VORANSICHT I/B. Die Grundgleichung der Mechanik. Die Grundgleichung der Mechanik mit dem Computer erfasst! Der Beitrag im Überblick

Größe: px
Ab Seite anzeigen:

Download "VORANSICHT I/B. Die Grundgleichung der Mechanik. Die Grundgleichung der Mechanik mit dem Computer erfasst! Der Beitrag im Überblick"

Transkript

1 7. Die Grundgleichung der Mechanik von 4 Die Grundgleichung der Mechanik Xenia Rendtel, Haburg Versuchsaufbau Die Grundgleichung der Mechanik F = a ist eine der wichtigsten Foreln der klassischen Mechanik. Besprechen Sie sie ausführlich, dait die Schüler ihre Bedeutung erfassen. Die experientelle Herleitung dieser Gleichung ist nicht einfach. Mit herkölichen Mitteln wie Stoppuhr und Maßband uss an viele Messreihen unter gleichen Bedingungen aufnehen, u verwertbare Daten zu erhalten. Hierbei schleichen sich erfahrungsgeäß so viele Fehler ein, dass an die erforderlichen Proportionalitäten kau zeigen kann. Ein coputergestütztes Messwerterfassungssyste erleichtert die Arbeit deutlich. Statt einzelner Messpunkte zeichnet das Syste koplette Kurven auf und unterstützt die Schüler bei der Auswertung. Das Experient wird so schülertauglich. Die Grundgleichung der Mechanik it de Coputer erfasst! Foto: Xenia Rendtel Der Beitrag i Überblick Klasse: 0 Dauer: Ihr Plus: 4 6 Unterrichtsstunden ü offene Unterrichtsfor ü Schüler denken sich selbst Aufgaben aus Inhalt: die Newton sche Bewegungsgleichung it Cassy arbeiten Diagrae erstellen und lesen sich die Theorie herleiten 6 RAAbits Physik Februar 0

2 von 4 7. Die Grundgleichung der Mechanik Fachliche und didaktisch-ethodische Hinweise Fachlicher Hintergrund Die Grundgleichung der Mechanik (oder Newton sche Bewegungsgleichung;. Newton sches Axio) F = a wird a Beispiel eines Wagens hergeleitet, der durch die Gewichtskraft eines hängenden Massestückes beschleunigt wird. Abbildung zeigt den Versuchsaufbau. Versuchsaufbau Die Gewichtskraft F des Massestücks beschleunigt das Gesatsyste, bestehend aus de Massestück selbst und der Masse des Wagens. Vernachlässigt an die Masse des Fadens und die Reibung der Ulenkrolle, lässt sich die Bewegungsgleichung des Systes durch die folgenden Gleichungen beschreiben. Dabei ist g = 9,8 die s Erdbeschleunigung. F = g () F = ( + ) a () + a= g Versuchsdurchführung (3) Die Schüler führen das Experient it verschiedenen Werten von und durch und essen die resultierende Beschleunigung. Aus den Ergebnissen sollen sie die Grundgleichung der Mechanik ableiten. In der Praxis stellt es sich als probleatisch heraus, dass die Beschleunigung it und von zwei Variablen abhängt. Verdoppelt an beispielsweise, so verdoppelt sich zwar die Gewichtskraft F, nicht jedoch die Beschleunigung a. Daher ist der rechnerische Zusaenhang für die Schüler nur schwer zu erkennen. Dieses Proble lässt sich durch eine geschickte Durchführung ugehen.. In der ersten Versuchsreihe wird der Wagen it einigen Massestücken beschwert und die Beschleunigung geessen. Anschließend werden die Massestücke vo Wagen genoen, an den Faden gehängt und es wird wieder die Beschleunigung bestit. Durch diese Vorgehensweise bleibt die Gesatasse des Systes konstant. Es ergibt sich eine einfache Proportionalität zwischen a und. a ( + = const.) (4). In der zweiten Versuchsreihe wird die Masse des Wagens it zusätzlichen Gewichten variiert, während gleich bleibt. Hieraus ergibt sich, dass die Gesatasse des Systes antiproportional zur Beschleunigung ist. a ( = const.) + (5) Abb. 0 Beide Gleichungen zusaen ergeben it de Proportionalitätsfaktor g den gewünschten Zusaenhang. 6 RAAbits Physik Februar 0

3 7. Die Grundgleichung der Mechanik 3 von 4 Hinweise zur Gestaltung des Unterrichts Voraussetzung für diese Unterrichtseinheit ist, dass die Schüler it gleichförig beschleunigten Bewegungen sowie den dazugehörenden Foreln vertraut sind. Die allgeeine Gleichung zur Beschreibung einer beschleunigten Bewegung lautet wie folgt: + + s(t) = a t v0 t s0 (6) Der experientelle Nachweis so einer Bewegungsgleichung ist schwierig. Da es sich u ein Polyno zweiten Grades handelt, üssen indestens drei Stützstellen geessen werden. Die Schüler könnten beispielsweise drei verschiedene Markierungen auf der Fahrbahn anbringen und jeweils essen, wie lange der Wagen von der Startposition bis zur Markierung braucht. Das funktioniert nur, wenn das Experient ehrere Male unter exakt gleichen Bedingungen wiederholt werden kann. Cassy-Lab der Fira Leybold ein coputergestütztes Messwerterfassungssyste Wesentlich einfacher hat an es it eine coputergestützten Messwerterfassungssyste, das ehrere Datenpunkte für einen Lauf liefert und eine wesentlich höhere Genauigkeit als eine von Hand bediente Stoppuhr erreicht. Für die Durchführung werden nur eine einzelne Lichtschranke und eine Sprossenleiter benötigt, die auf de Wagen befestigt ist. Sprossenabstand s s Abb. 0: Auslösezeitpunkte der Lichtschranke t s-t-diagra Die Sprossen unterbrechen den Lichtstrahl in äquidistanten Abständen und der Coputer protokolliert, zu welchen Zeitpunkten dies passiert. Das Ergebnis ist ein s-t-diagra der Bewegung (siehe Abbildung ). Bauen Sie den Versuch zunächst als Lehrerexperient auf, führen Sie ihn vor und besprechen Sie ihn. Wichtige Zwischenergebnisse an dieser Stelle sind, dass es sich u eine beschleunigte Bewegung handelt und was Ursache der Beschleunigung ist. Anschließend bauen die Schüler in Gruppen das Experient nach und beginnen it de Aufnehen von Messwerten; hierzu dienen M und M. In der anschließenden Sicherungsphase tragen Sie die Daten zusaen und werten sie geeinsa aus. Zur weiteren Vertiefung dient das Arbeitsblatt M 3, das den dynaischen Aspekt der Kraft an einer Reihe von Beispielen behandelt. Die Schüler können sich auch in Gruppen eigene Aufgaben ausdenken; Ideen dafür liefern die beiden Farbfolien M 4 und M 5. Beide Materialien dienen dazu, dass die Schüler sich selbst noch einal intensiv it der Grundgleichung befassen und sie it ihre bisherigen physikalischen Wissen verbinden. 6 RAAbits Physik Februar 0

