur Deletion des Prophagen ist ein von ihm codiertes Protein notwendig, das Xis (excision) genannt wird. Wird die Expression von xis induziert, bindet Xis an Stellen in attr, was Voraussetzung für die Ausbildung eines produktiven Rekombinationskomplexes an attr-attl ist. Nach dem Ausschneiden verhindert die Bindung von Xis an attp, das die Rückreaktion stattfinden kann, daher ist die Rekombination bei Anwesenheit von Xis irreversibel. Abb..15 Integration des Phagen Lambda in das E. coli-genom und späteres Xis-abhängiges Herausschneiden.

9 348 Rekombination Der Phage Lambda bietet ein Beispiel dafür, wie die ortsspezifische Rekombination durch die Beteiligung weiterer Proteine und den Aufbau von unsymmetrischen Rekombinationskomplexen in ihrem Ablauf und ihrer Richtung reguliert werden kann. Viele andere temperente Phagen benutzen ähnliche Mechanismen, um die Rekombination ihrem Lebenszyklus anzupassen und gezielt für die Integration ins oder die Deletion aus dem Wirtschromosom einzusetzen. Phasenvariation Mehrere Serin-Rekombinasen katalysieren die Inversion eines DNA-Segmentes im Chromosom von Bakterien. Der Mechanismus ist anders als bei der homologen Rekombination (S. 338) beschrieben, der biologische Sinn ist derselbe: die qualitative Umschaltung von einem Zustand zu einem anderen als Mittel der Genregulation. Am besten untersucht ist die Hin-Rekombinase von Salmonella, die es den Zellen erlaubt, zwischen zwei Flagellen hin- und herzuschalten, die aus unterschiedlichen Flagellinen aufgebaut sind. Das invertierbare DNA-Element zwischen den Erkennungsmotiven der Rekombinase enthält das hin-gen für die Rekombinase sowie am Rand einen Promotor, der die Transkription des Bereiches jenseits des Inversionselementes steuert. In der Folge werden in der einen Richtung zwei Gene abgelesen: fljb codiert das Flagellin H2 und flja codiert einen Repressor, der die Expression des Gens für das Flagellin H1 verhindert. Dadurch werden in dieser Orientierung Flagellen aus H2 gebildet. Wird das Element durch die Rekombinase Hin invertiert, wird kein H2 mehr gebildet; dafür ist die Produktion des Flagellins H1 nicht mehr reprimiert, und dieses wird nun für die Flagellensynthese verwendet. Da Flagellen antigene Oberflächenstrukturen sind, handelt es sich bei dieser Phasenvariation auch um eine Antigenvariation. Die Hin-Rekombinase katalysiert die ortsspezifische Rekombination ausschließlich zwischen Erkennungsstellen, die auf einem DNA-Molekül (in cis) liegen, nicht zwischen Stellen auf verschiedenen Molekülen (in trans). Damit wird garantiert, dass Hin ausschließlich Inversionen katalysiert und nicht z. B. die Dimerbildung von zwei Chromosomen nach der Replikation. Wieder wird die Einschränkung der möglichen Reaktionen dadurch erreicht, dass ein weiteres Protein für die Ausbildung des Rekombinationskomplexes benötigt wird. Innerhalb des invertierbaren Elementes liegt eine Bindungsstelle für das bakterielle Protein Fis (factor for inversion stimulation). Für die Ausbildung des aktiven Rekombinationskomplexes ist eine Wechselwirkung von zwei Fis-Dimeren mit dem Hin-Tetramer nötig, das die Rekombination zwischen den beiden Erkennungsmotiven katalysiert. Eine Variation des Themas ist bei dem Phagen Mu zu finden, bei dem die Inversion eines DNA-Elementes das Umschalten zwischen zwei Proteinen bewirkt, die für die Wirtserkennung nötig sind. Daher stellt eine Mu-Population eine Mischung von Phagen dar, die den einen bzw. den anderen von zwei mög-

10 .3 Ortsspezifische Rekombination 34 lichen Wirten befallen können. In diesem Fall liegt das Gen für die Rekombinase außerhalb des Inversionselementes, und die Inversion erfolgt mitten in dem Gen für das Schwanzfaserprotein. Das Protein besteht somit aus einem konstanten N-Terminus und einem von zwei möglichen C-Termini, die durch die Inversion ausgetauscht werden können. Wieder ist das Fis-Protein für die Ausbildung eines aktiven Rekombinationskomplexes nötig. In diesen und weiteren Fällen der Genregulation durch ein Inversionselement wird die Richtung und der Zeitpunkt des Schaltens nicht reguliert. Es handelt sich um ein stochastisches Schalten zwischen zwei Zuständen, das sicherstellt, dass in einer Population zwei verschiedene Arten von Zellen oder Phagen vorhanden sind, was die Wahrscheinlichkeit erhöht, dem Immunsystem zu entgehen, oder den Wirtsbereich erweitert. Auflösung von Chromosomendimeren Die am Weitesten verbreitete und daher allgemeinste biologische Funktion von ortsspezifischen Rekombinasen liegt darin, Chromosomendimere von Prokaryoten in Monomere zu spalten, die auf die Tochterzellen verteilt werden können. Wie beschrieben (S. 332), ist die homologe Rekombination ein integraler Bestandteil der Replikation. Dabei werden zumeist die Non-Crossover-Produkte gebildet, zu einem bestimmten Anteil aber auch Crossover-Produkte. Ein Crossover führt bei der Replikation (oder bei der DNA-Reparatur durch homologe Rekombination bei Doppelstrangbrüchen an schon replizierten Bereichen) zu der Bildung eines Chromosomendimers, dessen Verteilung auf die beiden Tochterzellen natürlich unmöglich ist (Abb..16). Eine ortsspezifische Rekombinase spaltet das Dimer in zwei Monomere, die segregiert werden können. Für das Überleben der Zellen ist es wichtig, dass die Rekombination ausschließlich in einer Richtung abläuft der Spaltung von Dimeren und es keinesfalls zu der Dimerbildung aus zwei Monomeren kommt. Dies wird garantiert, indem die Rekombination auf einen bestimmten Zeitpunkt des Zellzyklus und einen bestimmten Ort innerhalb der Zelle beschränkt wird. Dies geschieht wiederum dadurch, dass die Rekombinase allein die Rekombination nicht katalysieren kann, sondern die Wechselwirkung mit einem weiteren Protein nötig ist. Anders als bei den bislang vorgestellten Beispielen besteht die Rekombinase nicht aus einem Homotetramer, sondern ist ein Heterotetramer aus den beiden Proteinen XerC und XerD, die zu den Tyrosin-Rekombinasen gehören. Das DNA- Erkennungsmotiv, dif genannt, liegt im Bereich des Replikationsterminus (S. 10). Für eine erfolgreiche Rekombination ist die Wechselwirkung des XerCD- Tetramers mit dem Protein FtsK nötig. FtsK ist ein integrales Membranprotein, das am sich während der Zellteilung bildenden Septum lokalisiert ist, und ist eine ATP-abhängige DNA-Pumpe, die sicherstellt, dass bei einer normalen Teilung keine DNA im Bereich des Septums verbleibt. Bei Chromosomendimeren jedoch bleibt der Bereich der Termini (und damit auch dif) in der Zellmitte.

