Hidden Markov Models. Vorlesung Computerlinguistische Techniken Alexander Koller. 8. Dezember 2014

Größe: px
Ab Seite anzeigen:

Download "Hidden Markov Models. Vorlesung Computerlinguistische Techniken Alexander Koller. 8. Dezember 2014"

Transkript

1 idden Markov Models Vorlesung omputerlinguistische Techniken Alexander Koller 8. Dezember 04

2 n-gramm-modelle Ein n-gramm ist ein n-tupel von Wörtern. -Gramme heißen auch Unigramme; -Gramme Bigramme; -Gramme Trigramme n-gramm-modell: Unabhängigkeitsannahme P(w i w... w i- ) = P(w i w i-n+... w i- ) Für Bigramme: P (w,...,w n )=P (w ) ny P (w i w i ) i=

3 Stochastische Prozesse Zufallsprozess oder stochastischer Prozess: Sequenz von Zufallsvariablen X,..., X t. Wert von X i z.b. das i-te Wort im String X i könnte von X,..., X i- abhängig sein Kann dann P(a,..., a t ) ausrechnen: P (a,...,a t )=P (a )... P (a t a,...,a t ) X X X X 4 Kupfer ist ein Metall

4 Markov-Ketten Eine Markov-Kette ist ein stochastischer Prozess mit der Markov-Eigenschaft. Markov-Eigenschaft (von Grad ): P (X i X,...,X i )=P (X i X i ) für alle i > Bigramm-Modelle sind also Markov-Ketten von Grad.

5 Penn Treebank POS-Tags

6 idden Markov Models Generative Geschichte der letzten Woche: Wörter zufällig aus n-gramm-modell P(w n w,,w n- ). Ersetzen wir heute mit neuer generativer Geschichte: Sprache wird durch zweistufigen Prozess erzeugt. Erzeuge zuerst Sequenz von verborgenen Wortarten (partof-speech tags) t,, t T von links nach rechts aus Bigramm- Modell P(t i t i- ). Erzeuge unabhängig davon ein Wort w i aus jedem t i, aus einem Modell P(w i t i ). t t t w w w

7 Frage : Sprachmodellierung Gegeben ein MM und einen String w,, w T, was ist P(w w T )? Berechnen P(w w T ) effizient mit dem Forward-Algorithmus. DT NN VBD NNS IN DT NN The representative put chairs on the table. DT JJ NN VBZ IN DT NN The representative put chairs on the table. p p P(Satz) = p + p

8 Frage : Tagging (aka Decoding) Gegeben ein MM und beobachteten String w,, w T, was ist die wahrscheinlichste Tag- Sequenz t,, t T? Wir berechnen arg max t,...,t T P (t,w,...,t T,w T ) effizient mit dem Viterbi-Algorithmus. DT NN VBD NNS IN DT NN The representative put chairs on the table. DT JJ NN VBZ IN DT NN The representative put chairs on the table. p p

9 Frage : Tagging (aka Decoding) Gegeben ein MM und beobachteten String w,, w T, was ist die wahrscheinlichste Tag- Sequenz t,, t T? Wir berechnen arg max t,...,t T P (t,w,...,t T,w T ) effizient mit dem Viterbi-Algorithmus. DT NN VBD NNS IN DT NN The representative put chairs on the table. DT JJ NN VBZ IN DT NN The representative put chairs on the table. p p

10 Zur Erinnerung NN VVFIN PPER PAV ADV Gefallen findet er daran bestimmt. Gefallen ist er nicht. VVPP VAFIN PPER PTKNEG POS-Tagging ist nicht trivial.

11 Frage a: Lernen Gegeben Menge von POS-Tags und annotierte Trainingsdaten (w,t ),, (w T,t T ), berechne Parameter für MM, die die Likelihood maximieren. Geht effizient mit Maximum-Likelihood-Training plus Smoothing. DT NN VBD NNS IN DT NN The representative put chairs on the table. NNP VBZ VBN TO VB NR Secretariat is expected to race tomorrow. nächstes Mal

12 Frage b: Lernen Gegeben Menge von POS-Tags und unannotierte Trainingsdaten w,, w T, berechne Parameter für MM, die die Likelihood maximieren. Geht mit dem Forward-Backward-Algorithmus (Spezialfall von Expectation Maximization). The representative put chairs on the table. Secretariat is expected to race today. nächstes Mal

