3 Numerische Behandlung der Tschebyscheff-Approximation
|
|
|
- Günther Glöckner
- vor 8 Jahren
- Abrufe
Transkript
1 Approximationstheorie 81 3 Numerische Behandlung der Tschebyscheff-Approximation Die Bestapproximation bezüglich einer Funktion f C(K) aus einem Haarschen Unterraum V C(K) läßt sich i.a. nicht in geschlossener Form angeben. Daher greift man auf Iterationsverfahren zurück. Man unterscheidet (1) Abstiegsverfahren (descent methods) : Erzeuge Funktionenfolge mit monoton fallendem Abstand zu f. Approximationsproblem als Optimierungsaufgabe mit unendlich vielen Nebenbedingungen. (2) Aufstiegsverfahren (ascent methods) : Erzeuge Funktionenfolge zusammen mit Folge von Referenzmengen und somit Folge unterer Schranken für den Fehler der Bestapproximation. Diese soll in jedem Schritt zunehmen. Wichtigster Vertreter: Remez-Algorithmus a. a Evgeny Yakovlevich Remez, russischer Mathematiker, Numerische Behandlung der Tschebyscheff-Approximation TU Bergakademie Freiberg, WS 2008/09
2 Approximationstheorie 82 im Folgenden: Remez-Algorithmus für die Haarschen Unterräume P n von C[a, b], alles reell. Beim Remez-Algorithmus wird, im Falle dim V = n, in jedem Iterationsschritt ein Approximationsproblem auf einer (n + 1)-elementigen Menge K gelöst. Beachte: dies stellt den einfachsten nichttrivialen Fall dar, denn damit V ein n-dimensionaler Unterraum von C(K) ist, muss K mindestens n + 1 Punkte enthalten. Andernfalls reduziert sich die Approximationsaufgabe zu einer Interpolationsaufgabe. 3 Numerische Behandlung der Tschebyscheff-Approximation TU Bergakademie Freiberg, WS 2008/09
3 Approximationstheorie Der Satz von Stiefel Spezialfall: K = {x 1, x 2,..., x n } (n-elementig). C(K) R n C(K) R n f(x 1 ) f. f(x n ) (normerhaltend) 3.1 Der Satz von Stiefel TU Bergakademie Freiberg, WS 2008/09
4 Approximationstheorie 84 Lemma 3.1 Sei V ein n-dimensionaler Haarscher Unterraum von C[a, b]. Sei ferner K = {x 0, x 1,..., x n } mit a x 0 < x 1 < < x n b und f K := max 0 i n f(x i). Dann ist die Bestapproximation an f C[a, b] aus V bezüglich K gerade die Lösung u der Interpolationsaufgabe u(x i ) = f(x i ) ( 1) i η, i = 0, 1,..., n, (3.1) mit passendem η R. Ferner ist f u K = η. 3.1 Der Satz von Stiefel TU Bergakademie Freiberg, WS 2008/09
5 Approximationstheorie 85 Lemma 3.2 Sei {v 1,..., v n } eine Basis des Haarschen Unterraumes V von C[a, b], K = {x 0, x 1,..., x n } und u wie in Lemma 3.1. (a) Die Koeffizienten von u = n k=1 α kv k und η sind die Lösungen des linearen Gleichungssystems n α k v k (x i ) + ( 1) i η = f(x i ) i = 0, 1,..., n, k=1 oder v 1 (x 0 )... v n (x 0 ) ( 1) 0. v 1 (x n )... v n (x n ) ( 1) n α 1. α n η = f(x 0 ). f(x n ). 3.1 Der Satz von Stiefel TU Bergakademie Freiberg, WS 2008/09
6 Approximationstheorie 86 (b) Die Lösungskomponente η dieses LGS besitzt die Darstellung η = n i=0 β if(x i ) mit Koeffizienten β i = ( 1) n+1+i det[v k (x j )] 1 k n;0 j n,j i det[v k (x j ) ( 1) j ] 1 k n;0 j n, i = 0, 1,..., n. Insbesondere sind diese unabhängig von f. (c) Das lineare Funktional l : C(K) R, g n β i g(x i ) (3.2) i=0 erfüllt l(v) = 0 v V, l = 1, sowie l(f u) = f u K. Normiert man sign β i = ( 1) i, so heißt l das den Punkten x 0, x 1,..., x n zugeordnete Funktional. 3.1 Der Satz von Stiefel TU Bergakademie Freiberg, WS 2008/09
7 Approximationstheorie 87 Aufgabe: Man bestimme das den Punkten { 1, 0, 1} zugeordnete Funktional für V = span{1, e x }. Wie lautet die Bestapproximation an f(x) = x aus V bezüglich { 1, 0, 1}? Satz 3.3 (Stiefel, 1959) Es seien a x 0 < x 1 < < x n+1 b, V = P n, f C[a, b] und f K := max f(x i). 0 i n+1 Das den Punkten x 0,..., x n+1 zugeordnete Funktional l ist durch l(g) = P n+1 i=0 λ ig(x i ) P n+1 i=0 ( 1)i λ i λ i := Y (x i x j ) 1 n+1 j=0 j i gegeben. Die Bestapproximation p an f aus P n bezüglich K erfüllt die Interpolationsbedingungen mit η := l(f) = f p K. p(x i ) = f(x i ) ( 1) i η, i = 0,..., n + 1, 3.1 Der Satz von Stiefel TU Bergakademie Freiberg, WS 2008/09
