Darstellen von Funktionen
|
|
|
- Matilde Becker
- vor 8 Jahren
- Abrufe
Transkript
1 Darstellen von Funktionen Für die Darstellung von Funktionen sind die folgenden Tasten bzw Fenster wichtig : 1. Das Y=-Fenster (Funktionseditor) : Hier können die Funktionen, die dargestellt werden sollen, als vordefinierte Funktionen y 1 (x), y 2 (x),... eingegeben werden. Die Art der Darstellung kann mit [F6] verändert werden. Soll eine Funktion auch grafisch dargestellt werden, so ist sie mit [F4] zu markieren - sie wird mit einem Haken versehen. 2. Das WINDOW - Fenster : Hier können/müssen die Werte für die grafische Darstellung (Koordinatensystem) eingetragen werden. Bei Bedarf sind diese Werte laufend zu ändern. 3. Das GRAPH - Fenster Hier wird die ausgewählte Funktion grafisch dargestellt. Seite - 1 -
2 Die allgemeine Sinusfunktion Für die Darstellung von Winkelfunktionen ist es wichtig, das der Rechner auf den Modus Radian umgestellt wird. Wir wollen die Funktion f(x) = sin(x) darstellen. Im WINDOW-Fenster stellt man dazu die folgenden Werte ein. Für xres genügt der Wert 2 -> die Darstellung erfolgt schneller. Neben sin(x) sollen jetzt auch die Funktionen 2.sin(x) und 3.sin(x) dargestellt werden. Wir geben diese Funktionen im Y=-Fenster ein, und stellen den Style für 2.sin(x) auf Dot und für 3.sin(x) auf Thick. Ergebnis : f(x) = a.sin(x) Der Faktor a stellt den Vergrößerungsfaktor - die Amplitude dar. Seite - 2 -
3 In nächsten Beispiel sollen die Funktionen f(x) = sin b.x dargestellt werden, wobei b die Werte 1, 2 und 3 durchlaufen soll. Dazu ändern wir im WINDOW-Fenster die folgenden Wert: ymin = -2 und ymax = 2. Die Funktionen werden eingegeben, Style wie oben. Ergebnis : Der Faktor b verdoppelt, verdreifacht die Anzahl der Nullstellen (Schwingungen); er gibt die Frequenz an. Wir untersuchen nun die Funktionen f(x) = sin(x + c). Als Vergleich stellen wir wieder die Funktion f(x) = sin x dar und setzen zusätzlich für c die Werte c=ð/2 und c= -ð/4. Die Funktionen werden im Funktioneneditor eingetragen, die Styles bleiben wie oben. Ergebnis : Ist c positiv, so verschiebt sich der Graph um den entsprechenden Wert nach links, ist c negativ, so verschiebt sich der Graph nach rechts. Man spricht von der Phasenverschiebung. Beispiel : Wir betrachten die Funktionen sin(x + ð/2) und cos(x). Beide Funktionen werden grafisch dargestellt. Setzt man bei der ersten Funktion den Style auf Dot und bei der zweiten Funktion auf Line, so kann deutlich festgestellt werden, daß die beiden Funktionen identisch sind. Seite - 3 -
4 Beispiel : Wir betrachten die Funktione : f(x) = 3.sin(2x - ð/3) Querverweise zur Physik! Im WINDOW-Fenster stellen wir ein : ymin=-4 und ymax=4 Zuerst durch schrittweises herantasten händisch überlegen, wie der Graph aussehen muß; dann mit dem Rechner darstellen. Line Dot Sqare Thick Darstellung aller 4 Funktionen. Überlagerung von Schwingungen 1. Beispiel : Es sollen die beiden harmonischen Schwingungen f(x) = sin(x) und g(x) = sin(12x) überlagert werden. Im WINDOW-Fenster stellen wir die angezeigten Werte ein. Die gegebenen Funktionen und auch die Summenfunktion werden im Y=-Fenster eingetragen; Seite - 4 -