11 350 Rekombination Abb..16 Replikation eines Bakteriengenoms. a ohne und b mit Crossover-Rekombination; gelb und grün = neusynthetisierte DNA. Die Wechselwirkung von FtsK mit XerCD aktiviert XerD, das ansonsten inaktiv ist. Ohne FtsK kann das XerCD-Tetramer zwar an dif binden und XerC kann einen Strang austauschen, aber ohne die XerD-Aktivität wird der zweite Strang nicht gespalten und es kommt zur Rückreaktion. Chromosomenmonomere können auf die beiden Zellhälften verteilt werden, bevor das Septum gebildet wird, daher kommt der XerCD-Komplex ausschließlich dann mit FtsK in Kontakt, wenn ein Chromosomendimer nicht verteilt werden kann und die beiden dif-sequenzen in der Zellmitte verbleiben. Auf diese Art werden durch die Lokalisation eines Hilfsproteins Zeit, Ort und Richtung der ortsspezifischen Rekombination durch XerCD bestimmt. Ortsspezifische Rekombination (biologische Prozesse): Integration Deletion von Phagen: Rekombinase allein reicht nicht; Richtung reguliert durch zusätzliche Proteine des Wirts und des Phagen; Beispiel Lambda Int. Phasenvariation: Genregulation durch Inversion; unreguliert; selten. Trennung von Chromosomendimeren: Bei Prokaryoten weit verbreitet; XerCD (E. coli); örtlich und zeitlich reguliert durch Benötigung des Septumproteins FtsK.

Genetik der Bakteriophagen

Genetik der Bakteriophagen Phagen Genetik der Bakteriophagen Bakteriophagen: Viren der Bakterien Virus: Giftstoff Manche der wichtigsten und grundlegenden genetischen Informationen resultierten aus Studien mit den E. coli Phagen

Mehr

Praktikum Biochemie B.Sc. Water Science WS Enzymregulation. Marinja Niggemann, Denise Schäfer

Praktikum Biochemie B.Sc. Water Science WS Enzymregulation. Marinja Niggemann, Denise Schäfer Praktikum Biochemie B.Sc. Water Science WS 2011 Enzymregulation Marinja Niggemann, Denise Schäfer Regulatorische Strategien 1. Allosterische Wechselwirkung 2. Proteolytische Aktivierung 3. Kovalente Modifikation

Mehr

Elektronenmikroskopie zeigte die Existenz der A-, P- und E- trna-bindungsstellen. Abb. aus Stryer (5th Ed.)

Elektronenmikroskopie zeigte die Existenz der A-, P- und E- trna-bindungsstellen. Abb. aus Stryer (5th Ed.) Elektronenmikroskopie zeigte die Existenz der A-, P- und E- trna-bindungsstellen Die verschiedenen Ribosomen-Komplexe können im Elektronenmikroskop beobachtet werden Durch Röntgenkristallographie wurden

Mehr

1. Welche Auswirkungen auf die Expression des lac-operons haben die folgenden Mutationen:

1. Welche Auswirkungen auf die Expression des lac-operons haben die folgenden Mutationen: Übung 10 1. Welche Auswirkungen auf die Expression des lac-operons haben die folgenden Mutationen: a. Eine Mutation, die zur Expression eines Repressors führt, der nicht mehr an den Operator binden kann.

Mehr

Entwicklungs /gewebespezifische Genexpression. Coexpression funktional überlappender Gene

Entwicklungs /gewebespezifische Genexpression. Coexpression funktional überlappender Gene Übung 11 Genregulation bei Prokaryoten Konzepte: Entwicklungs /gewebespezifische Genexpression Coexpression funktional überlappender Gene Positive Genregulation Negative Genregulation cis /trans Regulation

Mehr

Transkription Teil 2. - Transkription bei Eukaryoten -

Transkription Teil 2. - Transkription bei Eukaryoten - Transkription Teil 2 - Transkription bei Eukaryoten - Inhalte: Unterschiede in der Transkription von Pro- und Eukaryoten Die RNA-Polymerasen der Eukaryoten Cis- und trans-aktive Elemente Promotoren Transkriptionsfaktoren

Mehr

Übung 11 Genregulation bei Prokaryoten

Übung 11 Genregulation bei Prokaryoten Übung 11 Genregulation bei Prokaryoten Konzepte: Differentielle Genexpression Positive Genregulation Negative Genregulation cis-/trans-regulation 1. Auf welchen Ebenen kann Genregulation stattfinden? Definition

Mehr

Übung 11 Genregulation bei Prokaryoten

Übung 11 Genregulation bei Prokaryoten Übung 11 Genregulation bei Prokaryoten Konzepte: Differentielle Genexpression Positive Genregulation Negative Genregulation cis-/trans-regulation 1. Auf welchen Ebenen kann Genregulation stattfinden? Definition

Mehr

DNA Replikation ist semikonservativ. Abb. aus Stryer (5th Ed.)

DNA Replikation ist semikonservativ. Abb. aus Stryer (5th Ed.) DNA Replikation ist semikonservativ Entwindung der DNA-Doppelhelix durch eine Helikase Replikationsgabel Eltern-DNA Beide DNA-Stränge werden in 5 3 Richtung synthetisiert DNA-Polymerasen katalysieren die

Mehr

Transkription und Translation sind in Eukaryoten räumlich und zeitlich getrennt. Abb. aus Stryer (5th Ed.)