8 Approximationstheorie 88 Bei der praktischen Durchführung koppelt man die Berechnung des Interpolationspolynoms mit der von η. Seien q, q 0 P n+1 die Lösungen der Interpolationsaufgaben Schreibt man q(x i ) = f(x i ), q 0 (x i ) = ( 1) i, i = 0, 1,..., n + 1. q(x) = αx n+1 + q(x), q 0 (x) = α 0 x n+1 + q 0 (x), mit q, q 0 P n, so ist η = α/α 0 und p := q ηq 0 die Lösung des Approximationsproblems. Dies folgt aus (Lagrange-Darstellung) α α 0 = n+1 i=0 λ if(x i ) n+1 i=0 λ i( 1) i = l(f) = η und p(x i) = f(x i ) η( 1) i. 3.1 Der Satz von Stiefel TU Bergakademie Freiberg, WS 2008/09
9 Approximationstheorie 89 Aufgabe: Man bestimme das Funktional zur Approximation in P 1 auf den Punkten { 1, 0, 1} und die Bestapproximation an f(x) = ax 2 + bx + c, a 0, aus P 1 bezüglich g K = max{ g( 1), g(0), g(1) }. Lemma 3.4 Sei f C[a, b] und a x 0 < x 1 < < x n+1 b. Für die Lösung p des diskreten Approximationsproblems aus Satz 3.3 gelte η = f p K c > 0. Dann gilt für i = 0, 1,..., n x i+1 x i δ mit einer nur von f, c und V abhängenden Größe δ > Der Satz von Stiefel TU Bergakademie Freiberg, WS 2008/09
10 Approximationstheorie Der Remez-Algorithmus Sei wieder V reeller n-dimensionaler Haarscher Unterraum von C[a, b]. Zu den Punkten a x (0) 0 < x (0) 1 < < x (0) n b (3.3) sei u (0) V die beste (diskrete) Approximation an f C[a, b] aus V. Laut Lemma 3.1 bilden die Punkte in (3.3) eine Alternante bezüglich u (0) und der diskreten Approximationsaufgabe. Bezüglich u (0) und der entsprechenden kontinuierlichen Approximationsaufgabe auf [a, b] bilden sie i.a. lediglich eine Referenz. Nach dem Satz von de la Vallée-Poussin (Satz??) gilt in diesem Fall zumindest f u (0),[a,b] min 0 i n f(x i) u (0) (x i ) =: η (0). 3.2 Der Remez-Algorithmus TU Bergakademie Freiberg, WS 2008/09
11 Approximationstheorie 91 Idee: Ersetze die Punkte {x (0) i } m i=0 durch einen neuen Satz {x(1) i } m i=0 derart, dass die Fehlerfunktion f u 0) an diesen ebenfalls alterniert, aber mit einem größeren Betrag als η (0). Berechne nun die Bestapproximation an f bezüglich der neuen Referenz {x (1) i } m i= Der Remez-Algorithmus TU Bergakademie Freiberg, WS 2008/09
12 Approximationstheorie 92 Algorithmus 1 : Remez-Algorithmus. 1 Gegeben : f C[a, b], reeller Haarscher Unterraum V C[a, b], dim V = n. Wähle n + 1 Punkte a x (0) 0 < x (0) 1 < < x (0) n b und bestimme zu diesen die beste diskrete Approximation u (0) V an f m := 0, e (0) := f u (0), η (0) := f u (0) (0),{x i } while e (m) η (m) > tol e (m) do m := m + 1 Bestimme neue alternierende Referenzpunkte a x (m) 0 < x (m) 1 < < x (m) n b mit min 0 i n e(m 1) (x (m) i ) η (m 1), 6 7 wobei jedoch e (m 1) (x (m) i ) = e (m 1) für mindestens ein i. Bestimme zu {x (m) i } n i=0 die diskrete Bestapproximation u (m) V. e (m) := f u (m), η (m) := f u (m) (m),{x i } 3.2 Der Remez-Algorithmus TU Bergakademie Freiberg, WS 2008/09
13 Approximationstheorie 93 Wesentlicher Vorgang: Referenzaustausch Für Konvergenz erforderlich: Hinzunahme eines Punktes ξ mit e (m 1) (ξ) = e (m 1). (3.4) Austausch weiterer Punkte nicht erforderlich, bewirkt jedoch wesentliche Bescheunigung der Konvergenz. Wir konzentrieren uns im Weiteren auf die Darstellung, wie ein Extremalpunkt ξ in die Referenz aufgenommen wird, der (3.4) erfüllt. Beachte: Alternieren der Vorzeichen darf durch Austausch nicht verlorengehen. Zur Vereinfachung setzen wir x (m 1) 1 := a, x (m 1) n+1 := b, m = 1, 2, Der Remez-Algorithmus TU Bergakademie Freiberg, WS 2008/09