5 Im ersten Bild wurden nur die beiden Ausgangswellen dargestellt. Im zweiten Bild wird die hochfrequente Welle weggelassen, dafür aber die Überlagerung gezeichnet. Ergebnis : Werden eine hochfrequente Welle und eine niederfrequente Welle überlagert, so reitet die hochfrequente Welle auf der niederfrequenten Welle auf. 2. Beispiel : Wir überlagern zwei Schwingungen mit annähernd gleichen Frequenzen; f(x) = sin(10x) und g(x) = sin(11x). Die Funktionen im Y=-Fenster darstellen, bei der Summenfunktion stellen wir den Style auf Thick. Wir stellen zuerst alle drei Schwingungen gleichzeitig dar und wegen der besseren Übersichtlichkeit zusätzlich nur die Überlagerung. Man erhält eine SCHWEBUNG. 3. Beispiel : Es sollen zwei Schwingungen überlagert werden, die aufeinander normal stehen, dh. ihre Ausbreitungsrichtungen stehen aufeinander normal. Wir müssen somit sowol den x- als auch den y-wert durch eine harmonische Funktion berechnen lassen; zb x(t) = sin(t) und y(t) = cos(t). Eine solche Darstellung einer Funktion heißt Parameterdarstellung, wobei t der Parameter ist. Dazu muß der Rechner umgestellt werden. Wir drücken die Taste [MODE] und stellen den Menüpunkt Graph auf PARAMETRIC um. Auch das Y=-Fenster hat sich verändert. Für jede Funktion sind jetzt zwei Eingaben, eine für den x-wert und eine für den y-wert durchzuführen. Seite - 5 -
6 In den folgenden Beispielen sind jeweils links die Funktionen angegeben, und auf der rechten Seite die zugehörige grafische Darstellung. Die entstehenden Kurven sind im allgemeinen geschlossen, die Anzahl der Schleifen ist von der Frequenz abhängig. Solche Figuren heißen LISSAJOUS - Figuren. Seite - 6 -
SCHWINGUNGEN. Version 2.0 Herbert Paukert. Sinusfunktion y = sin(x) [ 03 ]
Schwingungen Herbert Paukert 1 SCHWINGUNGEN Version 2.0 Herbert Paukert Sinusfunktion y = sin(x) [ 03 ] Sinusfunktion y = a*sin(x) [ 08 ] Sinusfunktion y = sin(b*x) [ 09 ] Sinusfunktion y = sin(x+c) [
1. Unterteilung von allgemeinen Dreiecken in rechtwinklige
Trigonometrie am allgemeinen Dreieck Wir können auch die Seiten und Winkel von allgemeinen Dreiecken mit Hilfe der Trigonometrie berechnen. Die einfachste Variante besteht darin, ein beliebiges Dreieck
Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die
Die allgemeine Sinusfunktion Bei den Parabeln gibt es eine Grundfigur: Die Normalparabel, sie hat die Funktionsgleichung f(x) x. Aus ihr erzeugt man andere Parabeln, indem man den Funktionsterm verändert.
Themenbereich: Trigonometrie
Polarkoordinaten Inhalte: Darstellung der Winkelfunktionen Programmierung mit dem TR Sinus- und Cosinussatz Themenbereich: Trigonometrie Ziele: Arbeiten mit symbolischen Schreibweisen in der Mathematik
1 Die Strahlensätze 2. 2 Winkel 3. 3 Rechtwinklige Dreiecke 3. 4 Kreise 6. 5 Trigonometrische Funktionen 8. 6 Kurven in Parameterdarstellung 10
Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Geometrie Inhaltsverzeichnis 1 Die Strahlensätze 2 2 Winkel 3 3 Rechtwinklige
Harmonische Schwingung
Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung
Arbeiten mit Funktionen
Arbeiten mit Funktionen Wir wählen den Funktioneneditor (Ë W) und geben dort die Funktion f(x) = x³ - x² - 9x + 9 ein. Der TI 92 stellt uns eine Reihe von Funktionsbezeichnern zur Verfügung (y 1 (x), y
TI-89-Funktionen TI-89. Funktionen. Johann Berger
TI-89 Funktionen Johann Berger 2005 www.johnny.ch Hans Berger Seite 1 2005 Achten Sie darauf, dass der Rechner so eingestellt ist, wie in der Einleitung angegeben. Insbesondere muss im MODE unter Graph
Wiederholung der dritten Schularbeit Mathematik Klasse 7D WIKU am
Wiederholung der dritten Schularbeit Mathematik Klasse 7D WIKU am 04.03.2015 SCHÜLERNAME: Punkte im ersten Teil: Punkte im zweiten Teil: Davon Kompensationspunkte: Note: Notenschlüssel: Falls die Summe
Kosinusfunktion: graphische Darstellung und Interpretation. 1-E Vorkurs, Mathematik
Kosinusfunktion: graphische Darstellung und Interpretation 1-E Vorkurs, Mathematik Kosinusfunktion: Erklärung der Aufgabe 1 Aufgabe 1: Zeichnen Sie die trigonometrische Kosinusfunktion g (x) = a cos x.