4 7. Die Grundgleichung der Mechanik 5 von 4 M Die Bewegung eines Wagens durch die Gewichtskraft Schülerversuch Vorbereitung: 0 in Durchführung: 30 in (pro Aufgabe von M ) Geräte r Cassy-Syste r PC it Software r Sensor-Cassy r Tier-Box r Gabellichtschranke r Sprossenleiter r Sprossenleiter.lab Mechanische Bauteile: r Fahrbahn r Messwagen r Ulenkrolle r circa 3 Angelsehne r Massestücke r Stativaterial Versuchsaufbau Baue den Versuch wie in der Abbildung auf. Achte dabei darauf, dass die Lichtschranke nur durch die Sprossen ausgelöst wird. Versuchsdurchführung Starte die Datei sprossenleiter.lab. Versuchsaufbau Foto: Xenia Rendtel 6 RAAbits Physik Februar 0

5 6 von 4 7. Die Grundgleichung der Mechanik M So führst du den Schülerversuch schrittweise durch! Hier erhältst du eine schrittweise Anleitung, wie der Versuch aus M durchzuführen ist. Aufgabe. Lege eine Tabelle wie die folgende in deine Heft an: Wagenasse [in kg] Hängende Masse [in kg] Gesatasse =+ [in kg] Beschleunigung a [in s ] Kraft F= g kg [in N = ] s. Lege einige Gewichte auf den Wagen. Miss die Masse des it den Gewichten beschwerten Wagens und trage sie in deine Tabelle ein. Hänge ein Gewicht an den Faden und notiere die Masse des Gewichtes. Messung it CASSY 3. Halte den Wagen fest, starte in Cassy die Messung und lasse den Wagen kurz vor der Lichtschranke los. 4. Bearbeite das. Diagra it der Bezeichnung Geschwindigkeit in Cassy, inde du it de Mauszeiger in das Diagra gehst und auf die rechte Maustaste drückst. Dort wählst du den Menüpunkt Anpassung durchführen, Ausgleichsgerade aus. Jetzt wähle it gedrückter linker Maustaste Messwerte aus. Cassy zeigt unten links a Diagra die Beschleunigung an ( A=[...]/s ). Notiere den angezeigten Wert in deiner Tabelle. 5. Variiere nun die Massen, inde du Gewichte vo Wagen nist und it an die Angelsehne hängst. Die Gesatasse darf sich dabei nicht verändern! Wiederhole die Messung und notiere für jeden Durchgang die jeweiligen Massen und die Beschleunigung in der Tabelle. 6. Erstelle in deine Heft ein Diagra, in de du die Kraft gegen die Beschleunigung aufträgst. Was stellst du fest? Aufgabe Lege eine zweite Tabelle it denselben Spalten wie zuvor an.. Ni alle Gewichte vo Wagen und hänge ein Gewicht an das Seil. Dieses Gewicht darf nicht ehr verändert werden.. Führe das Experient wie unter. durch, variiere dabei aber nur die Masse des Wagens, inde du zusätzliche Gewichte auf den Wagen legst. 3. Trage in eine Diagra die Gesatasse gegen den Kehrwert der Beschleunigung auf. Was stellst du fest? 6 RAAbits Physik Februar 0

6 7. Die Grundgleichung der Mechanik 7 von 4 M 3 Die Grundgleichung der Mechanik verischte Aufgaben Aufgaben. Bei Kirschkernweitspucken katapultiert Jan den Kirschkern it der Kraft,7 0 3 N aus de Mund. Der Kirschkern erfährt dabei eine Beschleunigung von,8 /s. Berechne die Masse des Kerns.. Ein Auto der Masse 900 kg erfährt eine Beschleunigung a = 4,5 /s. Bestie die Kraft, die von den Rädern auf das Auto übertragen wird. 3. Ein Auto der Masse 000 kg wird in 8, s aus de Stand auf 00 k/h beschleunigt. Berechne die erforderliche Kraft des Motors. 4. Ein Fahrzeug der Masse wird durch die Kraft F beschleunigt. Erläutere, wie sich die Beschleunigung verändert, a) wenn bei gleichbleibender Masse die Kraft vervierfacht wird. b) wenn bei halber Masse die Kraft vervierfacht wird. Erläutere, wie an die Kraft verändern uss, c) wenn das Fahrzeug bei achtfacher Masse nur halb so stark beschleunigt werden soll. d) wenn das Fahrzeug die gleiche Beschleunigung erhalten soll, seine Masse jedoch nur ein Viertel der Ausgangsasse beträgt. 5. Es ist das folgende Kraft-Beschleunigungs-Diagra gegeben. F [in N] a) Erläutere die Bedeutung der Steigungen der drei Geraden. a in s b) Erittle die Masse, it der die Versuche jeweils durchgeführt wurden. 6. Eine U-Bahn, bestehend aus eine Triebwagen it einer Masse von 7,0 t und vier angehängten Wagen it je 4,0 t, verlässt den Haltestellenbereich gleichäßig beschleunigt. a) Die Antriebskraft beträgt 70 kn. Berechne den Zeitpunkt, zu de die Geschwindigkeit 50 k/h beträgt. b) Bestie die notwendige Breskraft, wenn die U-Bahn auf einer Strecke von 40 zu Stehen koen soll. 6 RAAbits Physik Februar 0

7 8 von 4 7. Die Grundgleichung der Mechanik M 4 Beschleunigung braucht Kraft finde selbst Aufgaben! Denke dir zu jeder Abbildung eine Aufgabe aus, in der die Grundgleichung der Mechanik vorkot. U U U3 U4 U5 U6 Fotos: Wikiedia 6 RAAbits Physik Februar 0

8 7. Die Grundgleichung der Mechanik 9 von 4 M 5 Beschleunigung braucht Kraft finde selbst Aufgaben! Denke dir zu jeder Abbildung eine Aufgabe aus, in der die Grundgleichung der Mechanik vorkot. UG UH UI UJ UK UL Fotos: Wikiedia 6 RAAbits Physik Februar 0

9 0 von 4 7. Die Grundgleichung der Mechanik M 6 Die Sprossenleiter zu Cassy-Lab eine Bastelvorlage 6 RAAbits Physik Februar 0

10 7. Die Grundgleichung der Mechanik von 4 Erläuterungen und Lösungen M Die Bewegung eines Wagens durch die Gewichtskraft Haben Sie für Cassy keine Sprossenleiter, so können Sie sich diese it der vorgegebenen Schablone (M 6) selbst zusaenbauen. Dazu kopieren Sie einfach die Vorlage auf dickes Papier und schneiden sie aus. Sie falten und kleben sie, wie in der Falzanleitung gezeigt, zusaen. Dann kleben Sie noch eine Wäscheklaer auf die Rückseite, u die Leiter a Wagen befestigen zu können. Falzanleitung Befestigung a Wagen Foto: Xenia Rendtel Die Wagen und Fahrbahnen sollten Sie vorab gut putzen und ölen, dait wenig Reibung auftritt. Ansonsten weisen die Messwerte zu starke Abweichungen auf. 6 RAAbits Physik Februar 0