13 idden Markov Models Ein idden Markov Model (MM) ist 5-Tupel aus: endliche Menge Q = {q,..., q N } von Zuständen (= POS-Tags) endliche Menge O von möglichen Beobachtungen (= Wörtern) Übergangsw. a ij = P(X t+ = q j X t = q i ) Anfangsw. a 0i = P(X = q i ) Ausgabew. b i (o) = P(Y t = o X t = q i ) Zwei gekoppelte Zufallsprozesse: X t = q i : MM ist zum Zeitpunkt t im Zustand q i Y t = o: MM gibt zum Zeitpunkt t Zeichen o aus NX a ij = j= NX a 0i = i= X b i (o) = oo

14 Ein Beispiel JJ tall AT NN the man 0. boy AT NN AT JJ NN AT JJ NN the man the tall man the tall boy P = * * P = * * * * P = * * * * 0.

15 Varianten MMs in Jurafsky & Martin: statt Anfangsw.: Anfangszustand q 0 + Übergangsw. (äquivalent) zusätzlich Endzustand q F (nicht nötig) MMs in Manning & Schütze: Symbole werden an Kanten ausgegeben statt an Knoten (äquivalent)

16 Beispiel: Eisners Eiscreme Eisner 0. Zustände: Wetter an bestimmtem Tag (ot, old) Beobachtungen: Wie viel Eis hat Jason an diesem Tag gegessen?

17 Beispiel: Eisners Eiscreme Anfangsw. a 0 Eisner Zustände: Wetter an bestimmtem Tag (ot, old) Beobachtungen: Wie viel Eis hat Jason an diesem Tag gegessen?

18 Beispiel: Eisners Eiscreme Anfangsw. a 0 Eisner Übergangsw. a Zustände: Wetter an bestimmtem Tag (ot, old) Beobachtungen: Wie viel Eis hat Jason an diesem Tag gegessen?

19 Beispiel: Eisners Eiscreme Anfangsw. a Eisner Übergangsw. a 0. Zustände: Wetter an bestimmtem Tag (ot, old) Beobachtungen: Wie viel Eis hat Jason an diesem Tag gegessen?

20 Beispiel: Eisners Eiscreme Anfangsw. a Eisner 0. Übergangsw. 0. a 0. Ausgabew. b () Zustände: Wetter an bestimmtem Tag (ot, old) Beobachtungen: Wie viel Eis hat Jason an diesem Tag gegessen?

21 Gemeinsame W. von x, y Gekoppelte Zufallsprozesse im MM definieren unmittelbar Modell für gemeinsame W. P(x, y) von y = y y T Sequenz von Beobachtungen x = x x T Sequenz von verborgenen Zuständen Definiert wie folgt: P (x, y) = P (x) P (y x) = TY P (X t = x t X t = x t ) TY P (Y t = y t X t = y t ) t= t= = TY a xt x t TY b xt (y t ) t= t=

22 Frage : Likelihood P(y) Wie w. ist es, dass Jason Eisner am ersten Tag Eis gegessen hat, am zweiten Tag Eis, am dritten Eis? Wollen berechnen: P(Y =, Y =, Y = ). Leicht zu berechnen: P(,,,,, ). Aber Ausgabe,, kann von vielen Zustands-Sequenzen erzeugt werden. Müssen Summe über alle diese Sequenzen bilden.

23 Naiver Ansatz Berechne P(,,), indem wir über alle Sequenzen von Zuständen summieren. P(,,) = P(,,,,,) + P(,,,,,) + P(,,,,,) P(,,,,,) = Aufsummieren heißt technisch Marginalisierung. P (,, ) = X x,x,x Q P (x,,x,,x, )

24 Das ist zu teuer Naiver Ansatz summiert über exponentiell viele Terme. Das ist zu langsam für die Praxis. Idee: MM über die Zeit auffalten in einem Gitter (engl. trellis): eine Spalte für jeden Zeitpunkt t, repräsentiert X t jede Spalte enthält Kopie jedes Zustandes im MM Kanten von t nach t+ = Übergänge des MM Pfade im Gitter entsprechen Zustands-Sequenzen. d.h. Berechnung von P(w) = Summe über alle Pfade