HTBLA VÖCKLABRUCK STET
HTBLA VÖCKLABRUCK STET Trigonometrie INHALTSVERZEICHNIS 1. WINKELFUNKTIONEN IM RECHTWINKELIGEN DREIECK... 3. BOGENMASS... 3 3. TRIGONOMETRISCHE FUNKTIONEN BELIEBIGER WINKEL... 4 3.1. Einheitskreis (r =
SieglindeFürst Direktes und indirektes Verhältnis
SieglindeFürst Direktes und indirektes Verhältnis Funktionen Direktes und indirektes Verhältnis Inhalte Textbeispiele Darstellungsmöglichkeiten für direktes und indirektes Verhältnis Ziele Erkennen des
F u n k t i o n e n Trigonometrische Funktionen
F u n k t i o n e n Trigonometrische Funktionen Jules Antoine Lissajous (*1822 in Versailles, 1880 in Plombières-les-Bains) wurde durch die nach ihm benannten Figuren bekannt, die bei der Überlagerung
Lösungen zu den Tutoriumsaufgaben
Mathematisches Institut der Universität München Prof. Dr. Georg Tamme, Thomas Beekenkamp SS 17 Blatt 5 Lösungen zu den Tutoriumsaufgaben T1. (a) Finden Sie eine Kurve α im R 2, deren Bahn K wie eine liegende
7 Grafik in der Ebene (2D-Graphik)
MAPLE_Mini_07_08_V1-0.DOC 7-1 7 Grafik in der Ebene (2D-Graphik) 7.1 Einfache grafische Darstellungen Aufgabe: Die Funktion f: x e x sin( x ) im Intervall (-3; 3) grafisch darstellen. f := x exp( -x )*
Primzahlen Darstellung als harmonische Schwingung
Primzahlen Darstellung als harmonische Schwingung Die natürliche Sinusschwingung wird hier in Zusammenhang mit der Zahlentheorie gebracht um einen weiteren theoretischen Ansatz für die Untersuchung der
Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1
TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik
Verschiebung/Streckung von Funktionsgraphen. Verwenden von Schablonen zum Zeichnen von Funktionsgraphen. Idee der Koordinatentransformation
Verschiebung/Streckung von Funktionsgraphen Verwenden von Schablonen zum Zeichnen von Funktionsgraphen Idee der Koordinatentransformation Rahmenlehrplan Berlin P4 9/10: Situationen mit n und Potenzfunktionen
Übungen mit dem Applet Kurven in Parameterform
Kurven in Parameterform 1 Übungen mit dem Applet Kurven in Parameterform 1 Ziele des Applets... Wie entsteht eine Kurve in Parameterform?... 3 Kurvenverlauf für ausgewählte x(t) und y(t)... 3 3.1 x(t)
Trigonometrische Funktionen
Trigonometrische Funktionen Wir beginnen mit der Sinusfunktion: f(x) = sin(x) Wir schränken den Definitionsbereich auf eine Periode ein, d.h. xœ 0,2 bzw. 0 x 2p. Hier ist der Graph: Folgendes sollte beachtet
Klausurenkurs zum Staatsexamen (SS 2015): Differential und Integralrechnung 6
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 205): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem
Trigonometrische Funktionen
Trigonometrische Funktionen Wir wollen einer Zeichnung und nicht dem Taschenrechner mehrere Sinuswerte entnehmen und graphisch darstellen. Falls c = ist, gilt a = sinα. Die Strecken der Länge liegen auf
Trigonometrische Funktionen
Trigonometrische Funktionen Was mag das sein? Wir haben auch hier wieder eine Grundform, in die sich alle trigonometrischen Funktionen pressen lassen, mit denen wir zu tun haben werden: f(x) = a sin(bx
Sinusfunktion* Aufgabenformat: halboffenes Format Grundkompetenz: FA 6.1