11 4 von 4 7. Die Grundgleichung der Mechanik M 3 Die Grundgleichung der Mechanik verischte Aufgaben. F =,7 0 3 N und. = 900 kg und 3. = 000 kg, t = 8, s und a =,8 /s 3 F,7 0 kg 3 = = =,5 0 kg =,5 g a, 8 s s F = a = 900 kg 4,5 = 4050 N s a = 4,5 /s 000 v = 00 k/h = 00 = 7,78 /s s v = at v v 000 kg 7,78 / s a= F = = = 3387,53 N t t 8, s 4. Es gilt allgeein: F = a. a) a vervierfacht sich, da bei gleichbleibender Masse die Beschleunigung zur Kraft proportional ist. F 4F F b) = und F =4F a = = =8 =8a c) 3 =8 und a 3 = 0,5 a F 3 = 3 a 3 =8 0,5a =4 a =4F a =a und 4 = F 4 =a4 4 =a = a = F d) 4 5. a) Die Steigung der Geraden entspricht der jeweiligen Gesatasse des Systes. Je steiler eine Gerade ist, desto größer ist die Masse. b) Da es sich u Geraden handelt, kann an ithilfe eines Wertepaares über =F/a die Gesatasse des Systes bestien. 6. i) F 0 N = = = 3,3 kg a 6 /s = 7 t 4 4 t = 7 ii) t = 73 0 kg und F 40 N = = = 8 kg a 5 /s iii) F 30 N = = = 5 kg 3 3 a3 /s 50 v = 50 k/h = = 3,8 /s 3,6 s a) F = 70 kn = N. Es gilt für eine beschleunigte Bewegung: 3 v v v 3,8 / s 73 0 kg v = a t t = = = = = 4,48 s 3 a F / F 70 0 kg/ s b) s = at v0t + und v = at + v0 Wenn die Bahn steht, ist v=0 s v0 0 = a t+ v0 t= s a v v v v v s= a v + = = a a a a a v a= 0 s 3 v kg (3,8 / s) F = = 76kN s 40 6 RAAbits Physik Februar 0

Mechanik Translationsbewegungen des Massenpunktes Freier Fall

Mechanik Translationsbewegungen des Massenpunktes Freier Fall P1.3.5.3 Mechanik Translationsbewegungen des Massenpunktes Freier Fall Freier Fall: Vielfach- Zeitmessung mit der g- Leiter Beschreibung aus CASSY Lab 2 Zum Laden von Beispielen und Einstellungen bitte

Mehr

Newtonsche Grundgleichung - Beschleunigung als Funktion der Kraft mit dem Timer 2-1

Newtonsche Grundgleichung - Beschleunigung als Funktion der Kraft mit dem Timer 2-1 Lehrer-/Dozentenblatt Newtonsche Grundgleichung - Beschleunigung als Funktion der Kraft mit dem Timer 2- Lehrerinformationen Einführung Schwierigkeitsgrad Vorbereitungszeit Durchführungszeit Empfohlene

Mehr

Jan Auffenberg. 2. Theorie 2.1 Mathematisches Pendel Um eine Pendelbewegung einfach beschreiben zu können, wendet man folgende Abstraktionen a:

Jan Auffenberg. 2. Theorie 2.1 Mathematisches Pendel Um eine Pendelbewegung einfach beschreiben zu können, wendet man folgende Abstraktionen a: Gruppe 8 Björn Baueier Protokoll zu Versuch M1: Pendel 1. Einleitung Die Eigenschaften und Bewegungen der in diese Versuch untersuchten Fadenund Federpendel, werden durch eine besonders einfache haronische

Mehr

VORANSICHT I/B. Wie funktioniert ein Flaschenzug? Eine experimentelle Untersuchung. Binnendifferenzierte Schülerversuche! Der Beitrag im Überblick

VORANSICHT I/B. Wie funktioniert ein Flaschenzug? Eine experimentelle Untersuchung. Binnendifferenzierte Schülerversuche! Der Beitrag im Überblick 29. Wie funktioniert ein Flaschenzug? 1 von 12 Wie funktioniert ein Flaschenzug? Eine experimentelle Untersuchung Dr. Christina Bauer, IGS Kurt Schumacher, Ingelheim Die Lehrerin am Flaschenzug Der Flaschenzug

Mehr

Ma 10 / 11 Das Newton-Verfahren Na - 4. September 2014

Ma 10 / 11 Das Newton-Verfahren Na - 4. September 2014 Was ist das Newton-Verfahren? Das Newton-Verfahren ist ein nuerisches Verfahren zur näherungsweisen Bestiung einer Nullstelle einer gegeben Funktion. Analytisch exakt können Nullstellen von Geraden von

Mehr

IU1. Modul Universalkonstanten. Erdbeschleunigung

IU1. Modul Universalkonstanten. Erdbeschleunigung IU1 Modul Universalkonstanten Erdbeschleunigung Das Ziel des vorliegenden Versuches ist die Bestimmung der Erdbeschleunigung g aus der Fallzeit eines Körpers beim (fast) freien Fall durch die Luft. Î

Mehr

Ergänzungsübungen zur Vorlesung Technische Mechanik 2 Teil 2 -Kinematik und Kinetik-

Ergänzungsübungen zur Vorlesung Technische Mechanik 2 Teil 2 -Kinematik und Kinetik- Technische Mechanik Teil Kineatik und Kinetik Ergänzungsübungen zur Vorlesung Technische Mechanik Teil -Kineatik und Kinetik- Technische Mechanik Teil Kineatik und Kinetik Aufgabe 1: Ein KFZ wird konstant

Mehr

V12 Beschleunigte Bewegungen

V12 Beschleunigte Bewegungen Aufgabenstellung: 1. Ermitteln Sie die Fallbeschleunigung g aus Rollexperimenten auf der Rollbahn. 2. Zeigen Sie, dass für die Bewegung eines Wagens auf der geneigten Ebene der Energieerhaltungssatz gilt.