25 Eiscreme-Gitter t = t = t =

26 Eiscreme-Gitter t = t = t =

27 Eiscreme-Gitter t = t = t =

28 Eiscreme-Gitter t = t = t =

29 Eiscreme-Gitter P = t = t = t =

30 Eiscreme-Gitter P = P = t = t = t =

31 Eiscreme-Gitter P = P = P = t = t = t =

32 Eiscreme-Gitter P = P = P = P 4 = t = t = t =

33 Eiscreme-Gitter P = P = P = P 4 = t = t = t = P(,,) = P + P + P +... =.06

34 Der Forward-Algorithmus Naiver Algorithmus berechnet Zwischenergebnisse mehrfach. Das können wir vermeiden. Forward-W. α t (j): Wie w. ist es, dass MM y,, y t ausgibt und in Zustand X t = q j herauskommt? t (j) = P (y,...,y t,x t = q j ) X = P (y,...,y t,x = x,...,x t = x t,x t = q j ) x,...,x t Damit können wir leicht berechnen: P (y,...,y T )= X qq T (q)

35 Der Forward-Algorithmus t (j) =P (y,...,y t,x t = q j ) Basisfall, t = : (j) =P (y,x = q j )=b j (y ) a 0j Danach für alle t =,, T: t (j) =P (y,...,y t,x t = q j ) NX = P (y,...,y t,x t = q i ) P (X t = q j X t = q i ) P (y t X t = q j ) = i= NX t (i) a ij b j (y t ) i= t () q a j t () t () q q a j q j a j b j (y t ) y t

36 P(,,) mit Forward t (j) =P (y,...,y t,x t = q j ) (j) =b j (y ) a 0j t (j) = NX t (i) a ij b j (y t ) i=

37 P(,,) mit Forward α () = t (j) =P (y,...,y t,x t = q j ) (j) =b j (y ) a 0j t (j) = NX t (i) a ij b j (y t ) i=

38 P(,,) mit Forward α () = α () = t (j) =P (y,...,y t,x t = q j ) (j) =b j (y ) a 0j t (j) = NX t (i) a ij b j (y t ) i=

39 P(,,) mit Forward α () =. 0.8 α () = α () = t (j) =P (y,...,y t,x t = q j ) (j) =b j (y ) a 0j t (j) = NX t (i) a ij b j (y t ) i=

40 P(,,) mit Forward α () =. 0.8 α () = α () =.0 α () = t (j) =P (y,...,y t,x t = q j ) (j) =b j (y ) a 0j t (j) = NX t (i) a ij b j (y t ) i=

41 P(,,) mit Forward α () =. 0.8 α () =.04 α () = α () =.0 α () = t (j) =P (y,...,y t,x t = q j ) (j) =b j (y ) a 0j t (j) = NX t (i) a ij b j (y t ) i=

42 P(,,) mit Forward α () =. 0.8 α () =.04 α () = α () =.0 α () =.05 α () = t (j) =P (y,...,y t,x t = q j ) (j) =b j (y ) a 0j t (j) = NX t (i) a ij b j (y t ) i=

43 P(,,) mit Forward α () =. 0.8 α () =.04 α () =.0 0. α () = P(,,) = α () + α () =.06 α () =.05 α () = t (j) =P (y,...,y t,x t = q j ) (j) =b j (y ) a 0j t (j) = NX t (i) a ij b j (y t ) i=

44 Frage : Tagging Gegeben Beobachtungen y,, y T, was ist wahrscheinlichste Zustandssequenz x,, x T? Maximale W.: max P (x,...,x T y,...,y T ) x,...,x T Wir interessieren uns v.a. für argmax: arg max x,...,x T P (x,...,x T y,...,y T ) P (x,...,x T,y,...,y T ) = arg max x,...,x T P (y,...,y T ) = arg max x,...,x T P (x,...,x T,y,...,y T )

45 Naive Lösung P = P = P = P 4 = t = t = t = max P (x,,x,,x, ) x,x,x =0.0 arg max x,x,x P (x,,x,,x, ) =,,

46 Machen wir genau wie eben Likelihood: P(y) Forward-Algorithmus Tagging: argmax P(x,y) Viterbi-Algorithmus X x,...,x T P (x,...,x T,y,...,y T ) arg max x,...,x T P (x,...,x T,y,...,y T ) t(j) = X x,...,x t P (y,...,y t,x,...,x t,x t = q j ) V t (j) = max x,...,x t P (y,...,y t,x,...,x t,x t = q j ) P (y) = X qq T (q) max x P (x, y) = max V T (q) qq