Sinusfunktion* Aufgabennummer: 1_410 Aufgabentyp: Typ 1 T Typ Aufgabenformat: halboffenes Format Grundkompetenz: FA 6.1 Die nachstehende Abbildung zeigt den Graphen einer Funktion f mit f(x) = a sin(b
Serie 13. Analysis D-BAUG Dr. Cornelia Busch FS 2016
Analysis D-BAUG Dr. Cornelia Busch FS 2016 Serie 13 1. Prüfungsaufgabe 4, Winter 2014. Bestimmen Sie die Funktion, für die gilt: An jeder Stelle des Definitionsbereichs ist die Steigung des Graphen der
Klausurenkurs zum Staatsexamen (WS 2014/15): Differential und Integralrechnung 6
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Differential und Integralrechnung 6 6. (Frühjahr 2009, Thema, Aufgabe 3) Sei r > 0. Berechnen Sie die Punkte auf der Parabel y = x 2 mit dem
Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1
Abiturprüfung Mathematik 007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (8 Punkte) Das Schaubild einer Polynomfunktion. Grades geht durch den Punkt S(0/) und hat den 3 Wendepunkt
2 Komplexe Zahlen. 2.1 Grundlagen. Aufgabe Aufgabe Aufgabe 2.1.3
2 Komplexe Zahlen 2.1 Grundlagen Aufgabe 2.1.1 Sei z 1 = 2 + und =. Stellen Sie a) z 1 +, b) z 1, c) z 1. zeichnerisch dar und berechnen Sie die Werte. Aufgabe 2.1.2 Berechnen Sie die folgenden Werte,
Trigonometrie. Mag. DI Rainer Sickinger HTL. v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1
Trigonometrie Mag. DI Rainer Sickinger HTL v 1 Mag. DI Rainer Sickinger Trigonometrie 1 / 1 Verschiedene Winkel DEFINITION v 1 Mag. DI Rainer Sickinger Trigonometrie 2 / 1 Verschiedene Winkel Vermessungsaufgaben
Was ist eine Funktion?
Lerndomino zum Thema Funktionsbegriff Kopiereen Sie die Seite (damit Sie einen Kontrollbogen haben), schneiden Sie aus der Kopie die "Dominosteine" zeilenweise aus, mischen Sie die "Dominosteine" und verteilen
osungen zu Blatt 12 Thema: Rationale und trigonometrische Funktionen
Musterl osungen zu Blatt Kleingruppen zur Service-Veranstaltung Mathematik I f ur Ingenieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 5.. Thema: Rationale und trigonometrische Funktionen
Lies die folgenden Seiten durch, bearbeite die Aufgaben und vergleiche mit den Lösungen.
-1- Selbst lernen: Einführung in den Graphikrechner TI-84 Plus Das Graphikmenü des TI84-Plus Lies die folgenden Seiten durch, bearbeite die Aufgaben und vergleiche mit den Lösungen. 1 Grundsätzliches Die
zum Thema Lissajous-Figuren
Ratsgymnasium Rotenburg Gerberstraße 14 27356 Rotenburg Wümme Facharbeit im Leistungskurs Physik zum Thema Lissajous-Figuren Verfasser: Christoph Siemsen Fachlehrer: Herr Konrad Abgabetermin: 24.05.04
Parameterdarstellung und Polarkoordinaten
Zeichenerklärung: [ ] - Drücken Sie die entsprechende Taste des Graphikrechners! [ ] S - Drücken Sie erst die Taste [SHIFT] und dann die entsprechende Taste! [ ] A - Drücken Sie erst die Taste [ALPHA]
Klassenarbeit GYM Klasse 10 Seite 1 Datum: Trigonometrische Funktionen. Erreichte Punkte:
Klassenarbeit GYM Klasse 10 Seite 1 Datum: Thema: Trigonometrische Funktionen Name: Zeit: Erreichte Punkte: Note: Hilfsmittel: GTR Aufgabe 1: (2 Punkte) Rechne in das jeweilige andere Winkelmaß um: a.