Transkription und Translation sind in Eukaryoten räumlich und zeitlich getrennt. Abb. aus Stryer (5th Ed.) Transkription und Translation sind in Eukaryoten räumlich und zeitlich getrennt Die Initiation der Translation bei Eukaryoten Der eukaryotische Initiationskomplex erkennt zuerst das 5 -cap der mrna und

Mehr

Musterlösung - Übung 5 Vorlesung Bio-Engineering Sommersemester 2008

Musterlösung - Übung 5 Vorlesung Bio-Engineering Sommersemester 2008 Aufgabe 1: Prinzipieller Ablauf der Proteinbiosynthese a) Erklären Sie folgende Begriffe möglichst in Ihren eigenen Worten (1 kurzer Satz): Gen Nukleotid RNA-Polymerase Promotor Codon Anti-Codon Stop-Codon

Mehr

GRUNDLAGEN DER MOLEKULARBIOLOGIE

GRUNDLAGEN DER MOLEKULARBIOLOGIE Page 1 of 7 GRUNDLAGEN DER MOLEKULARBIOLOGIE Prof. Dr. Anne Müller 6 Genetische Vielfalt / Gen-Umordnungen 6.1 RNA-Editing 6.2 Alternatives Spleissen 6.3 Gen-Umordnungen Wie kann die Zahl der Proteine

Mehr

Eukaryotische messenger-rna

Eukaryotische messenger-rna Eukaryotische messenger-rna Cap-Nukleotid am 5 -Ende Polyadenylierung am 3 -Ende u.u. nicht-codierende Bereiche (Introns) Spleißen von prä-mrna Viele Protein-codierende Gene in Eukaryoten sind durch nicht-codierende

Mehr

Posttranskriptionale RNA-Prozessierung

Posttranskriptionale RNA-Prozessierung Posttranskriptionale RNA-Prozessierung Spaltung + Modifikation G Q Spleissen + Editing U UUU Prozessierung einer prä-trna Eukaryotische messenger-rna Cap-Nukleotid am 5 -Ende Polyadenylierung am 3 -Ende

Mehr

In den Proteinen der Lebewesen treten in der Regel 20 verschiedene Aminosäuren auf. Deren Reihenfolge muss in der Nucleotidsequenz der mrna und damit

In den Proteinen der Lebewesen treten in der Regel 20 verschiedene Aminosäuren auf. Deren Reihenfolge muss in der Nucleotidsequenz der mrna und damit In den Proteinen der Lebewesen treten in der Regel 20 verschiedene Aminosäuren auf. Deren Reihenfolge muss in der Nucleotidsequenz der mrna und damit in der Nucleotidsequenz der DNA verschlüsselt (codiert)

Mehr

Weitergabe genetischer Information: DNA-Replikation Beispiel: Escherichia coli.

Weitergabe genetischer Information: DNA-Replikation Beispiel: Escherichia coli. Weitergabe genetischer Information: DNA-Replikation Beispiel: Escherichia coli. zirkuläres bakterielles Chromosom Replikation (Erstellung einer identischen Kopie des genetischen Materials) MPM 1 DNA-Polymerasen

Mehr

DNA mrna Protein. Initiation Elongation Termination. RNA Prozessierung. Unterschiede Pro /Eukaryoten

DNA mrna Protein. Initiation Elongation Termination. RNA Prozessierung. Unterschiede Pro /Eukaryoten 7. Transkription Konzepte: DNA mrna Protein Initiation Elongation Termination RNA Prozessierung Unterschiede Pro /Eukaryoten 1. Aus welchen vier Nukleotiden ist RNA aufgebaut? 2. RNA unterscheidet sich

Mehr

Phagen. Extra Anforderung

Phagen. Extra Anforderung Phagen Extra Anforderung Genetik der Bakteriophagen Bakteriophagen: Viren der Bakterien Virus: Giftstoff Manche der wichtigsten und grundlegenden genetischen Informationen resultierten aus Studien mit

Mehr

Expression der genetischen Information Skript: Kapitel 5

Expression der genetischen Information Skript: Kapitel 5 Prof. A. Sartori Medizin 1. Studienjahr Bachelor Molekulare Zellbiologie FS 2013 12. März 2013 Expression der genetischen Information Skript: Kapitel 5 5.1 Struktur der RNA 5.2 RNA-Synthese (Transkription)

Mehr

DNA mrna Protein. Initiation Elongation Termination. RNA Prozessierung. Unterschiede Pro /Eukaryoten

DNA mrna Protein. Initiation Elongation Termination. RNA Prozessierung. Unterschiede Pro /Eukaryoten 7. Transkription Konzepte: DNA mrna Protein Initiation Elongation Termination RNA Prozessierung Unterschiede Pro /Eukaryoten 3. Aus welchen vier Nukleotiden ist RNA aufgebaut? 4. DNA RNA 5. Ein Wissenschaftler

Mehr

Dr. Jens Kurreck. Otto-Hahn-Bau, Thielallee 63, Raum 029 Tel.: 83 85 69 69 Email: jkurreck@chemie.fu-berlin.de

Dr. Jens Kurreck. Otto-Hahn-Bau, Thielallee 63, Raum 029 Tel.: 83 85 69 69 Email: jkurreck@chemie.fu-berlin.de Dr. Jens Kurreck Otto-Hahn-Bau, Thielallee 63, Raum 029 Tel.: 83 85 69 69 Email: jkurreck@chemie.fu-berlin.de Prinzipien genetischer Informationsübertragung Berg, Tymoczko, Stryer: Biochemie 5. Auflage,

Mehr

UAufgabe 12: (evolutiv konservierte Aminosäuren)

UAufgabe 12: (evolutiv konservierte Aminosäuren) UAufgabe 12: (evolutiv konservierte Aminosäuren) Aufgabenstellung Wählen Sie zur Darstellung evolutiv konservierter Aminosäure-Positionen in "1lla" eine ihnen sinnvoll erscheinende Anfärbung. Exportieren

Mehr

DNA mrna Protein. Initiation Elongation Termination. RNA Prozessierung. Unterschiede Pro /Eukaryoten

DNA mrna Protein. Initiation Elongation Termination. RNA Prozessierung. Unterschiede Pro /Eukaryoten 7. Transkription Konzepte: DNA mrna Protein Initiation Elongation Termination RNA Prozessierung Unterschiede Pro /Eukaryoten 1. Aus welchen vier Nukleotiden ist RNA aufgebaut? 2. RNA unterscheidet sich

Mehr

Hilfsproteine - Molekulare Motoren

Hilfsproteine - Molekulare Motoren Hilfsproteine - Molekulare Motoren Motorproteine an Actinfilamenten: Myosine Bedeutung: Muskelkontraktion, Zellmigration Motorproteine an Mikrotubuli: Kinesin und Kinesin-Verwandte Proteine (KRP) Bedeutung:

Mehr

Biochemie Vorlesung Die ersten 100 Seiten

Biochemie Vorlesung Die ersten 100 Seiten Biochemie Vorlesung 11-15 Die ersten 100 Seiten 1. Unterschiede der Zellen Eukaryoten- Prokaryoten Eukaryoten: - Keine Zellwand - Intrazelluläre Membransysteme - Kernhülle mit 2 Membranen und Kernporen

Mehr

Frage 1 A: Wieviele Codone des "Universellen genetisches Codes" kodieren:

Frage 1 A: Wieviele Codone des Universellen genetisches Codes kodieren: Frage 1 A: Wieviele Codone des "Universellen genetisches Codes" kodieren: Aminosäuren Translationsstart Translationsstop? B: Welche biochemische Reaktion wird von Aminoazyl-tRNA-Synthetasen katalysiert?