Mehr

a) Stellen Sie das Diagramm Geschwindigkeits Zeit Diagramm für eine geeignete Kombination von Massen und dar.

a) Stellen Sie das Diagramm Geschwindigkeits Zeit Diagramm für eine geeignete Kombination von Massen und dar. Atwood sche Fallmaschine Die kann zum Bestimmen der Erdbeschleunigung und zum Darstellen der Zusammenhänge zwischen Weg, Geschwindigkeit und Beschleunigung verwendet werden. 1) Aufgaben a) Stellen Sie

Mehr

Die gleichmäßig beschleunigte Bewegung mit beschleunigender Masse mit der Rollenfahrbahn und Zeitmessgerät 4 4

Die gleichmäßig beschleunigte Bewegung mit beschleunigender Masse mit der Rollenfahrbahn und Zeitmessgerät 4 4 Einleitung Wirkt auf einen Körper eine konstante Kraft ein, so erfährt er eine konstante Beschleunigung. Hier soll auf der Rollenfahrbahn durch Fahrzeitmessungen eines gleichmäßig beschleunigten Wagens

Mehr

Bewegungsgesetze der geradlinig gleichförmigen Bewegung mit dem Timer 2-1

Bewegungsgesetze der geradlinig gleichförmigen Bewegung mit dem Timer 2-1 Lehrer-/Dozentenblatt Bewegungsgesetze der geradlinig gleichförmigen Bewegung mit dem Timer 2- Lehrerinformationen Einführung Schwierigkeitsgrad Vorbereitungszeit Durchführungszeit Empfohlene Gruppengröße

Mehr

Wie schwer ist eine Masse? S

Wie schwer ist eine Masse? S 1.1.2.1 Wie schwer ist eine Masse? S Eine Masse ist nicht nur träge, sondern auch schwer. Das soll bedeuten, dass nicht nur eine Kraft nötig ist, um eine Masse zu beschleunigen, sondern dass jede Masse

Mehr

Rechnungen zu Kraft und Beschleunigung der ICE

Rechnungen zu Kraft und Beschleunigung der ICE Illustrierende Aufgaben zu LehrplanPLUS Gynasiu, Physik, Jahrgangsstufe 8 Rechnungen zu Kraft und Beschleunigung der ICE Stand: 6.08.015 Jahrgangsstufen 8 Fach/Fächer Physik Kopetenzerwartungen Die Schülerinnen

Mehr

Newtonsche Grundgleichung - Beschleunigung als Funktion der Masse mit dem Timer 2-1

Newtonsche Grundgleichung - Beschleunigung als Funktion der Masse mit dem Timer 2-1 Lehrer-/Dozentenblatt Newtonsche Grundgleichung - Beschleunigung als Funktion der Masse mit dem Timer 2- Lehrerinformationen Einführung Schwierigkeitsgrad Vorbereitungszeit Durchführungszeit Empfohlene

Mehr

Gewichtskraft mit measureapp (Artikelnr.: P )

Gewichtskraft mit measureapp (Artikelnr.: P ) Lehrer-/Dozentenblatt Gewichtskraft mit measureapp (Artikelnr.: P0999068) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema: Mechanik Unterthema: Kräfte, einfache Maschinen

Mehr

Seminar/Übung. Grundlagen der Fachdidaktik B2 SS 2008 Michael Pscherer

Seminar/Übung. Grundlagen der Fachdidaktik B2 SS 2008 Michael Pscherer Seminar/Übung Grundlagen der Fachdidaktik B2 SS 2008 Michael Pscherer Herbst 2007 Thema Nr. 2 Geschwindigkeit 1. Viele physikalische Gesetze drücken eine direkte Proportionalität zwischen den beteiligten

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Haronische Schwingungen Schwingungen einer Spiralfeder Von welchen physikalischen Größen ist die Schwingungsdauer abhängig? Welche Größen könnten die Schwingungsdauer beeinflussen? Härte der Feder ein

Mehr

Rotationsgerät. Wir können 4 Parameter variieren, die die Beschleunigung des Systems beeinflussen:

Rotationsgerät. Wir können 4 Parameter variieren, die die Beschleunigung des Systems beeinflussen: Rotationsgerät Übersicht Mit diesem Gerät wird der Einfluss eines Moments auf einen rotierenden Körper untersucht. Das Gerät besteht aus einer auf Kugellagern in einem stabilen Rahmen gelagerten Vertikalachse.

Mehr

Federpendel. Einführung. Das Federpendel. Basiswissen > Mechanische Schwingungen > Federpendel. Skript PLUS

Federpendel. Einführung. Das Federpendel.  Basiswissen > Mechanische Schwingungen > Federpendel. Skript PLUS www.schullv.de Basiswissen > Mechanische Schwingungen > Federpendel Federpendel Skript PLUS Einführung Wärst du utig genug für einen Bungee-Sprung? Oder hast du gar schon einen geacht? Wenn ja, hast du

Mehr

Die gleichmäßig beschleunigte Bewegung auf der geneigten Bahn mit der Rollenfahrbahn und Zeitmessgerät 4 4

Die gleichmäßig beschleunigte Bewegung auf der geneigten Bahn mit der Rollenfahrbahn und Zeitmessgerät 4 4 Einleitung Ein Körper erfährt auf einer geneigten Ebene aufgrund der an ihm angreifenden Komponente der Schwerkraft eine konstante Beschleunigung parallel zur Ebene. Hier sollen die Bewegungsgesetze für

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Weche Größen beeinflussen die Schwingungsdauer eines Federpendels?

Weche Größen beeinflussen die Schwingungsdauer eines Federpendels? 1.1.5.1 Weche Größen beeinflussen die S In diese Versuch wird ein Federpendel betrachtet, welches aus einer Schraubenfeder it der Federkonstanten D und einer daran angehängten Masse besteht. Wird das Pendel

Mehr

Newtonsche Gesetze. Lösung: a = F m =

Newtonsche Gesetze. Lösung: a = F m = Newtonsche Gesetze 1. Der ICE 3 hat laut Hersteller eine axiale Anzugkraft von 300kN und ein,,leergewicht von 405t. Der Zug hat 415 Sitzplätze. Wir unterstellen für die Masse eines Passagiers eine Masse

Mehr

Lineare Bewegungsgesetze. 1. Theoretische Grundlagen Der Vektor der Momentangeschwindigkeit eines Massepunktes ist. , (1) dt . (2)

Lineare Bewegungsgesetze. 1. Theoretische Grundlagen Der Vektor der Momentangeschwindigkeit eines Massepunktes ist. , (1) dt . (2) M03 Lineare Bewegungsgesetze Die Zusammenhänge zwischen Geschwindigkeit, Beschleunigung, Masse und Kraft werden am Beispiel eindimensionaler Bewegungen experimentell mit Hilfe eines Bewegungsmesswandlers

Mehr

Die Zentripetalkraft Praktikum 04

Die Zentripetalkraft Praktikum 04 Die Zentripetalkraft Praktikum 04 Raymond KNEIP, LYCEE TECHNIQUE DES ARTS ET METIERS November 2015 1 Zielsetzung Die Gleichung der Zentripetalkraft F Z (Zentralkraft, auch Radialkraft genannt) wird auf

Mehr

Freier Fall mit dem Timer 2-1

Freier Fall mit dem Timer 2-1 Lehrer-/Dozentenblatt Freier Fall mit dem Timer 2- Lehrerinformationen Einführung Schwierigkeitsgrad Vorbereitungszeit Durchführungszeit Empfohlene Gruppengröße {complexity:3} mittel {time:} 0 Minuten

Mehr

Das Grundgesetz der Mechanik

Das Grundgesetz der Mechanik Das Grundgesetz der Mechanik Das Grundgesetz der Mechanik beschreibt die Wirkung einer Kraft auf die Bewegung eines Körpers. Es spielt bei der Beschreibung von Bewegungen und Bewegungsänderungen von Punktmassen

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben Technische Mechanik 3 2.2-1 Prof. Dr. Wandinger Aufgabe 1 Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt.