47 Der Viterbi-Algorithmus V t (j) = max P (y,...,y t,x,...,x t,x t = q j ) x,...,x t Basisfall, t = : V (j) =b j (y ) a 0j Danach für alle t =,, T: V t (j) = N max i= V t (i) a ij b j (y t ) t () q a j t () q a j q j t () q a j y t b j (y t )

48 Viterbi: Beispiel V () =. 0. V () = V () =.0 0. V () =.0 V () =.048 V () =.00 max P (x,,x,,x, ) x,x,x = V t (j) = max P (y,...,y t,x,...,x t,x t = q j ) x,...,x t V t (j) = N max i= V t (i) a ij b j (y t )

49 Backpointer Sobald wir alle V t (j) ausgerechnet haben, wollen wir eine Zustandssequenz x mit max. W. P(y x) ausrechnen. Merken uns während Berechnung von V t (j) für jedes (t,j), für welches i das Maximum erreicht wurde Backpointer bp t (j). Mit bp beste Sequenz x von rechts nach links ausrechnen: x T = arg max q V T (q) x t = bp t+ (x t+ ) für t = T-,,

50 Viterbi: Beispiel V () =. 0. V () = V () =.0 0. V () =.0 V () =.048 V () =.00 max P (x,,x,,x, ) x,x,x =0.0 arg max P (x,,x,,x, ) x,x,x =,, V t (j) = max P (y,...,y t,x,...,x t,x t = q j ) x,...,x t V t (j) = N max i= V t (i) a ij b j (y t )

51 Laufzeit Forward und Viterbi haben gleiche Laufzeit, wird vom Induktionsschritt dominiert: V t (j) = N max i= V t (i) a ij b j (y t ) Berechne N T Werte für V t (j). Brauche für jedes (t,j) Iteration über N Vorgänger-Zustände. Gesamt-Laufzeit ist O(N T), d.h. linear in Satzlänge quadratisch in Größe des Tagset

52 Zusammenfassung Markov-Ketten: Automatenbasierte Darstellung von Bigrammen. idden Markov Model: Automatenbasierte Erzeugung von Beobachtungen aus verborgenen Zuständen. eute gesehen: Forward-Algorithmus für Sprachmodellierung Viterbi-Algorithmus für Tagging

Friedrich-Alexander-Universität Professur für Computerlinguistik. Nguyen Ai Huong

Friedrich-Alexander-Universität Professur für Computerlinguistik. Nguyen Ai Huong Part-of-Speech Tagging Friedrich-Alexander-Universität Professur für Computerlinguistik Nguyen Ai Huong 15.12.2011 Part-of-speech tagging Bestimmung von Wortform (part of speech) für jedes Wort in einem

Mehr

Elementare statistische Methoden

Elementare statistische Methoden Elementare statistische Methoden Vorlesung Computerlinguistische Techniken Alexander Koller 28. November 2014 CL-Techniken: Ziele Ziel 1: Wie kann man die Struktur sprachlicher Ausdrücke berechnen? Ziel

Mehr

Aufabe 7: Baum-Welch Algorithmus

Aufabe 7: Baum-Welch Algorithmus Effiziente Algorithmen VU Ausarbeitung Aufabe 7: Baum-Welch Algorithmus Florian Fest, Matr. Nr.0125496 baskit@generationfun.at Claudia Hermann, Matr. Nr.0125532 e0125532@stud4.tuwien.ac.at Matteo Savio,

Mehr

Der Viterbi-Algorithmus.

Der Viterbi-Algorithmus. Der Viterbi-Algorithmus. Eine Erläuterung der formalen Spezifikation am Beispiel des Part-of-Speech Tagging. Kursskript Karin Haenelt, 9..7 (.5.) Einleitung In diesem Skript wird der Viterbi-Algorithmus

Mehr

Part-Of-Speech-Tagging mit Viterbi Algorithmus

Part-Of-Speech-Tagging mit Viterbi Algorithmus Part-Of-Speech-Tagging mit Viterbi Algorithmus HS Endliche Automaten Inna Nickel, Julia Konstantinova 19.07.2010 1 / 21 Gliederung 1 Motivation 2 Theoretische Grundlagen Hidden Markov Model Viterbi Algorithmus

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Hidden Markov Modelle - 2 - Idee Zu klassifizierende Merkmalvektorfolge wurde von einem (unbekannten) System erzeugt. Nutze Referenzmerkmalvektorfolgen um ein Modell Des erzeugenden Systems zu bauen