14 Approximationstheorie 94 Normalfall: Es gibt einen Index j {0,..., n} mit sign e (m 1) (ξ) = sign e (m 1) (x (m 1) j ) und In diesem Fall setzen wir x (m 1) j 1 ξ x (m 1) j+1. x (m) i := { ξ falls i = j, x (m 1) i falls i j, i = 0, 1,..., m. 3.2 Der Remez-Algorithmus TU Bergakademie Freiberg, WS 2008/09
15 Approximationstheorie Ausnahmefall: (Neuer Referenzpunkt am linken Rand) Hier ist ξ < x (m 1) 0 und sign e (m 1) (ξ) = sign e (m 1) (x (m 1 0 ) und wir setzen { ξ falls i = 0, x (m) i := x (m 1) i 1 i = 1, 2,..., n. 2. Ausnahmefall: (Neuer Referenzpunkt am rechten Rand) Hier ist und wir setzen ξ > x (m 1) n und sign e (m 1) (ξ) = sign e (m 1) (x (m 1 n ) x (m) i := { ξ falls i = n, x (m 1) i+1 i = 0, 1,..., n Der Remez-Algorithmus TU Bergakademie Freiberg, WS 2008/09
16 Approximationstheorie 96 Bemerkung 3.5 Damit ist der sog. einfache Remez-Algorithmus beschrieben. Wenn man alle Punkte durch bessere ersetzen will, geht man bei den übrigen Punkten entsprechend vor. Satz 3.6 Sei V ein n-dimensionaler Haarscher Unterraum von C[a, b]. Dann konvergiert die vom Remez-Algorithmus erzeugte Folge von Näherungslösungen {u (m) } gegen die Bestapproximation. 3.2 Der Remez-Algorithmus TU Bergakademie Freiberg, WS 2008/09
ε δ Definition der Stetigkeit.
ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x
27 Taylor-Formel und Taylor-Entwicklungen
136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen
Nichtlineare Gleichungssysteme
Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische
6. Übungsblatt zur Mathematik I für Maschinenbau
Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 6. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 2/ 25..-.2. Aufgabe G (Lineare Gleichungssysteme)
4. Vektorräume und Gleichungssysteme
technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume
Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker
Vorkurs Mathematik für Wirtschaftsingenieure und Wirtschaftsinformatiker Übungsblatt Musterlösung Fachbereich Rechts- und Wirtschaftswissenschaften Wintersemester 06/7 Aufgabe (Definitionsbereiche) Bestimme
Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung
Numerische Integration und Differentiation
Einführung Grundlagen Bemerkung (Numerische Mathematik) a) Im engeren Sinn: zahlenmäßige Auswertung mathematischer Zusammenhänge z B Lösung von linearen und nichtlinearen Gleichungssystemen Numerische
18 Höhere Ableitungen und Taylorformel
8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a
Iterative Verfahren, Splittingmethoden
Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem
Kapitel 5. Stetige Funktionen 5.1. Stetigkeit
Kapitel 5. Stetige Funktionen 5.1. Stetigkeit Reelle Zahlen sind ideale Objekte, die es uns ermöglichen, eine transparente und leistungsfähige Theorie aufzubauen. Ein Computer kann jedoch nur mit Approximationen
5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21
5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11
4 Elementare Vektorraumtheorie
4. ELEMENTARE VEKTORRAUMTHEORIE 51 4 Elementare Vektorraumtheorie Im folgenden sei K stets ein Körper. Definition. (i) Eine homogene Gleichung in den Unbekannten ξ 1,..., ξ n ist ein Ausdruck der Gestalt
3 Interpolation und Approximation
In dem ersten großen Kapitel beschäftigen wir uns mit der Frage, wie eine Reihe von Daten (z.b. aus physikalischen Messungen, experimentelle Beobachtungen, Börse, etc.) durch eine möglichst einfache Funktion
Klassifikation von partiellen Differentialgleichungen
Kapitel 2 Klassifikation von partiellen Differentialgleichungen Die meisten partiellen Differentialgleichungen sind von 3 Grundtypen: elliptisch, hyperbolisch, parabolisch. Betrachte die allgemeine Dgl.