Mehr

M 5 - Reibungsfreie Bewegung

M 5 - Reibungsfreie Bewegung 20. 2. 08 PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER LGyGe Versuch: M 5 - Reibungsfreie Bewegung Mit Hilfe einer Luftkissenfahrbahn werden reibungsfreie Bewegungen analysiert. 1. Grundlagen Newton sche Grundgesetze

Mehr

Aus: Schriftliche Abiturprüfung Sachsen Anhalt 2016 EAN Thema G 1: Analyse von Stoßvorgängen

Aus: Schriftliche Abiturprüfung Sachsen Anhalt 2016 EAN Thema G 1: Analyse von Stoßvorgängen Abiturtraining Physik Mechanik 1 Aus: Schriftliche Abiturprüfung Sachsen Anhalt 2016 EAN Thea G 1: Analyse von Stoßvorgängen 1. Stöße auf der Luftkissenbahn Auf einer Luftkissenbahn werden ehrere Experiente

Mehr

Kinematik und Dynamik eines Massepunktes GK

Kinematik und Dynamik eines Massepunktes GK Kineatik und Dynaik eines Massepunktes GK Rotation ) Notiere die Gleichung für a) Drehipuls (L=r v) b) Drehoent (M= r F) ) Erhaltungssätze Ohne äußere Krafteinwirkung gilt: a) Energieerhaltung (Evor =

Mehr

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1

Fadenpendel. Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 .1 Stundenverlaufsplan Phase Inhalt Sozialform Medien Standards Hinführung Fadenpendel am Beispiel einer Schiffschaukel Plenum Arbeitsblätter E1 Hypothesenbildung Von welchen Größen hängt die Periode eines

Mehr

Wiederholung der letzten Stunde vom : Kinematik

Wiederholung der letzten Stunde vom : Kinematik Physik: Protokoll von Donnerstag den 5..29 2. Block / :5 - :45 Uhr Klasse: 39/e4 Lehrer: Herr Winkowski Protokollführer: Nia Ly, Hans Schlosser Thea: Kineatik Schwerpunkt: Freier Fall Wiederholung der

Mehr

zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung

zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung Fach: Physik/ L. Wenzl Datum: zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung Aufgabe 1: Ein Auto beschleunigt gleichmäßig in 12,0 s von 0 auf 100 kmh -1. Welchen Weg hat es in dieser Zeit

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mechanik I: Geschwindigkeit, Kraft, Masse

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mechanik I: Geschwindigkeit, Kraft, Masse Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Mechanik I: Geschwindigkeit, Kraft, Masse Das komplette Material finden Sie hier: School-Scout.de Hinweise zur Arbeit mit diesen Unterrichtseinheiten

Mehr

Gymnasium Koblenzer Straße, Grundkurs EF Physik 1. Halbjahr 2012/13

Gymnasium Koblenzer Straße, Grundkurs EF Physik 1. Halbjahr 2012/13 Aufgaben für Dienstag, 23.10.2012: Physik im Straßenverkehr Für die Sicherheit im Straßenverkehr spielen die Bedingungen bei Beschleunigungsund Bremsvorgängen eine herausragende Rolle. In der Straßenverkehrsordnung

Mehr

Trägheitsmoment - Steinerscher Satz

Trägheitsmoment - Steinerscher Satz Trägheitsmoment - Steinerscher Satz Gruppe 4: Daniela Poppinga, Jan Christoph Bernack Betreuerin: Natalia Podlaszewski 13. Januar 2009 1 Inhaltsverzeichnis 1 Theorieteil 3 1.1 Frage 2................................

Mehr

Bewegungsgesetze der gleichmäßig beschleunigten Bewegung mit dem Timer 2-1

Bewegungsgesetze der gleichmäßig beschleunigten Bewegung mit dem Timer 2-1 Lehrer-/Dozentenblatt Bewegungsgesetze der gleichmäßig beschleunigten Bewegung mit dem Timer 2- Lehrerinformationen Einführung Schwierigkeitsgrad Vorbereitungszeit Durchführungszeit Empfohlene Gruppengröße

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Masse, Trägheit, Kraft. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Masse, Trägheit, Kraft. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Masse, Trägheit, Kraft Das komplette Material finden Sie hier: School-Scout.de 30. Experimente zum Einstieg in die Mechanik 1 von

Mehr

SCHRIFTLICHE ABITURPRÜFUNG 2011 PHYSIK (Grundkursniveau)

SCHRIFTLICHE ABITURPRÜFUNG 2011 PHYSIK (Grundkursniveau) PHYSIK (Grundkursniveau) Einlesezeit: Bearbeitungszeit: 30 Minuten 10 Minuten Hinweise zur Korrektur, Bewertung und zu erwarteten Prüfungsleistungen Erläuternde, koentierende und begründende Texte, die

Mehr

Gewöhnliche Differentialgleichungen Teil Ia: Lösung durch Quadratur

Gewöhnliche Differentialgleichungen Teil Ia: Lösung durch Quadratur - 1 - Gewöhnliche Differentialgleichungen Teil Ia: Lösung durch Quadratur I ersten Teil der Vorlesung wurde zunächst ein Überblick über Typen von Differentialgleichungen gegeben. Anschließend wurden hauptsächlich

Mehr

Welche Energieformen gibt es? mechanische Energie elektrische Energie chemische Energie thermische oder Wärmeenergie Strahlungsenergie

Welche Energieformen gibt es? mechanische Energie elektrische Energie chemische Energie thermische oder Wärmeenergie Strahlungsenergie Was ist nergie? nergie ist: eine rhaltungsgröße eine Rechengröße, die es eröglicht, Veränderungen zwischen Zuständen zu berechnen eine Größe, die es erlaubt, dass Vorgänge ablaufen, z.b. das Wasser erwärt

Mehr

Mechanik - Gleichmäßig beschleunigte Bewegung Lehrerhandreichung

Mechanik - Gleichmäßig beschleunigte Bewegung Lehrerhandreichung Jahrgangsstufe: Einführungsphase Methode: Thema: Versuchszeit: Demonstrationsexperiment (Luftkissenbahn) Gleichmäßig beschleunigte Bewegung 15 min In diesem Versuch sollen die Gesetzmäßigkeiten der gleichmäßig

Mehr

1. Experimente zur Verkehrsphysik

1. Experimente zur Verkehrsphysik 1. Experimente zur Verkehrsphysik Einordnung Physikunterricht der Sekundarstufe 1, bevorzugt ab Klasse 9 Komplexität des Aufbaus Einfach Komplex Schülerversuch möglich Ja Zielsetzung/Besonderheiten Obwohl

Mehr

Analyse einer Bewegung mit Beschleunigung

Analyse einer Bewegung mit Beschleunigung 9. Jahrgangsstufe Physik Kinematik Lehrtext Analyse einer Bewegung mit Beschleunigung Eine Bewegung, bei der sich die Geschwindikeit während der Fahrt ändert, ist eine Geschwindigkeit mit Beschleunigung.