Mehr

Molekulargenetik Biologie am Inhaltsverzeichnis Die Begriffe DNA, Nukleotid, Gen, Chromosom und Epigenom definieren...

Molekulargenetik Biologie am Inhaltsverzeichnis Die Begriffe DNA, Nukleotid, Gen, Chromosom und Epigenom definieren... Molekulargenetik Inhaltsverzeichnis Die Begriffe DNA, Nukleotid, Gen, Chromosom und Epigenom definieren... 2 Beschreiben, wie die DNA aufgebaut ist... 3 Den Ablauf der Replikation erklären und dabei die

Mehr

Das Zytoskelett. Einteilung der Zytoskelettkomponenten. Morphologie der Zytoskelettkomponenten. Mikrotubuli

Das Zytoskelett. Einteilung der Zytoskelettkomponenten. Morphologie der Zytoskelettkomponenten. Mikrotubuli Das Zytoskelett Einteilung der Zytoskelettkomponenten Morphologie der Zytoskelettkomponenten Mikrotubuli Wie können Zellen ihre Form kontrollieren? Filamente des Zytoskeletts halten Zellen in Form Filamente

Mehr

Die kleinsten Viren kommen daher mit einem sehr geringen Informationsgehalt von nur 4 Genen aus, von denen

Die kleinsten Viren kommen daher mit einem sehr geringen Informationsgehalt von nur 4 Genen aus, von denen Aus der Reihe Daniels Genetik-Kompendium Erstellt von Daniel Röthgens Inhalt 1. Einleitung 2. RNA-Viren 3. DNA-Viren 1. Einleitung Im folgenden werden einige für die Genetik bedeutungsvolle Viren vorgestellt.

Mehr

Die doppelsträngige Helix wird zunächst aufgetrennt. Enzym: Helicase (ATP-abhängig)

Die doppelsträngige Helix wird zunächst aufgetrennt. Enzym: Helicase (ATP-abhängig) Die doppelsträngige Helix wird zunächst aufgetrennt. Enzym: Helicase (ATP-abhängig) Die doppelsträngige Helix wird zunächst aufgetrennt. Enzym: Helicase (ATP-abhängig) Jetzt liegen diese Stränge einzeln

Mehr

F2 aus der Kreuzung mit der ersten Mutante: 602 normal, 198 keine Blatthaare

F2 aus der Kreuzung mit der ersten Mutante: 602 normal, 198 keine Blatthaare Klausur Genetik Name: Matrikelnummer: Sie haben 90 Minuten Zeit zur Bearbeitung der 23 Fragen (z. T. mit Unterpunkten). Insgesamt sind 42 Punkte zu vergeben. Die Klausur gilt als bestanden, falls 21 Punkte

Mehr

Mechanismus der Enzymkatalyse

Mechanismus der Enzymkatalyse Mechanismus der Enzymkatalyse Allgemeine Prinzipien Annäherung des Substrats an das aktive Zentrum des Enzyms Enzym und Substrat treten in Wechselwirkung: Bildung des [ES]-Komplexes. Konformationsänderung

Mehr

Aufgabe 5 (Supersekundärstruktur)

Aufgabe 5 (Supersekundärstruktur) Aufgabe 5 (Supersekundärstruktur) Fragestellung Bei der Untereinheit des Arthropodenhämocyanins aus Limulus polyphemus werden folgende Fragestellungen untersucht: - Welche Supersekundärstrukturen gibt

Mehr

Falschfaltung von Proteinen

Falschfaltung von Proteinen Falschfaltung von Proteinen - Aggregation - domain swapping - amyloidogene Strukturen Was determiniert die Faltung von Proteinen? Einfachstes System: Zwei-Zustandsmodell N U Energie U dg ÜS dg* N Molekulare

Mehr

Phage-Display. Übersicht. Allgemeine Einführung Phage M13 Vektoren Bibliotheken Selektionsablauf Anwendungsmöglichkeiten.

Phage-Display. Übersicht. Allgemeine Einführung Phage M13 Vektoren Bibliotheken Selektionsablauf Anwendungsmöglichkeiten. Phage-Display Thomas Haarmann AG Dietrich Methodenseminar Biochemie II 20.01. und 10.02.2009 Übersicht Allgemeine Einführung Phage M13 Vektoren Bibliotheken Selektionsablauf Anwendungsmöglichkeiten Phage-Display

Mehr

Enzyme (Teil 2) Enzymatische Reaktion, Thermodynamik & Enzyme im Detail. Mag. Gerald Trutschl

Enzyme (Teil 2) Enzymatische Reaktion, Thermodynamik & Enzyme im Detail. Mag. Gerald Trutschl Enzyme (Teil 2) Enzymatische Reaktion, Thermodynamik & Enzyme im Detail Mag. Gerald Trutschl 1 Inhalt 1. Enzym Reaktion im Detail 2. Thermodynamische Reaktion 3. Katalysemechanismen 4. Michaelis-Menten-Konstante

Mehr

Molekularbiologie 6c Proteinbiosynthese. Bei der Proteinbiosynthese geht es darum, wie die Information der DNA konkret in ein Protein umgesetzt wird

Molekularbiologie 6c Proteinbiosynthese. Bei der Proteinbiosynthese geht es darum, wie die Information der DNA konkret in ein Protein umgesetzt wird Molekularbiologie 6c Proteinbiosynthese Bei der Proteinbiosynthese geht es darum, wie die Information der DNA konkret in ein Protein umgesetzt wird 1 Übersicht: Vom Gen zum Protein 1. 2. 3. 2 Das Dogma

Mehr

7. Regulation der Genexpression

7. Regulation der Genexpression 7. Regulation der Genexpression 7.1 Regulation der Enzymaktivität Stoffwechselreaktionen können durch Kontrolle der Aktivität der Enzyme, die diese Reaktionen katalysieren, reguliert werden Feedback-Hemmung

Mehr

Genaktivierung und Genexpression

Genaktivierung und Genexpression Genaktivierung und Genexpression Unter Genexpression versteht man ganz allgemein die Ausprägung des Genotyps zum Phänotyp einer Zelle oder eines ganzen Organismus. Genotyp: Gesamtheit der Informationen