2. Stetige lineare Funktionale
-21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn
Funktionsgrenzwerte, Stetigkeit
Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn
Dierentialgleichungen 2. Ordnung
Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:
Thema 10 Gewöhnliche Differentialgleichungen
Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;
17. Penalty- und Barriere-Methoden
H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende
Kapitel VI. Euklidische Geometrie
Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und
Differentialgleichungen
Kapitel Differentialgleichungen Josef Leydold Mathematik für VW WS 05/6 Differentialgleichungen / Ein einfaches Modell (Domar) Im Domar Wachstumsmodell treffen wir die folgenden Annahmen: () Erhöhung der
2 Euklidische Vektorräume
Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,
Lösungsvorschläge zum 14. Übungsblatt.
Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine
gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind
Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl
Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v
Kap 1: VEKTORRÄUME Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung ϕ : I X, i ϕ(i) = x i, wobei die Menge I in diesem Zusammenhang auch Indexmenge genannt wird. Man schreibt vereinfacht
Mathematik für Bauingenieure
Mathematik für Bauingenieure von Kerstin Rjasanowa 1. Auflage Mathematik für Bauingenieure Rjasanowa schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Hanser München 2006 Verlag C.H.
Lösungsvorschlag zu den Hausaufgaben der 8. Übung
FAKULTÄT FÜR MATHEMATIK Prof Dr Patrizio Ne Frank Osterbrink Johannes Lankeit 9503 Lösungsvorschlag zu den Hausaufgaben der 8 Übung Hausaufgabe : Beweise den Satz über die Parallelogrammgleichung Sei H
Zahlen und Gleichungen
Kapitel 2 Zahlen und Gleichungen 21 Reelle Zahlen Die Menge R der reellen Zahlen setzt sich zusammen aus den rationalen und den irrationalen Zahlen Die Mengen der natürlichen Zahlen N, der ganzen Zahlen
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter
Lineare Gleichungssysteme
Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder
Mathematik für Anwender I. Beispielklausur I mit Lösungen
Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.
Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion :
Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x, D = R, heißt Quadratfunktion. Wertetabelle : x 0 0,5 1 3 4 0,5 1
6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1966/1967 Aufgaben und Lösungen
6. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Saison 1966/1967 Aufgaben und Lösungen 1 OJM 6. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit
x 0 0,5 1 2 3 4 0,5 1 2. Die Quadratfunktion ist für x 0 streng monoton fallend und für x 0 streng monoton steigend.
Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x 2, D = R, heißt Quadratfunktion. Ihr Graph heißt Normalparabel. Wertetabelle
Optimalitätskriterien
Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen
Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2
Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 11 Blatt Die zu optimierende Zielfunktion ist der Abstand zum Ursprung. Ein bekannter Trick (Vereinfachung der Rechnung) besteht darin, das Quadrat
Die Taylorreihe einer Funktion
Kapitel 6 Die Taylorreihe einer Funktion Dieser Abschnitt beschäftigt sich mit Taylorreihen, Taylorpolynomen und der Restgliedabschätzung für Taylorpolynome. Die Taylorreihe einer reellen Funktion ist
Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla
Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Sätze über Konvexität von Kapitel 4.7 bis 4.10 Theorem 4.7-1. Sei U ein konvexer Unterraum eines normierten Vektorraums. Dann
7 Die Determinante einer Matrix
7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =
Vorlesung. Funktionen/Abbildungen 1
Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.