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Die Newton'schen Axiome mit einer Farbfolie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Die Newton'schen Axiome mit einer Farbfolie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Die Newton'schen Axiome mit einer Farbfolie Das komplette Material finden Sie hier: Download bei School-Scout.de 14. Die Newton schen

Mehr

Das Hookesche Gesetz (Artikelnr.: P )

Das Hookesche Gesetz (Artikelnr.: P ) Lehrer-/Dozentenblatt Das Hookesche Gesetz (Artikelnr.: P099900) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema: Mechanik Unterthema: Kräfte, einfache Maschinen

Mehr

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe I - Lösung

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe I - Lösung Abschlussprüfung Berufliche Oberschule 202 Physik 2 Technik - Aufgabe I - Lösung Teilaufgabe.0 Ein Kondensator it der Kapazität C 0 0F dient als Energiespeicher, it de ein Elektrootor M betrieben werden

Mehr

Messwerterfassung mit Sensoren Das CASSY-System von Leybold

Messwerterfassung mit Sensoren Das CASSY-System von Leybold Messwerterfassung mit Sensoren Das CASSY-System von Leybold (1) Die einzelnen Teile des Systems (2) Die Software CASSY Lab (3) Unterrichtsbeispiele S. Ungelenk; Messwerterfassung - Vortrag 1 (1) Die einzelnen

Mehr

2. GV: Ideale Gasgesetze

2. GV: Ideale Gasgesetze Physik Praktiku I: WS 2005/06 Protokoll zu Praktiku 2. GV: Ideale Gasgesetze Protokollanten Jörg Mönnich - Anton Friesen - Betreuer Holger Versuchstag Dienstag, 06.12.2005 Einleitung Der Zustand eines

Mehr

Reibung S. Zusätzlich wird benötigt PC mit USB-Schnittstelle, Windows XP oder höher. Abb. 1: Versuchsaufbau.

Reibung S. Zusätzlich wird benötigt PC mit USB-Schnittstelle, Windows XP oder höher. Abb. 1: Versuchsaufbau. 1.1.2.3 Reibung S Im Alltag und in der Technik haben wir es überall mit Reibung zu tun. Ausnahmslos jede Bewegung auf der Erde ist mit Reibung verbunden, und dadurch mit einem Energieverlust und Abnutzung.

Mehr

Geschwindigkeitsunabhängige und geschwindigkeitsabhängige Reibung mit der Rollenfahrbahn und Zeitmessgerät 4 4

Geschwindigkeitsunabhängige und geschwindigkeitsabhängige Reibung mit der Rollenfahrbahn und Zeitmessgerät 4 4 Einleitung Reibung bremst jede Bewegung. Hier soll der Einfluss der Reibung und der Unterschied verschiedener Reibungsarten mit einem Wagen auf der Rollenfahrbahn, der eine verzögerte Bewegung durchführt,

Mehr

A 100 J D 800 J B 200 J E 400 J C. A Kraft D Masse B Energie E Leistung C VORANSICHT A 0,1 J D 0,25 J B 1 J E 2,5 J C

A 100 J D 800 J B 200 J E 400 J C. A Kraft D Masse B Energie E Leistung C VORANSICHT A 0,1 J D 0,25 J B 1 J E 2,5 J C 3. Multiple-hoice-Tests Mechanik 1 von 6 Multiple-hoice-Tests Mechanik Teil II Dr. Wolfgang Tews, Berlin Mit diesen Tests, die viele Theen aus de Bereich der Mechanik in der Sek I aufgreifen, geben wir

Mehr

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2 Die Kraft Mechanik Newton sche Gesetze und ihre Anwendung (6 h) Physik Leistungskurs physikalische Bedeutung: Die Kraft gibt an, wie stark ein Körper auf einen anderen einwirkt. FZ: Einheit: N Gleichung:

Mehr

Schülerexperiment: Bestimmung der Beschleunigung von Körpern (bei Smartphone-Einsatz)

Schülerexperiment: Bestimmung der Beschleunigung von Körpern (bei Smartphone-Einsatz) Schülerexperiment: Bestimmung der Beschleunigung von Körpern (bei Smartphone-Einsatz) Stand: 26.08.2015 Jahrgangsstufen 8 Fach/Fächer Zeitrahmen Benötigtes Material Physik Vorbereitung durch eine Hausaufgabe;

Mehr

Grund- und Angleichungsvorlesung Kinematik, Dynamik.

Grund- und Angleichungsvorlesung Kinematik, Dynamik. 2 Grund- und Angleichungsvorlesung Physik. Kinematik, Dynamik. WS 18/19 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell Weitergabe

Mehr

Ph A 16/52 T_Online-Ergänzung

Ph A 16/52 T_Online-Ergänzung Ph A 16/52 T_Online-Ergänzung MANFRED GROTE Online-Ergänzung 1 S. I S. I + II S. II PHYSIK MANFRED GROTE Material Hebebühne, Fahrbahn 1 m, Maßstab, Experimentierwagen mit massearmen Rädern, Federkraftmesser

Mehr

NUMERIK 1. Sommersemester 2016

NUMERIK 1. Sommersemester 2016 NUMERIK 1 Soerseester 2016 KLAUSUR LÖSUNGSVORSCHLAG Aufgabe 1 (Multiple Choice) (ca. 20 Minuten, 8 Punkte) Kreuzen Sie korrekte Aussagen an. Es können ehrere Antworten richtig sein, indestens eine ist

Mehr

Physik 1. Kinematik, Dynamik.

Physik 1. Kinematik, Dynamik. Physik Mechanik 3 Physik 1. Kinematik, Dynamik. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Mechanik 5 Themen Definitionen Kinematik Dynamik Physik Mechanik 6 DEFINITIONEN Physik Mechanik 7 Was ist

Mehr

Bestimmung von Federkonstanten Test

Bestimmung von Federkonstanten Test D. Samm 2012 1 Bestimmung von Federkonstanten Test 1 Der Versuch im Überblick Ohne Zweifel! Stürzt man sich - festgezurrt wie bei einem Bungee-Sprung - in die Tiefe (Abb. 1), sind Kenntnisse über die Längenänderung

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M1) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester 2017 Physik-Institut der Universität Zürich Inhaltsverzeichnis 1 Einführungsversuch (EV) 11 11 Einleitung

Mehr

Harmonische Schwingung Schraubenfedern in Parallel- und Reihenschaltung

Harmonische Schwingung Schraubenfedern in Parallel- und Reihenschaltung Harmonische Schwingung TEP Prinzip Für unterschiedliche Federn und Federkombinationen soll die Federkonstante D bestimmt werden. Für die verschiedenen experimentellen Versuchsaufbauten und die angehängten

Mehr

Physik. Federkombinationen

Physik. Federkombinationen Physik Federkombinationen Feststellung der Federkonstanten Versuchsaufbau Versuchsdurchführung Um die Federkonstanten festzustellen, wird an die Federn ein Gewicht von bekannter Gewichtskraft angehängt