Mehr

KV: Translation Michael Altmann

KV: Translation Michael Altmann Institut für Biochemie und Molekulare Medizin KV: Translation Michael Altmann Herbstsemester 2008/2009 Übersicht VL Translation 1.) Genexpression 2.) Der genetische Code ist universell 3.) Punktmutationen

Mehr

DNA enthält Gene. DNA Struktur. DNA Replikation. Gentransfer in Bakterien

DNA enthält Gene. DNA Struktur. DNA Replikation. Gentransfer in Bakterien 6. DNA Bakteriengenetik Konzepte: DNA enthält Gene DNA Struktur DNA Replikation Gentransfer in Bakterien Bakteriophagen 2. Welcher der folgenden Sätze entspricht der Chargaff Regel? A) Die Menge von Purinen

Mehr

Translation benötigt trnas und Ribosomen. Genetischer Code. Initiation Elongation Termination

Translation benötigt trnas und Ribosomen. Genetischer Code. Initiation Elongation Termination 8. Translation Konzepte: Translation benötigt trnas und Ribosomen Genetischer Code Initiation Elongation Termination 1. Welche Typen von RNAs gibt es und welches sind ihre Funktionen? mouse huma n bacter

Mehr

27 Funktionelle Genomanalysen Sachverzeichnis

27 Funktionelle Genomanalysen Sachverzeichnis Inhaltsverzeichnis 27 Funktionelle Genomanalysen... 543 27.1 Einleitung... 543 27.2 RNA-Interferenz: sirna/shrna-screens 543 Gunter Meister 27.3 Knock-out-Technologie: homologe Rekombination im Genom der

Mehr

Eukaryontische DNA-Bindedomänen

Eukaryontische DNA-Bindedomänen 1. Viele eukaryotische (und auch prokaryotische) Transkriptionsfaktoren besitzen eine DNA-bindende Domäne, die an eine ganz bestimmte DNA- Sequenz binden kann. Aufgrund von Ähnlichkeiten in der Struktur

Mehr

Antibiotika sind oft Inhibitoren der Genexpression

Antibiotika sind oft Inhibitoren der Genexpression Antibiotika sind oft Inhibitoren der Genexpression Inhibitoren der Transkription: Rifampicin, Actinomycin α-amanitin Inhibitoren der Translation: Puromycin, Streptomycin, Tetracycline, Chloramphenicol

Mehr

3 Ergebnisse. 3.1 Die Speckling-Domäne von Wt1 umfaßt die Aminosäuren

3 Ergebnisse. 3.1 Die Speckling-Domäne von Wt1 umfaßt die Aminosäuren 3 Ergebnisse 3.1 Die Speckling-Domäne von Wt1 umfaßt die Aminosäuren 76-120 Die Existenz verschiedener Isoformen von WT1 ist unter anderem auf die Verwendung einer für die Aminosäuren KTS kodierenden alternativen

Mehr

Inhalt. Entdeckung und allgemeine Informationen. Klassifizierung. Genom Viren untypische Gene Tyrosyl-tRNA Synthetase. Ursprung von grossen DNA Viren

Inhalt. Entdeckung und allgemeine Informationen. Klassifizierung. Genom Viren untypische Gene Tyrosyl-tRNA Synthetase. Ursprung von grossen DNA Viren Mimivirus Inhalt Entdeckung und allgemeine Informationen Klassifizierung Genom Viren untypische Gene Tyrosyl-tRNA Synthetase Ursprung von grossen DNA Viren Entstehung von Eukaryoten Entdeckung 1992 in

Mehr

DNA: Aufbau, Struktur und Replikation

DNA: Aufbau, Struktur und Replikation DNA: Aufbau, Struktur und Replikation Biochemie Die DNA als Träger der Erbinformation Im Genom sind sämtliche Informationen in Form von DNA gespeichert. Die Information des Genoms ist statisch, d. h. in

Mehr

Translation benötigt trnas und Ribosomen. Genetischer Code. Initiation Elongation Termination

Translation benötigt trnas und Ribosomen. Genetischer Code. Initiation Elongation Termination 8. Translation Konzepte: Translation benötigt trnas und Ribosomen Genetischer Code Initiation Elongation Termination 1. Welche Typen von RNAs gibt es und welches sind ihre Funktionen? mouse huma n bacter

Mehr

Biologie I/B: Klassische und molekulare Genetik, molekulare Grundlagen der Entwicklung Theoretische Übungen SS 2016

Biologie I/B: Klassische und molekulare Genetik, molekulare Grundlagen der Entwicklung Theoretische Übungen SS 2016 Biologie I/B: Klassische und molekulare Genetik, molekulare Grundlagen der Entwicklung Theoretische Übungen SS 2016 Fragen für die Übungsstunde 4 (20.06. 24.06.) Regulation der Transkription II, Translation

Mehr

3.2 Posttranslationelle Modifikation von Wt1 durch Phosphorylierung

3.2 Posttranslationelle Modifikation von Wt1 durch Phosphorylierung 3.2 Posttranslationelle Modifikation von Wt1 durch Phosphorylierung Transkriptionsfaktoren erfahren oft eine posttranslationelle Modifikation in Form von Phosphorylierung und werden dadurch in ihrer Aktivität

Mehr

Biochemie Seminar. Struktur und Organisation von Nukleinsäuren Genomorganisation DNA-Replikation

Biochemie Seminar. Struktur und Organisation von Nukleinsäuren Genomorganisation DNA-Replikation Biochemie Seminar Struktur und Organisation von Nukleinsäuren Genomorganisation DNA-Replikation Dr. Jessica Tröger jessica.troeger@med.uni-jena.de Tel.: 938637 Adenosin Cytidin Guanosin Thymidin Nukleotide:

Mehr

Hemmung der Enzym-Aktivität

Hemmung der Enzym-Aktivität Enzym - Inhibitoren Wie wirkt Penicillin? Wie wirkt Aspirin? Welche Rolle spielt Methotrexat in der Chemotherapie? Welche Wirkstoffe werden gegen HIV entwickelt? Hemmung der Enzym-Aktivität Substrat Kompetitiver

Mehr

Zelluläre Reproduktion: Zellzyklus. Regulation des Zellzyklus - Proliferation

Zelluläre Reproduktion: Zellzyklus. Regulation des Zellzyklus - Proliferation Zelluläre Reproduktion: Zellzyklus Regulation des Zellzyklus - Proliferation Alle Zellen entstehen durch Zellteilung Der Zellzyklus kann in vier Haupt-Phasen eingeteilt werden Interphase Zellwachstum;