7.2.1 Zweite partielle Ableitungen
72 72 Höhere Ableitungen 72 Höhere Ableitungen Vektorwertige Funktionen sind genau dann differenzierbar, wenn ihre Koordinatenfunktionen differenzierbar sind Es ist also keine wesentliche Einschränkung,
Analysis I. Vorlesung 9. Reihen
Prof. Dr. H. Brenner Osnabrück WS 20/204 Analysis I Vorlesung 9 Reihen Wir haben in der siebten Vorlesung gesagt, dass man eine Dezimalentwicklung, also eine (unendliche) Ziffernfolge mit Ziffern zwischen
Testvorbereitung: Integrierender Faktor
Testvorbereitung: Integrierender Faktor Markus Nemetz, [email protected], TU Wien,.02.2007 Voraussetzung: Kenntnis der exakten Differentialgleichungen! Theoretische Grundlagen Eine nicht exakte
Klausur zur Vordiplom-Prüfung
Technische Universität Hamburg-Harburg SS 25 Arbeitsbereich Mathematik Dr. Jens-Peter M. Zemke Klausur zur Vordiplom-Prüfung Numerische Verfahren 22. Juli 25 Sie haben 9 Minuten Zeit zum Bearbeiten der
Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.
Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:
1. Klausur. für bau immo tpbau
1. Klausur Höhere Mathematik I/II für bau immo tpbau Wichtige Hinweise Die Bearbeitungszeit beträgt 120 Minuten. Verlangt und gewertet werden alle 6 Aufgaben. Bei Aufgabe 1 2 sind alle Lösungswege und
Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 +
8 Reihen 38 8 Reihen Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe a 0 + a + a 2 + zu bilden. Wir wollen nun erklären, was wir darunter verstehen wollen. Zunächst kann man die
Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus
Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus Max Zoller 14. April 8 1 Der klassische euklidische Algorithmus Beispiel: ggt 15, 56? 15 = 1 56 + 49 56 = 1 49 + 7 49 = 7 7 + =
Corinne Schenka Vorkurs Mathematik WiSe 2012/13
4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:
Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum
Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume
Lösen einer Gleichung
Zum Lösen von Gleichungen benötigen wir: mindestens einen Term eine Definition der in Frage kommenden Lösungen (Grundmenge) Die Grundmenge G enthält all jene Zahlen, die als Lösung für eine Gleichung in
4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung
4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung In vielen Anwendungen treten lineare Gleichungssysteme auf, die eine unterschiedliche Anzahl von Gleichungen und Unbekannten besitzen: Ax
Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn
Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum
Höhere Mathematik II
Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Universität der Bundeswehr München Höhere Mathematik II (Beilagen) Univ. Prof. Dr. sc. math. Kurt Marti 2 2 L A TEX-Satz
4. Übungsblatt zur Mathematik I für Maschinenbau
Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen
Zusammenfassung Mathematik 2012 Claudia Fabricius
Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-
3 Nichtlineare Gleichungssysteme
3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )
Matrizen, Determinanten, lineare Gleichungssysteme
Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n
4.7 Der Taylorsche Satz
288 4 Differenziation 4.7 Der Taylorsche Satz Die Differenzierbarkeit, also die Existenz der ersten Ableitung einer Funktion, erlaubt bekanntlich, diese Funktion lokal durch eine affine Funktion näherungsweise
Exponentialfunktion, Logarithmus
Exponentialfunktion, Logarithmus. Die Exponentialfunktion zu einer Basis > 0 Bei Exponentialfunktionen ist die Basis konstant und der Exponent variabel... Die Exponentialfunktion zu einer Basis > 0. Sei
Kapitel 17. Determinanten
Kapitel 17. Determinanten Vorschau: Determinanten Es gibt drei Problemfelder, für die Determinanten von großem Nutzen sind: die formelmäßige Überprüfung der linearen Unabhängigkeit eines Systems von n
Lineare Gleichungssysteme
Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1
Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543
Kapitel 4 Stetigkeit Peter Becker (H-BRS) Analysis Sommersemester 2016 254 / 543 Inhalt Inhalt 4 Stetigkeit Eigenschaften stetiger Funktionen Funktionenfolgen und gleichmäßige Konvergenz Umkehrfunktionen
Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik
Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :
11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16
11. Übung zur Vorlesung Aufgabe 41. Zeige, dass das Polynom (X 2 13)(X 2 17)(X 2 13 17) Z[X] modulo jeder natürlichen Zahl n N eine Nullstelle hat, aber keine Nullstelle in Z besitzt. Aufgabe 42. Sei p
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der
1 Mengen und Abbildungen
1 MENGEN UND ABBILDUNGEN 1 1 Mengen und Abbildungen Wir starten mit einigen einführenden Definitionen und Ergebnissen aus der Theorie der Mengen und Abbildungen, die nicht nur Grundlage der Linearen Algebra
Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35
Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen
(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2
Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit
Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)
fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................