Mehr

2. Physikschulaufgabe. - Lösungen -

2. Physikschulaufgabe. - Lösungen - Realschule. Physikschulaufgabe Klasse 8 I - Lösungen - Thea: Mechanik der en und Gase 1.1 Versuchsaufbau In eine Präzisionsglasrohr it geschliffener Innenwand befindet sich eine fast reibungsfrei bewegliche

Mehr

Versuch 11 Einführungsversuch

Versuch 11 Einführungsversuch Versuch 11 Einführungsversuch I Vorbemerkung Ziel der Einführungsveranstaltung ist es Sie mit grundlegenden Techniken des Experimentierens und der Auswertung der Messdaten vertraut zu machen. Diese Grundkenntnisse

Mehr

Übungen zur Klassischen Theoretischen Physik I WS 2016/17

Übungen zur Klassischen Theoretischen Physik I WS 2016/17 Karlsruher Institut für Technologie Institut für Theoretische Festkörperphysik Übungen zur Klassischen Theoretischen Physik I WS 06/7 Prof. Dr. Carsten Rockstuhl Blatt 4 Dr. Andreas Poenicke, MSc. Kari

Mehr

Flaschenzug aus einer losen und einer festen Rolle

Flaschenzug aus einer losen und einer festen Rolle Lehrer-/Dozentenblatt Flaschenzug aus einer losen und einer festen Rolle (Artikelnr.: P00000) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema: Mechanik Unterthema:

Mehr

Mechanische Energieerhaltung / Maxwellsches Rad TEP

Mechanische Energieerhaltung / Maxwellsches Rad TEP Verwandte Begriffe Maxwellsches Rad, Translationsenergie, Rotationsenergie, potentielle Energie, Trägheitsmoment, Winkelgeschwindigkeit, Winkelbeschleunigung, Momentangeschwindigkeit, Gyroskop. Prinzip

Mehr

Die Raketengleichung (eine Anwendungzum Impulssatz)

Die Raketengleichung (eine Anwendungzum Impulssatz) Die Raketengleichung (eine Anwendungzu Ipulssatz) Ipuls vor de Ausstoß: p Ipuls nach de Ausstoß: p R v R + Δ v R Ipulserhaltungssatz: p p Ipulse einsetzen ergibt: R v R + Δ + v R Für die Massenänderung

Mehr

Blatt Musterlösung Seite 1. Aufgabe 1: Plasmaanalyse

Blatt Musterlösung Seite 1. Aufgabe 1: Plasmaanalyse Blatt 0 09.0.2008 Physik Departent E8 Seite Aufgabe : Plasaanalyse Nebenstehende Skizze zeigt eine Anordnung zur Plasaanalyse. Ein Zähler Z erzeugt bei Durchgang eines ionisierenden Teilchens (Masse, Ladung

Mehr

Kräfte und Wege am Stufenrad (Artikelnr.: P )

Kräfte und Wege am Stufenrad (Artikelnr.: P ) Lehrer-/Dozentenblatt Kräfte und Wege am Stufenrad (Artikelnr.: P1001200) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-10 Lehrplanthema: Mechanik Unterthema: Kräfte, einfache

Mehr

Klausur 3 Klasse 11c Physik Lösungsblatt

Klausur 3 Klasse 11c Physik Lösungsblatt 16.05.00 Klausur 3 Klasse 11c Physik Lösungsblatt Bei den Aufgaben dürfen Sie ausschließlich die Programme Cassy-Lab, erive 5 und Excel benutzen. Alle schriftlichen Überlegungen und Ergebnisse müssen auf

Mehr

Protokoll zum Versuch: Atwood'sche Fallmaschine

Protokoll zum Versuch: Atwood'sche Fallmaschine Protokoll zum Versuch: Atwood'sche Fallmaschine Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I 11.01.2007 Inhaltsverzeichnis 1 Ziel 2 2 Theorie 2 3

Mehr

Versuch MG: Molmassenbestimmung eines Gases nach der Methode von Dumas

Versuch MG: Molmassenbestimmung eines Gases nach der Methode von Dumas Dies ist ein Beispielprotokoll zu fiktiven Versuch Molassenbestiung, das Ihnen insbesondere für die physikalischcheischen Versuche (GMS, ABS, BSP, MWG, LFG) aufzeigt, wie Ihr Protokoll auszusehen hat.

Mehr

Labor zur Vorlesung Physik. Versuch 2: Energie- und Impulserhaltung

Labor zur Vorlesung Physik. Versuch 2: Energie- und Impulserhaltung Labor zur Vorlesung Physik Versuch : Energie- und Impulserhaltung Abb : Luftkissen-Fahrbahn. Zur Vorbereitung Die folgenden Begriffe müssen Sie kennen und erklären können: Impuls, Energie, kinetische und

Mehr

Zur Bearbeitung dieses Beitrags werden folgende Kenntnisse bzw. Fähigkeiten der Schülerinnen und Schüler vorausgesetzt:

Zur Bearbeitung dieses Beitrags werden folgende Kenntnisse bzw. Fähigkeiten der Schülerinnen und Schüler vorausgesetzt: 1. Kräfte bei Kreisbewegungen 1 von 18 Kräfte bei Kreisbewegungen Frank Roesler, Mühlenbeck Niveau: Sek. Dauer: 4 Unterrichtsstunden Der Beitrag enthält Materialien für: Offene Unterrichtsformen Schülerversuche

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 015/16 Übungsblatt 6 Übungsblatt 6 Lösung Aufgabe 1 Gravitation. a) Berechnen Sie die Beschleunigung g auf der Sonnenoberfläche. Gegeben

Mehr

Mechanische Energieerhaltung / Maxwellsches Rad

Mechanische Energieerhaltung / Maxwellsches Rad Einleitung Ein Rad, welches sich um seine Achse an zwei Seilen abrollen kann, bewegt sich in einem Gravitationsfeld. Potentielle Energie, Translationsenergie und Rotationsenergie werden ineinander umgewandelt

Mehr

1.2. Prüfungsaufgaben zur Kinematik - Geradlinige Bewegungen

1.2. Prüfungsaufgaben zur Kinematik - Geradlinige Bewegungen .2. Prüfungsaufgaben zur Kineatik - Geradlinige Bewegungen Aufgabe : geradlinig gleichförige Bewegung Zeichne jeweils das x-t-diagra und das -t-diagra für die folgenden Bewegungen: a) Anke bewegt sich

Mehr

Geschwindigkeitsunabhängige und geschwindigkeitsabhängige Reibung mit der Rollenfahrbahn und Zeitmessgerät 4 4 (Artikelnr.