Mehr

Beschreiben Sie in Stichworten zwei der drei Suppressormutationen, die man in Hefe charakterisiert hat. Starzinski-Powitz, 6 Fragen, 53 Punkte Name

Beschreiben Sie in Stichworten zwei der drei Suppressormutationen, die man in Hefe charakterisiert hat. Starzinski-Powitz, 6 Fragen, 53 Punkte Name Starzinski-Powitz, 6 Fragen, 53 Punkte Name Frage 1 8 Punkte Nennen Sie 2 Möglichkeiten, wie der Verlust von Heterozygotie bei Tumorsuppressorgenen (Z.B. dem Retinoblastomgen) zum klompletten Funktionsverlust

Mehr

Vorlesungsthemen Mikrobiologie

Vorlesungsthemen Mikrobiologie Vorlesungsthemen Mikrobiologie 1. Einführung in die Mikrobiologie B. Bukau 2. Zellaufbau von Prokaryoten B. Bukau 3. Bakterielles Wachstum und Differenzierung B. Bukau 4. Bakterielle Genetik und Evolution

Mehr

Überblick von DNA zu Protein. Biochemie-Seminar WS 04/05

Überblick von DNA zu Protein. Biochemie-Seminar WS 04/05 Überblick von DNA zu Protein Biochemie-Seminar WS 04/05 Replikationsapparat der Zelle Der gesamte Replikationsapparat umfasst über 20 Proteine z.b. DNA Polymerase: katalysiert Zusammenfügen einzelner Bausteine

Mehr

Restriktion und Gentechnik

Restriktion und Gentechnik Restriktion und Gentechnik Einteilung 1.) Restriktion - Restriktionsenzyme - Southern Blotting 2.)Gentechnik - sticky ends - blunt ends Restriktion Grundwerkzeuge der Gentechnik - Restriktionsenzymanalyse

Mehr

6. DNA - Bakteriengenetik

6. DNA - Bakteriengenetik 6. DNA - Bakteriengenetik Konzepte: DNA Struktur DNA Replikation Gentransfer in Bakterien Francis Crick 2. Welcher der folgenden Sätze entspricht der Chargaff-Regel? A) Die Menge von Purinen (T und C)

Mehr

Während der Synthese synthetisiert die Polymerase den neuen Strang in 5 3 Richtung und bewegt sich in 3 5 -Richtung am Matrizenstrang entlang:

Während der Synthese synthetisiert die Polymerase den neuen Strang in 5 3 Richtung und bewegt sich in 3 5 -Richtung am Matrizenstrang entlang: 4.4 Replikation und PCR Ablauf der Replikation in vivo: Die Replikation wird von einer DNA-abhängigen DNA- Polymerase katalysiert. Jede DNA-Polymerase synthetisiert den neuen Strang in 5 3 Richtung, hierzu

Mehr

DNA-Replikation. Konrad Beyreuther. Stefan Kins

DNA-Replikation. Konrad Beyreuther. Stefan Kins DNA-Replikation Konrad Beyreuther Stefan Kins DNA-Replikation Originalgetreue Verdopplung des genetischen Materials als Voraussetzung für die kontinuierliche Weitergabe der in der DNA verschlüsselten Information

Mehr

...-Arg-Met-Phe-Ala-Asn-His-Lys-Ser-Val-Gly-...

...-Arg-Met-Phe-Ala-Asn-His-Lys-Ser-Val-Gly-... 1. Im Enzym Xase, das aus einer Polypeptidkette aus 300 Aminosäuren besteht, findet sich in der Region der Aminosäuren 40-50 die folgende Aminosäurensequenz:...-Arg-Met-Phe-Ala-Asn-His-Lys-Ser-Val-Gly-...

Mehr

Einführung in die DNA-Topologie

Einführung in die DNA-Topologie Einführung in die DNA-Topologie Benedikt Röder Benedikt.Roeder@uni-muenster.de 16. Februar 2009 B.Röder (Benedikt.Roeder@uni-muenster.de) DNA-Topologie 16. Februar 2009 1 / 28 Inhalt Überblick 1 Motivation

Mehr

Testfragen zur 1. Vorlesung in Biochemie

Testfragen zur 1. Vorlesung in Biochemie Testfragen zur 1. Vorlesung in Biochemie 1. Nennen Sie die zentralen Komponenten des Zwei-Komponenten-Systems 2. Auf welche Aminosäurereste werden die Phosphatgruppen übertragen? 3. Was wird bei der Chemotaxis

Mehr

DNA- Replikation. PowerPoint-Learning. Andrea Brügger. von

DNA- Replikation. PowerPoint-Learning. Andrea Brügger. von DNA- Replikation PowerPoint-Learning von Andrea Brügger Lernziele dieser Lerneinheit: 1. Sie kennen und verstehen die einzelnen Teilschritte der DNA-Replikation und können diese Teilschritte den entsprechenden

Mehr

Aufgabe 1. Bakterien als Untersuchungsgegenstand!

Aufgabe 1. Bakterien als Untersuchungsgegenstand! Genetik I Aufgabe 1. Bakterien als Untersuchungsgegenstand 1. Beschriften Sie die Abbildung zu den Bakterien. 2. Nennen Sie Vorteile, die Bakterien wie Escherichia coli so wertvoll für die genetische Forschung

Mehr

KV: DNA-Replikation Michael Altmann

KV: DNA-Replikation Michael Altmann Institut für Biochemie und Molekulare Medizin KV: DNA-Replikation Michael Altmann Herbstsemester 2008/2009 Übersicht VL DNA-Replikation 1.) Das Zentraldogma der Molekularbiologie 1.) Semikonservative Replikation

Mehr

Promotor kodierende Sequenz Terminator

Promotor kodierende Sequenz Terminator 5.2 Genexpression Sequenz in eine RNA-Sequenz. Die Enzyme, die diese Reaktion katalysieren, sind die DNA-abhängigen RNA-Polymerasen. Sie bestehen aus mehreren Untereinheiten, die von den Pro- bis zu den

Mehr

-Übersicht. 2. G-Protein-gekoppelte Rezeptoren. 5. Na + -K + -Pumpe REZEPTOREN. 1. Allgemeine Definition: Rezeptoren. 3. Tyrosin-Kinase Rezeptoren