Kreissektoren und Bogenmaß
M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius r gilt für einen Kreissektor mit Mittelpunktswinkel α: Länge des Kreisbogens Fläche des Kreissektors b = α α 2rπ A = 360 360 πr2 Das Bogenmaß
Übung (13) dx 3, 2x 1 dx arctan(x3 1).
Übung (3) () Bilden Sie folgende Ableitungen: d xe x dx x ln x, d dx +cos (x), d d dx 3, x dx arctan(x3 ). () Geben Sie die Näherung. Ordnung für den Ausdruck / p v /c für v
Basisprüfung, Gruppe A Analysis I/II
Offene Aufgaben. Jeder der folgenden sieben offenen Aufgaben ist eine einzelne thematisch verwandte Single Choice-Aufgabe vorangestellt. Beantworten Sie die Single Choice Aufgabe auf dem Antwortzettel.
Inhaltsverzeichnis. Inhaltsverzeichnis. 3
Inhaltsverzeichnis Inhaltsverzeichnis Vorwort 4 1 Der Taschenrechner 5 1.1 Erste Rechnungen.................................. 5 1.2 Bearbeiten und Löschen der Eingaben....................... 7 1.3 Mehrere
Was ist eine Funktion?
Lerndomino zum Thema Funktionsbegriff Kopiereen Sie die Seite (damit Sie einen Kontrollbogen haben), schneiden Sie aus der Kopie die "Dominosteine" zeilenweise aus, mischen Sie die "Dominosteine" und verteilen
Trignonometrische Funktionen 6a
Schuljahr 2015/16 [email protected] Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, November 23, 2015 Winkelmaße Winkelmaß bis 6. Klasse: Grad (0 360 )
KOMPETENZHEFT ZUR TRIGONOMETRIE, II
KOMPETENZHEFT ZUR TRIGONOMETRIE, II 1. Aufgabenstellungen Aufgabe 1.1. Bestimme alle Winkel in [0 ; 360 ], die Lösungen der gegebenen Gleichung sind, und zeichne sie am Einheitskreis ein. 1) sin(α) = 0,4
Die Phasenkonstante ) 2. Loslassen nach Auslenkung. Anstoßen in Ruhelage: -0,500,00 5,00 10,00 15,00 2,00 1,50 1,00 0,50 0,00.
Die Phasenkonstante Auslenkung 2,50 2,00 1,50 1,00 0,50 0,00-0,500,00 5,00 10,00 15,00-1,00-1,50-2,00-2,50 Zeit Loslassen nach Auslenkung. y y0 sin( t ) 2 2 Auslenkung 2,50 2,00 1,50 1,00 0,50 0,00-0,500,00
Experimente mit trigonometrischen Funktionen
Mathematik und ihre Didaktik Uni Bayreuth Sinus Sachsen-Anhalt Experimente mit trigonometrischen Funktionen Eine Sammlung von interaktiven Arbeitsblättern zur vertieften Betrachtung der Funktionen sin
Vorkurs Mathematik Übungen zu Kurven im R n
Vorkurs Mathematik Übungen zu urven im R n Als bekannt setzen wir die folgende Berechnung voraus: Sei f : [a, b] R eine urve im R. Die Länge L der urve berechnet sich durch L b a f t dt urven in R Aufgabe.
Funktion. Eine Funktion. x f (x) ordnet jedem Argument x aus dem Definitionsbereich D R einen Wert f (x) aus dem Wertebereich W R zu.