Mehr

n-gramm-modelle Vorlesung Computerlinguistische Techniken Alexander Koller 1. Dezember 2014

n-gramm-modelle Vorlesung Computerlinguistische Techniken Alexander Koller 1. Dezember 2014 n-gramm-modelle Vorlesung Computerlinguistische Techniken Alexander Koller 1. Dezember 2014 Wahrscheinlichkeit und Sprache Ausgangsfrage: Nächstes Wort vorhersagen. Sprache als Zufallsprozess: Für jede

Mehr

n-gramm-modelle Vorlesung Computerlinguistische Techniken Alexander Koller 17. November 2015

n-gramm-modelle Vorlesung Computerlinguistische Techniken Alexander Koller 17. November 2015 n-gramm-modelle Vorlesung Computerlinguistische Techniken Alexander Koller 17. November 2015 Statistische Modelle Wir möchten W.theorie verwenden, um ein Modell eines generativen Prozesses aus Beobachtungen

Mehr

Algorithmische Bioinformatik

Algorithmische Bioinformatik Algorithmische Bioinformatik Hidden-Markov-Modelle Viterbi - Algorithmus Ulf Leser Wissensmanagement in der Bioinformatik Inhalt der Vorlesung Hidden Markov Modelle Baum, L. E. and Petrie, T. (1966). "Statistical

Mehr

Bayes sche Klassifikatoren. Uwe Reichel IPS, LMU München 16. Juli 2008

Bayes sche Klassifikatoren. Uwe Reichel IPS, LMU München 16. Juli 2008 Bayes sche Klassifikatoren Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 16. Juli 2008 Inhalt Einleitung Grundlagen der Wahrscheinlichkeitsrechnung Noisy-Channel-Modell Bayes sche Klassifikation

Mehr

Sprachsynthese: Part-of-Speech-Tagging

Sprachsynthese: Part-of-Speech-Tagging Sprachsynthese: Part-of-Speech-Tagging Institut für Phonetik und Sprachverarbeitung Ludwig-Maximilians-Universität München reichelu@phonetik.uni-muenchen.de 29. Oktober 2014 Inhalt POS- Markov- Transformationsbasiertes

Mehr

Vorlesung 4 BETWEENNESS CENTRALITY

Vorlesung 4 BETWEENNESS CENTRALITY Vorlesung 4 BETWEENNESS CENTRALITY 101 Aufgabe! Szenario: Sie arbeiten bei einem sozialen Online-Netzwerk. Aus der Netzwerk-Struktur Ihrer Benutzer sollen Sie wichtige Eigenschaften extrahieren. [http://www.fahrschule-vatterodt.de/

Mehr

Programmierkurs Python II

Programmierkurs Python II Programmierkurs Python II Michaela Regneri & tefan Thater FR 4.7 Allgemeine Linguistik (Computerlinguistik) Universität des aarlandes ommersemester 2010 (Charniak, 1997) the dog biscuits N V N V the dog

Mehr

1 Part-of-Speech Tagging

1 Part-of-Speech Tagging 2. Übung zur Vorlesung NLP Analyse des Wissensrohstoes Text im Sommersemester 2008 Dr. Andreas Hotho, Dipl.-Inform. Dominik Benz, Wi.-Inf. Beate Krause 28. Mai 2008 1 Part-of-Speech Tagging 1.1 Grundlagen

Mehr

Part of Speech Tagging. Linguistische Sicht. Carolin Deck

Part of Speech Tagging. Linguistische Sicht. Carolin Deck Part of Speech Tagging Linguistische Sicht Carolin Deck Gliederung 1. Begriffsklärung 2. Vorstellung zwei wichtiger Tagsets (STTS & PTTS) 3. Bedeutung des POS-Tagging für die Sprachwissenschaft 4. Tagzuweisung

Mehr

Hidden Markov Models und DNA-Sequenzen

Hidden Markov Models und DNA-Sequenzen Hidden Markov Models und DNA-Sequenzen Joana Grah Seminar: Mathematische Biologie Sommersemester 2012 Betreuung: Prof. Dr. Matthias Löwe, Dr. Felipe Torres Institut für Mathematische Statistik 28. Juni

Mehr

8. Turingmaschinen und kontextsensitive Sprachen

8. Turingmaschinen und kontextsensitive Sprachen 8. Turingmaschinen und kontextsensitive Sprachen Turingmaschinen (TM) von A. Turing vorgeschlagen, um den Begriff der Berechenbarkeit formal zu präzisieren. Intuitiv: statt des Stacks bei Kellerautomaten