-Übersicht. 2. G-Protein-gekoppelte Rezeptoren. 5. Na + -K + -Pumpe REZEPTOREN. 1. Allgemeine Definition: Rezeptoren. 3. Tyrosin-Kinase Rezeptoren REZEPTOREN -Übersicht 1. Allgemeine Definition: Rezeptoren 2. G-Protein-gekoppelte Rezeptoren 3. Tyrosin-Kinase Rezeptoren Beispiel: Insulin 4. Steroidhormone 5. Na + -K + -Pumpe EINFÜHRUNG Definition

Mehr

Übung 8. Vorlesung Bio-Engineering Sommersemester Kapitel Zellkommunikation

Übung 8. Vorlesung Bio-Engineering Sommersemester Kapitel Zellkommunikation 1. Zellkommunikation 1.1. G-Proteine Unsere Geruchsempfindung wird ausgelöst wenn ein Geruchsstoff an einen G-Protein-verknüpften Rezeptor bindet und dieses Signal dann weitergeleitet wird. a) Was passiert

Mehr

Datenspeicherung und Datenfluß in der Zelle - Grundlagen der Biochemie

Datenspeicherung und Datenfluß in der Zelle - Grundlagen der Biochemie Datenspeicherung und Datenfluß in der Zelle - Grundlagen der Biochemie Datenspeicherung und Datenfluß der Zelle Transkription DNA RNA Translation Protein Aufbau I. Grundlagen der organischen Chemie und

Mehr

Biochemische UE Alkaline Phosphatase.

Biochemische UE Alkaline Phosphatase. Biochemische UE Alkaline Phosphatase peter.hammerl@sbg.ac.at Alkaline Phosphatase: Katalysiert die Hydrolyse von Phosphorsäure-Estern: O - O - Ser-102 R O P==O O - H 2 O R OH + HO P==O O - ph-optimum im

Mehr

6. DNA -Bakteriengenetik

6. DNA -Bakteriengenetik 6. DNA -Bakteriengenetik Konzepte: Francis Crick DNA Struktur DNA Replikation Gentransfer in Bakterien Bakteriophagen 2. Welcher der folgenden Sätze entspricht der Chargaff-Regel? A) Die Menge von Purinen

Mehr

Citratzyklus. Biochemie Maria Otto,Bo Mi Ok Kwon Park

Citratzyklus. Biochemie Maria Otto,Bo Mi Ok Kwon Park Citratzyklus Biochemie 13.12.2004 Maria Otto,Bo Mi Ok Kwon Park O CH 3 C Acetyl-CoA + H 2 O HO C COO C NADH O C H Citrat Cis-Aconitat H C Malat Citratzyklus HO C H Isocitrat CH H 2 O Fumarat C = O FADH

Mehr

Vererbung. Die durch Fortpflanzung entstandene Nachkommenschaft gleicht den Elternorganismen weitgehend

Vererbung. Die durch Fortpflanzung entstandene Nachkommenschaft gleicht den Elternorganismen weitgehend Vererbung Die durch Fortpflanzung entstandene Nachkommenschaft gleicht den Elternorganismen weitgehend Klassische Genetik Äußeres Erscheinungsbild: Phänotypus setzt sich aus einer Reihe von Merkmalen (Phänen))

Mehr

Einführung in die Biochemie Wirkungsweise von Enzymen

Einführung in die Biochemie Wirkungsweise von Enzymen Wirkungsweise von en Am Aktiven Zentrum kann ein nur in einer ganz bestimmten Orientierung anlegen, wie ein Schlüssel zum Schloss. Dieses Prinzip ist die Ursache der spezifität von en. Dies resultiert

Mehr

Einstieg: Fortpflanzung

Einstieg: Fortpflanzung Einstieg: Fortpflanzung Wozu ist Sex gut? - Nachkommen werden gezeugt --> Erhalt der Spezies. - Es entstehen Nachkommen mit Merkmalen (z.b. Aussehen), die denen von Vater und Mutter ähneln. Beide Eltern

Mehr

TRANSKRIPTION I. Die Herstellung von RNA bei E-Coli

TRANSKRIPTION I. Die Herstellung von RNA bei E-Coli TRANSKRIPTION I Die Herstellung von RNA bei E-Coli Inhalt Aufbau der RNA-Polymerase Promotoren Sigma-Untereinheit Entwindung der DNA Elongation Termination der Transkription Modifizierung der RNA Antibiotika

Mehr

Regulation der Genexpression: regulierbare Promotoren, Proteine und sirna

Regulation der Genexpression: regulierbare Promotoren, Proteine und sirna Regulation der Genexpression: regulierbare Promotoren, Proteine und sirna Biochemie Praktikum Christian Brendel, AG Grez Ebenen der Genregulation in Eukaryoten Cytoplasma DNA Zellkern Introns Exons Chromatin

Mehr

Was ist der Promotor? Antwort: Eine spezielle Nucleotidsequenz auf der DNA, an der die RNA-Polymerase bindet um die Transkription zu starten.

Was ist der Promotor? Antwort: Eine spezielle Nucleotidsequenz auf der DNA, an der die RNA-Polymerase bindet um die Transkription zu starten. Was ist der Promotor? Antwort: Eine spezielle Nucleotidsequenz auf der DNA, an der die RNA-Polymerase bindet um die Transkription zu starten. Wie bezeichnet man den Strang der DNA- Doppelhelix, der die

Mehr

The Arabidopsis F-box protein TIR1 is an auxin receptor. Von Stefan Kepinski & Ottoline Leyser

The Arabidopsis F-box protein TIR1 is an auxin receptor. Von Stefan Kepinski & Ottoline Leyser The Arabidopsis F-box protein TIR1 is an auxin receptor Von Stefan Kepinski & Ottoline Leyser Bekanntes Modell Was war bekannt? In der Zwischenzeit gefunden: - ABP1 kann große Mengen Auxin binden und ist

Mehr

1. Beschreiben Sie die Rolle der folgenden Proteine bei der DNA- Replikation in E. coli:

1. Beschreiben Sie die Rolle der folgenden Proteine bei der DNA- Replikation in E. coli: 1. Beschreiben Sie die Rolle der folgenden Proteine bei der DNA- Replikation in E. coli: Übung 7 - DnaA bindet an 13 bp DNA Sequenz (DnaA Box, 5 Wiederholungen bei E. coli) im oric ori wird in AT reicher

Mehr

Genregulation bei Eukaryoten II

Genregulation bei Eukaryoten II Genregulation bei Eukaryoten II Aktivierung und Repression der Transkription erfolgen durch Protein-Protein-Wechselwirkungen Protein-Protein-Wechselwirkungen spielen bei der Genregulation der Eukaryoten

Mehr

Das Komplementsystem. Membranangriffskomplex Regulation Komplementrezeptoren kleine C-Fragmente