Geschwindigkeitsunabhängige und geschwindigkeitsabhängige Reibung mit der Rollenfahrbahn und Zeitmessgerät 4 4 (Artikelnr. Geschwindigkeitsunabhängige und geschwindigkeitsabhängige Reibung mit der Rollenfahrbahn und Zeitmessgerät 4 4 (Artikelnr.: P1198105) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse

Mehr

DER KRAFTBEGRIFF UND DIE NEWTON SCHEN AXIOME

DER KRAFTBEGRIFF UND DIE NEWTON SCHEN AXIOME DER KRATBEGRI UND DIE NEWTON SCHEN AXIOME 1. Wozu wird der Kraftbegriff in der Physik verwendet? Die klassische Mechanik untersucht das Verhalten von Körpern: Bewegungsverhalten und oränderungen Dabei

Mehr

Gemessen wird die Zeit, die der Wagen bei einer beschleunigten Bewegung für die Messtrecke 1m braucht.

Gemessen wird die Zeit, die der Wagen bei einer beschleunigten Bewegung für die Messtrecke 1m braucht. R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 Beschleunigungsmessung an der Fahrbahn Protokoll und Auswertung einer Versuchsdurchführung. Gemessen wird die Zeit, die der Wagen bei einer beschleunigten

Mehr

Energie zeigt sich in Arbeit

Energie zeigt sich in Arbeit Energie zeigt sich in Arbeit Versuchsbeschreibung Wir machen den folgenden Versuch mit der Holzbahn: Wir lassen einen Wagen mit der Masse m = 42 g von einer Schanze beschleunigen und in die Ebene fahren.

Mehr

Lösung zur 1. Probeklausur

Lösung zur 1. Probeklausur EI PH3 2010-11 PHYSIK Lösung zur 1. Probeklausur Diese Lösung ist ein Vorschlag, es geht oft auch anders die Ergebnisse sollten aber die gleichen sein! 1. Aufgabe Im Praktikum hast du eine Feder mit einer

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben 2.2 Arbeit und Energie Aufgaben Aufgabe 1: Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt. Für die

Mehr

Lösung zu Übungsblatt 12

Lösung zu Übungsblatt 12 PN - Physik für Cheiker und Biologen Prof. J. Lipfert WS 208/9 Übungsblatt 2 Lösung zu Übungsblatt 2 Aufgabe Reinhold Messner schwingt in den Bergen: Reinhold Messner öchte den Mount Everest besteigen

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

12GE1 - Wiederholung - Verbesserung Praktikum 01

12GE1 - Wiederholung - Verbesserung Praktikum 01 12GE1 - Wiederholung - Verbesserung Praktikum 01 Raymond KNEIP, LYCÉE DES ARTS ET MÉTIERS September 2015 1 Die gleichförmige Bewegung Dritte Reihe der Tabelle: s/t (m/s) (F.I.) 0.5 0.5 0.5 0.5 a. Der Quotient

Mehr

Höhenenergie, kinetischen Energie, Spannenergie, Energieerhaltung

Höhenenergie, kinetischen Energie, Spannenergie, Energieerhaltung Höhenenergie, kinetischen Energie, Spannenergie, Energieerhaltung 1. Trapolinspringer I Diagra unten siehst du in Abhängigkeit von der Höhe die Energieforen eines Trapolinspringers, der sich in unterschiedlichen

Mehr

2 Gleichmässig beschleunigte Bewegung

2 Gleichmässig beschleunigte Bewegung 2 Gleichmässig beschleunigte Bewegung Ziele dieses Kapitels Du kennst die Definition der Grösse Beschleunigung. Du kannst die gleichmässig beschleunigte Bewegung im v-t- und s-t-diagramm darstellen. Du

Mehr

Parabelfunktion in Mathematik und Physik im Fall des waagrechten

Parabelfunktion in Mathematik und Physik im Fall des waagrechten Parabelfunktion in Mathematik und Physik im Fall des waagrechten Wurfs Unterrichtsvorschlag, benötigtes Material und Arbeitsblätter Von der Physik aus betrachtet.. Einführendes Experiment Die Kinematik

Mehr

Zusätzlich wird benötigt 1 PC mit USB-Schnittstelle, Windows XP oder höher. Abbildung 1: Versuchsaufbau.

Zusätzlich wird benötigt 1 PC mit USB-Schnittstelle, Windows XP oder höher. Abbildung 1: Versuchsaufbau. Der freie Fall 5.1.4.4 Wird ein Körper aus einer Höhe h fallen gelassen, erfährt er eine gleichmäßige Beschleunigung in Richtung des Erdmittelpunktes. Die hier im Experiment betrachteten Höhen weichen

Mehr

Periodendauer eines Fadenpendels 9/10

Periodendauer eines Fadenpendels 9/10 1. Bezeichnung des Materials Periodendauer eines Fadenpendels 2. Autor(en) 3. Doppeljahrgangsstufe / Fach 9/10 Physik 4. Rahmlehrplanbezug 5. Einsatz der Aufgabe im Unterricht Lernaufgabe Hauptsächliche

Mehr

Bereich Schwierigkeit Thema Quantenphysik X Photoeffekt. Caesium-Kathode. a) Skizzieren Sie den grundlegenden Versuchsaufbau zum Photoeffekt.

Bereich Schwierigkeit Thema Quantenphysik X Photoeffekt. Caesium-Kathode. a) Skizzieren Sie den grundlegenden Versuchsaufbau zum Photoeffekt. Quantenphysik X Photoeffekt Caesiu-Kathode a) Skizzieren Sie den grundlegenden Versuchsaufbau zu Photoeffekt. b) Eine Fotokathode besteht aus Caesiu (W A =1,94eV) und wird it Licht der Frequenz f=6,9.

Mehr

5.1 Massenmittelpunkt. 5.2 Impuls als Bewegungsgröße. 5.3 Impulserhaltungssatz

5.1 Massenmittelpunkt. 5.2 Impuls als Bewegungsgröße. 5.3 Impulserhaltungssatz 5. Teilchensystee und Ipulserhaltung 5. Massenittelpunkt 5. Ipuls als Bewegungsgröße 5.3 Ipulserhaltungssatz 5.4 Stoßprozesse R. Girwidz 5. Massenittelpunkt Spezialfall di. Welt: V: Wagen auf Balken R.

Mehr

Feder-, Faden- und Drillpendel

Feder-, Faden- und Drillpendel Dr Angela Fösel & Dipl Phys Tom Michler Revision: 30092018 Eine Schwingung (auch Oszillation) bezeichnet den Verlauf einer Zustandsänderung, wenn ein System auf Grund einer Störung aus dem Gleichgewicht

Mehr

Zusammenfassung: Dynamik

Zusammenfassung: Dynamik LÖ Ks Ph 10 Schuljahr 016/017 Zusaenfassung: Dynaik Wiederholung: Kraft, Masse und Ortsfaktor 1 Kraft Eine Kraft kann verschiedene Wirkungen auf einen Körper haben: Verforung Änderung des Bewegungszustands

Mehr

Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik. 4. Versuch: Atwoodsche Fallmaschine

Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik. 4. Versuch: Atwoodsche Fallmaschine Physikpraktikum für Pharmazeuten Universität Regensburg Fakultät Physik 4. Versuch: Atwoodsche Fallmaschine 1 Einführung Wir setzen die Untersuchung der beschleunigten Bewegung in diesem Versuch fort.

Mehr