Funktion Eine Funktion f : D R, x f (x) ordnet jedem Argument x aus dem Definitionsbereich D R einen Wert f (x) aus dem Wertebereich W R zu. Funktion 1-1 Der Graph von f besteht aus den Paaren (x, y) mit
4. Weitere Ableitungregeln ================================================================= 4.1 Die Ableitung der Sinus-und Kosinusfunktion
4. Weitere Ableitungregeln ================================================================= 4.1 Die Ableitung der Sinus-und Kosinusfunktion ----------------------------------------------------------------------------------------------------------------
Übungen Ingenieurmathematik
Übungen Ingenieurmathematik 1. Übungsblatt: Komplexe Zahlen Aufgabe 1 Bestimmen Sie Real- und Imaginärteil der folgenden komplexen Zahlen: a) z =(3+i)+(5 7i), b) z =(3 i)(5 7i), c) z =( 3+i)( 3+ 3 i),
H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Basiswissen Schleswig-Holstein. Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen
H. Gruber, R. Neumann Erfolg im Mathe-Abi Basiswissen Schleswig-Holstein Übungsbuch für den Grund- und Leistungskurs mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis 1 Von der Gleichung
Aufgaben zur Funktionsdiskussion: Grundkurs Nr. 2 a 2 +b 2 =c 2 Materialbörse Mathematik
Zeichenerklärung: [ ] - Drücken Sie die entsprechende Taste des Graphikrechners! [ ] S - Drücken Sie erst die Taste [SHIFT] und dann die entsprechende Taste! [ ] A - Drücken Sie erst die Taste [ALPHA]
9. Lineare Gleichungssysteme
9. Lineare Gleichungssysteme. Aufgabe: estimmen Sie mit Hilfe des Gauß-Algorithmus alle Lösungen ~x = (x ; x ; x 3 ; x 4 ) T des Gleichungssystems 3x x + x 3 + x 4 = 4x + 8x 3 + x 4 = 3 x + x + 6x 3 x
Einführung. Ablesen von einander zugeordneten Werten
Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,
Analysis: Trigonometr. Funktionen Analysis Trigonometrische Funktionen Pflicht- und Wahlteilaufgaben
Analysis Trigonometrische Funktionen Pflicht- und Wahlteilaufgaben Gymnasium Oberstufe J oder J Alexander Schwarz www.mathe-aufgaben.com Dezember 0 Pflichtteilaufgaben (ohne GTR): Aufgabe : Leite die folgenden
Angewandte Mathematik und Programmierung
Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Fourier Reihen Sehen wir in 2 Wochen Lösung der lin. Dgln.
4.1. Aufgaben zu linearen Funktionen
.. Aufgaben zu linearen Funktionen Aufgabe : Koordinatensystem a) Gib die Koordinaten der Punkte P - P 8 in dem rechts abgebildeten Koordinatensystem an. b) Markiere die Punkte A( ); B( ); C( ); D( );
Überblick über die Winkelfunktionen Sinusfunktion
Überblick über die Winkelfunktionen Sinusfunktion -x2 -x1 x1 x2 Die Funktion x sin x ; x ℝ heißt Sinusfunktion und ihr Graph Sinuskurve. Die Sinusfunktion ist punktsymmetrisch (blau in der Zeichnung) zum
Funktionen. Mathematik-Repetitorium
Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2
Kurven nach Formeln erstellen, Teil 3
Kurven nach Formeln erstellen, Teil 3 Im dritten Teil möchte ich sie mit Funktionen und Konstanten vertraut machen, die sie in der Dialogbox Kurve nach Formel verwenden können. Dann werden wir uns ein
BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education. Höhere Mathematik II. Übungen. Komplexe Zahlen. i e π + 1=
BERUFSAKADEMIE S T U T T G A R T University of Cooperative Education Höhere Mathematik II Übungen Komplexe Zahlen i e π + 0 8 R. Mohr FK Blatt Komplexe Zahlen I WS 004/ Aufgabe : Gegeben sind die komplexen
Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall
4. Lösung einer Differentialgleichung. Ordnung mit konstanten Koeffizienten a) Homogene Differentialgleichungen y'' + a y' + b y = 0 (**) Ansatz: y = e µx, also y' = µ e µx und y'' = µ e µx eingesetzt
Übungen mit dem Applet Kurven in Polarkoordinaten
Kurven in Polarkoordinaten 1 Übungen mit dem Applet Kurven in Polarkoordinaten 1 Ziele des Applets...2 2 Wie entsteht eine Kurve in Polarkoordinaten?...3 3 Kurvenverlauf für ausgewählte r(ϕ)...4 3.1 r
Im Folgenden wird die Bedeutung der auftretenden Parameter A, ω, ϕ untersucht. 1. y(t) = A sin t Skizze: A = 1, 2, 1 /2
19 9. Harmonische Schwingungen (Sinusschwingungen) Der Punkt P rotiert gleichförmig in der Grundebene um den Ursprung O mit der Winkelgeschwindigkeit in positivem Drehsinn. Zur Zeit t = 0 schliesst uuur