Lineare Gleichungssysteme
Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein
Minimale Anzahl von Hinweisen bei Sudoku
Minimale Anzahl von Hinweisen bei Sudoku Sascha Kurz [email protected] (basierend auf Arbeiten von Ariane Papke und Gary McGuire et al.) Oberseminar Effizienz dezentraler Strukturen, Bayreuth,
Bestimmung einer ersten
Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,
Beispielaufgaben rund um Taylor
Beispielaufgaben rund um Taylor Mirko Getzin Universität Bielefeld Fakultät für Mathematik 19. Februar 014 Keine Gewähr auf vollständige Richtigkeit und perfekter Präzision aller (mathematischen) Aussagen.
3.3 Eigenwerte und Eigenräume, Diagonalisierung
3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.
Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung
Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung Def. Eine Gleitspiegelung ist eine Spiegelung an einer Geraden (Spiegelachse) verknüpft mit einer Translation parallel zu dieser
Übungen zur Vorlesung MATHEMATIK II
Fachbereich Mathematik und Informatik der Philipps-Universität Marburg Übungen zur Vorlesung MATHEMATIK II Prof. Dr. C. Portenier unter Mitarbeit von Michael Koch Marburg, Sommersemester 2005 Fassung vom
Aufgaben für die 6. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010
Aufgaben für die 6. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 00 6. Wie hat man eine reelle Zahl α > 0 so in a b 3 positive Summanden x, y, z zu zerlegen, damit fx, y x y
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x
x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.
SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten
Analysis I. Vorlesung 16. Funktionenfolgen
Prof. Dr. H. Brenner Osnabrück WS 2014/2015 Analysis I Vorlesung 16 Funktionenfolgen Eine (vertikal gestauchte) Darstellung der ersten acht polynomialen Approximationen der reellen Exponentialfunktion
f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1
III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare
Rekursiv aufzählbare Sprachen
Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben
n 1, n N \ {1}, 0 falls x = 0,
IV.1. Stetige Funktionen 77 IV. Stetigkeit IV.1. Stetige Funktionen Stetige Funktionen R R sind vielen sicher schon aus der Schule bekannt. Dort erwirbt man sich die naive Vorstellung, dass eine stetige
Verfahren zur Berechnung der Exponentialmatrix
Verfahren zur Berechnung der Exponentialmatrix Konrad Waldherr Verfahren zur Berechnung der Exponentialmatrix p.1/14 Motivation In einem Quantensystem ist folgendes Produkt von besonderer Bedeutung: e
Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz
Mathematik für Bioinformatik und Systembiologie - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz WS 2009/10 Universität Freiburg Dieses Vorlesungsskript ist auf der Basis von Vorlesungen
2 Stetigkeit und Differenzierbarkeit
2.1) Sei D R. a) x 0 R heißt Häufungspunkt von D, wenn eine Folge x n ) n N existiert mit x n D,x n x 0 und lim n x n = x 0. D sei die Menge der Häufungspunkte von D. b) x 0 D heißt innerer Punkt von D,
Numerisches Lösen von Gleichungen
Numerisches Gesucht ist eine Lösung der Gleichung f(x) = 0. Das sverfahren ist eine numerische Methode zur Bestimmung einer Nullstelle. Es basiert auf dem Zwischenwertsatz: Satz (1.1.1) Zwischenwertsatz:
Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.
Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33
Analysis I. Universität Stuttgart, WS 05/06 M. Griesemer
Analysis I Universität Stuttgart, WS 05/06 M. Griesemer Inhaltsverzeichnis 1 Grundbegriffe 3 1.1 Aussagenlogik................................. 3 1.2 Mengen.................................... 4 1.3 Relationen...................................
Surjektive, injektive und bijektive Funktionen.
Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Wir beginnen mit der Definition eines metrischen Raumes, der in diesem Kapitel von zentraler Bedeutung ist. x, y, z X (Dreiecksungleichung).
Kapitel 4 Metrische Räume und Stetigkeit 4.1 Metrische und normierte Räume 4.2 Folgen in metrischen Räumen 4.3 Offene und abgeschlossene Mengen 4.4 Stetige Funktionen 4.5 Grenzwerte von Funktionen 4.6