Das Komplementsystem. Membranangriffskomplex Regulation Komplementrezeptoren kleine C-Fragmente Das Komplementsystem Membranangriffskomplex Regulation Komplementrezeptoren kleine C-Fragmente Der Membranangriffskomplex C5 Konvertase alle 3 Aktivierungswege mit einem Ziel: Bildung einer C3-Konvertase

Mehr

Intrakoerper II: ( Quelle: https://www.google.com/patents/de t 2?cl=de ) Ansprüche(11)

Intrakoerper II: ( Quelle: https://www.google.com/patents/de t 2?cl=de ) Ansprüche(11) Intrakoerper II: ( Quelle: https://www.google.com/patents/de60012980t 2?cl=de ) Ansprüche(11) Ein Verfahren für Identifikation von Intrakörper Strukturgerüsten oder Intrakörpern wobei geeignete Wirtszellen

Mehr

Fakten und Fragen zur Vorbereitung auf das Seminar Signaltransduktion

Fakten und Fragen zur Vorbereitung auf das Seminar Signaltransduktion Prof. Dr. KH. Friedrich, Institut für Biochemie II Fakten und Fragen zur Vorbereitung auf das Seminar Signaltransduktion Voraussetzung für einen produktiven und allseits erfreulichen Ablauf des Seminars

Mehr

Lebewesen enthalten weitaus mehr Molekülarten und beherbergen weitaus mehr chemische Reaktionsarten als die ganze anorganische Welt.

Lebewesen enthalten weitaus mehr Molekülarten und beherbergen weitaus mehr chemische Reaktionsarten als die ganze anorganische Welt. Lebewesen enthalten weitaus mehr Molekülarten und beherbergen weitaus mehr chemische Reaktionsarten als die ganze anorganische Welt. Die aus Biomolekülen aufgebauten biologischen Strukturen sind äußerst

Mehr

KV: Genexpression und Transkription Michael Altmann

KV: Genexpression und Transkription Michael Altmann Institut für Biochemie und Molekulare Medizin KV: Genexpression und Transkription Michael Altmann Herbstsemester 2008/2009 Übersicht VL Genexpression / Transkription 1.) Was ist ein Gen? 2.) Welche Arten

Mehr

Der Träger aller genetischen Informationen ist die D N A - Desoxyribonucleic acid (Desoxyribonucleinsäure, DNS)

Der Träger aller genetischen Informationen ist die D N A - Desoxyribonucleic acid (Desoxyribonucleinsäure, DNS) N U C L E I N S Ä U R E N Der Träger aller genetischen Informationen ist die D N A - Desoxyribonucleic acid (Desoxyribonucleinsäure, DNS) BAUSTEINE DER NUCLEINSÄUREN Die monomeren Bausteine der Nucleinsäuren

Mehr

Einführung in die Biochemie Antworten zu den Übungsaufgaben

Einführung in die Biochemie Antworten zu den Übungsaufgaben Einführung in die Biochemie Antworten zu den Übungsaufgaben Dank Die vorliegenden Antworten zu den Übungsaufgaben für das Seminar zum Modul Einführung in die Biochemie wurden im Wintersemester 2014/2015

Mehr

Vom Gen zum Protein. Zusammenfassung Kapitel 17. Die Verbindung zwischen Gen und Protein. Gene spezifizieren Proteine

Vom Gen zum Protein. Zusammenfassung Kapitel 17. Die Verbindung zwischen Gen und Protein. Gene spezifizieren Proteine Zusammenfassung Kapitel 17 Vom Gen zum Protein Die Verbindung zwischen Gen und Protein Gene spezifizieren Proteine Zellen bauen organische Moleküle über Stoffwechselprozesse auf und ab. Diese Prozesse

Mehr

Lipide und Zellmembranen. Stryer ed. 6, Kapitel 12

Lipide und Zellmembranen. Stryer ed. 6, Kapitel 12 Lipide und Zellmembranen Stryer ed. 6, Kapitel 12 Biologische Membranen Die Grenzen, die eine Zelle kennzeichnen, werden von biologischen i Membranen gebildet: sie definieren eine innere un eine äussere

Mehr

Hemmung der Enzym-Aktivität

Hemmung der Enzym-Aktivität Hemmung der Enzym-Aktivität Substrat Kompetitiver Inhibitor Enzym Enzym Substrat Nichtkompetitiver Inhibitor Irreversibler Inhibitor Enzym Enzym Enzym - Kinetik Michaelis Menten Gleichung Lineweaver -

Mehr

6.3 Phospholipide und Signaltransduktion. Allgemeines

6.3 Phospholipide und Signaltransduktion. Allgemeines 6.3 Phospholipide und Signaltransduktion Allgemeines Bei der Signaltransduktion, das heißt der Weiterleitung von Signalen über die Zellmembran in das Innere der Zelle, denkt man zuerst einmal vor allem

Mehr

4. Genetische Mechanismen bei Bakterien

4. Genetische Mechanismen bei Bakterien 4. Genetische Mechanismen bei Bakterien 4.1 Makromoleküle und genetische Information Aufbau der DNA Phasen des Informationsflusses Vergleich der Informationsübertragung bei Pro- und Eukaryoten 4.2 Struktur

Mehr

Modul Biologische Grundlagen Kapitel I.2 Grundbegriffe der Genetik

Modul Biologische Grundlagen Kapitel I.2 Grundbegriffe der Genetik Frage Was sind Fachbegriffe zum Thema Grundbegriffe der Genetik? Antwort - Gene - Genotyp - Phänotyp - Genom - Dexoxyribonucleinsäure - Träger genetischer Information - Nukleotide - Basen - Peptid - Start-Codon

Mehr

t-rna Ribosom (adapted from the handouts of Prof. Beck-Sickinger, Universität Leipzig)

t-rna Ribosom (adapted from the handouts of Prof. Beck-Sickinger, Universität Leipzig) ukleinsäuren speichern die Erbinformation. Das menschliche Genom ist in jeder Zelle aus 3900 Millionen Basenpaare (Mbp) aufgebaut und hat eine Gesamtlänge von 99 cm. t-ra Ribosom (adapted from the handouts

Mehr

1. Skizzieren Sie schematisch ein Gen mit flankierender Region. Bezeichnen und beschriften Sie:

1. Skizzieren Sie schematisch ein Gen mit flankierender Region. Bezeichnen und beschriften Sie: 1. Skizzieren Sie schematisch ein Gen mit flankierender Region. Bezeichnen und beschriften Sie: - 5 UTR (leader) - 3 UTR (trailer) - Terminator - Stopp-Kodon - Initiationskodon - Transkriptionsstartstelle

Mehr