Klausurenkurs zum Staatsexamen (SS 2014): Differential und Integralrechnung 6
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 204): Differential und Integralrechnung 6 6. (Herbst 200, Thema 2, Aufgabe 4) Suchen Sie für alle c R einen Punkt auf der Parabel P := { (x,y) : y
Lösung zur Übung 3 vom
Lösung zur Übung 3 vom 28.0.204 Aufgabe 8 Gegeben ist ein Dreieck mit den nachfolgenden Seiten- und Winkelbezeichnung. Der Cosinussatz ist eine Verallgemeinerung des Satzes des Pythagoras: a) c 2 = a 2
MATHEMATIK KLAUSUR K1 1
MATHEMATIK KLAUSUR K1 1 18.10.2010 Der Rechenweg muss ersichtlich sein. Für die Lösung der Aufgaben 3 und 4 ist der GTR erlaubt; der jeweilige Ansatz ist schriftlich festzuhalten. Lösungen auf dem Aufgabenblatt
Zwischenprüfung, Gruppe B Analysis I/II
1.3.217 Die folgenden 8 Aufgaben sind Multiple Choice Aufgaben. Zur Erinnerung: Jede MC- Aufgabe besteht aus drei Teilen, die jeweils mit richtig oder falsch beantwortet werden können. Eine richtige Antwort
Übungsaufgaben Analysis hilfsmittelfrei
Übungsaufgaben Analysis hilfsmittelfrei Aufgabe 1 Der Graph der Funktion f (x) = 0,5x3+ 1,5x2+ 4,5x 3,5 hat im Punkt T( 1 6) einen relativen (lokalen) Tiefpunkt und im Punkt H(3 10) einen relativen (lokalen)
Differenzialrechnung
Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =
QUADRATISCHE UND KUBISCHE FUNKTION
QUADRATISCHE UND KUBISCHE FUNKTION Quadratische Funktion 1. Bedeutung der Parameter Als quadratische Funktionen werde alle Funktionen bezeichnet, die die Form y = a*x² + b*x + c aufweisen, also alle, bei
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 25. November 2010 1 Differentialrechnung Kurvendiskussion Trigonometrische Funktionen Bedeutung der Ableitung in
Lösungen zu Mathematik I/II
Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x
Die Differentialgleichung :
Die Differentialgleichung : Erstellt von Judith Ackermann 1.) Definition, Zweck 1.1) verschiedene Arten von Differentialgleichungen 2.) Beispiele und Lösungswege 2.1) gewöhnliche Differentialgleichungen
Übungen mit dem Applet Grundfunktionen und ihre Ableitungen
Grundfunktionen und ihre Ableitungen 1 Übungen mit dem Applet Grundfunktionen und ihre Ableitungen 1 Ziele des Applets... Überblick über die Funktionen....1 Sinusfunktion y = f(x) = a sin(bx + c).... Cosinusfunktion
FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK
FACHHOCHSCHULE ESSLINGEN - HOCHSCHULE FÜR TECHNIK Sommersemester 006 Zahl der Blätter: 5 Blatt 1 s. unten Hilfsmittel: Literatur, Manuskript, keine Taschenrechner und sonstige elektronische Rechner Zeit:
Aufgaben zum Basiswissen 10. Klasse
Aufgaben zum Basiswissen 10. Klasse 1. Berechnungen an Kreisen und Dreiecken 1. Aufgabe: In einem Kreis mit Radius r sei α ein Mittelpunktswinkel mit zugehörigem Kreisbogen der Länge b und Kreissektor
Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010
Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-
D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15
D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 15 1. Der Wert einer Funktion f : R R fällt am schnellsten in die Richtung (a) (b) (c) der minimalen partiellen Ableitung. entgegengesetzt
Übungsaufgaben Didaktik III Überraschende Phänomene bei der Darstellung von Funktionen
Übungsaufgaben Didaktik III 18.05.2011 Aliasing Überraschende Phänomene bei der Darstellung von Funktionen 1. Aufgabe: 1 Aliasing bei Funktionsplottern Untersuchung durch Modellbildung Ziel ist es, mit
Lineare Funktionen Arbeitsblatt 1
Lineare Funktionen Arbeitsblatt 1 Eine Funktion mit der Gleichung y = m x + b heißt lineare Funktion. Ihr Graph ist eine Gerade mit der Steigung m. Die Gerade schneidet die y-achse im Punkt P(0 b). Man
5 DIFFERENZIALRECHNUNG EINFÜHRUNG
M /, Kap V Einführung in die Differenzialrechnung S 5 DIFFERENZIALRECHNUNG EINFÜHRUNG Zielvorgabe für die Kapitel 5 bis 55: Wir wollen folgende Begriffe definieren und deren Bedeutung verstehen: Differenzenquotient,
Bisher haben wir nur Gleichungen kennengelernt, die ein einfaches x beinhalten: x + 9 = 17-9 x = 8. D. Faber
Bisher haben wir nur Gleichungen kennengelernt, die ein einfaches x beinhalten: x + 9 = 17-9 x = 8 Bisher haben wir nur Gleichungen kennengelernt, die ein einfaches x beinhalten: x + 9 = 17-9 x = 8 Diese
FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.
FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f
Springbrunnen. von Günter Schmidt. Themenbereich Analysis. Zeige, daß die Wasserteilchen der Fontänen sich auf Parabelbahnen bewegen.
Springbrunnen von Günter Schmidt Themenbereich Analysis Inhalte schiefer Wurf und Parabeln Parameterdarstellung von Funktionen Extremwertbestimmung bei reellen Funktionen Ziele Beschreiben realer Phänomene
Abitur Mathematik Baden-Württemberg 2012
Abitur Mathematik: Baden-Württemberg 2012 Im sind keine Hilfsmittel zugelassen. Aufgabe 1 1. SCHRITT: STRUKTUR DER FUNKTION BESCHREIBEN Der Funktionsterm von f ist die Verkettung der Potenzfunktion g(x)
KOMPETENZHEFT ZU STAMMFUNKTIONEN
KOMPETENZHEFT ZU STAMMFUNKTIONEN 1. Aufgabenstellungen Aufgabe 1.1. Finde eine Funktion F (x), die F (x) = f(x) erfüllt. a) f(x) = 5 x 2 2 x + 8 e) f(x) = 1 + x x 2 b) f(x) = 1 x4 10 f) f(x) = e x + 2
Dieter Brandt: Unterricht mit dem V200 in der Kurstufe Workshop Unterrichtsbeispiele Tagung Karlsruhe 7. März 2006
Inhalt: 1 Geschwindigkeit eines anfahrenden ICE 2 Volumenberechnung eines Bierglases 3 Der Weg zum Hauptsatz Brandt - Unterrichtsbeispiele V200 Seite : 1 1 Geschwindigkeit eines anfahrenden ICE Die Messkurve
7.1 Überlagerung von Schwingungen, Fourier Zerlegung
Kapitel 7 Schwingungen und Wellen 7. Überlagerung von Schwingungen, Fourier Zerlegung Im Abschnitt über die Bewegungen einzelner Teilchen haben wir uns sehr intensiv mit den Harmonischen Schwingungen beschäftigt,
Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A
Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Für jedes a > ist eine Funktion f a definiert durch fa (x) = x (x a) mit x R a Das Schaubild von f
9.5 Graphen der trigonometrischen Funktionen
9.5 Graphen der trigonometrischen Funktionen 9.5 Graphen der trigonometrischen Funktionen. Unter dem Bogenmass eines Winkels versteht man die Länge des Winkelbogens von auf dem Kreis mit Radius (Einheitskreis).
F u n k t i o n e n Grundbegriffe
F u n k t i o n e n Grundbegriffe Gottfried Wilhelm Leibniz (*66 in Leipzig, 76 in Hannover) war ein deutscher Philosoph und Wissenschaftler, Mathematiker, Diplomat, Physiker, Historiker, Bibliothekar
Die allgemeine Sinusfunktion
Die allgemeine Sinusfunktion 1. Die Tageslänge(Zeitdauer zwischen Sonnenaufgang und Sonnenuntergang) an einem festen Ort verändert sich im Lauf eines Jahres. Die Graphik zeigt diese Veränderung für München.