Mehr

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Inhalt Grundlagen aus der Wahrscheinlichkeitsrechnung Hypothesenwahl Optimale Bayes Klassifikator Naiver Bayes Klassifikator

Mehr

Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20

Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche. Suche in Spielbäumen. KI SS2011: Suche in Spielbäumen 1/20 Suche in Spielbäumen Suche in Spielbäumen KI SS2011: Suche in Spielbäumen 1/20 Spiele in der KI Suche in Spielbäumen Spielbäume Minimax Algorithmus Alpha-Beta Suche Einschränkung von Spielen auf: 2 Spieler:

Mehr

Wahrscheinlichkeitstheorie und Naive Bayes

Wahrscheinlichkeitstheorie und Naive Bayes Wahrscheinlichkeitstheorie und Naive Bayes Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 12.05.2011 Caroline Sporleder Naive Bayes (1) Elementare Wahrscheinlichkeitstheorie

Mehr

Alignment-Verfahren zum Vergleich biologischer Sequenzen

Alignment-Verfahren zum Vergleich biologischer Sequenzen zum Vergleich biologischer Sequenzen Hans-Joachim Böckenhauer Dennis Komm Volkshochschule Zürich. April Ein biologisches Problem Fragestellung Finde eine Methode zum Vergleich von DNA-Molekülen oder Proteinen

Mehr

Klausur zur Vorlesung,,Algorithmische Mathematik II

Klausur zur Vorlesung,,Algorithmische Mathematik II Institut für angewandte Mathematik, Institut für numerische Simulation Sommersemester 2015 Prof. Dr. Anton Bovier, Prof. Dr. Martin Rumpf Klausur zur Vorlesung,,Algorithmische Mathematik II Bitte diese

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. NLP-Pipeline. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. NLP-Pipeline. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen NLP-Pipeline Tobias Scheffer Thomas Vanck NLP-Pipeline Folge von Verarbeitungsschritten für Informationsextraktion, Übersetzung,

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Strukturelle Modelle SVMstruct Katharina Morik LS 8 Künstliche Intelligenz Fakultät für Informatik 16.12.2008 1 von 35 Gliederung LS 8 Künstliche Intelligenz Fakultät für

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Wortproblem für kontextfreie Grammatiken

Wortproblem für kontextfreie Grammatiken Wortproblem für kontextfreie Grammatiken G kontextfreie Grammatik. w Σ w L(G)? Wortproblem ist primitiv rekursiv entscheidbar. (schlechte obere Schranke!) Kellerautomat der L(G) akzeptiert Ist dieser effizient?

Mehr

5 Zwei spieltheoretische Aspekte

5 Zwei spieltheoretische Aspekte 5 Zwei spieltheoretische Aspekte In diesem Kapitel wollen wir uns mit dem algorithmischen Problem beschäftigen, sogenannte Und-Oder-Bäume (kurz UOB) auszuwerten. Sie sind ein Spezialfall von Spielbäumen,

Mehr

Lehrstuhl für Computerlinguistik

Lehrstuhl für Computerlinguistik Ruprecht-Karls -Universität Heidelberg Lehrstuhl für Computerlinguistik Hauptseminar: Parsing Leitung: PD Dr. Karin Haenelt Referent: A. S. M. Abdullah Eusufzai Referat zum Thema: Probabilistisches Parsing

Mehr

Nürnberg. Augsburg. München

Nürnberg. Augsburg. München IT T OIT-- @ ß 77 T -13- Fx-111 : F 121 : 121 -: 221 : 221 32 73 T -3- Tx: - I ö - L L T ä F ö F : x : - y - OIT (ß -F O- -- O: 3 : 1 ( y Jö J 2 OIT 3 L! T F: ß: : : : : I 1 x 22 ( x ö 1 - : F * F : @

Mehr

Part-of-Speech- Tagging

Part-of-Speech- Tagging Part-of-Speech- Tagging In: Einführung in die Computerlinguistik Institut für Computerlinguistik Heinrich-Heine-Universität Düsseldorf WS 2004/05 Dozentin: Wiebke Petersen Tagging Was ist das? Tag (engl.):

Mehr

Methoden der KI in der Biomedizin Unsicheres Schließen

Methoden der KI in der Biomedizin Unsicheres Schließen Methoden der KI in der Biomedizin Unsicheres Schließen Karl D. Fritscher Motivation Insofern sich die Gesetze der Mathematik auf die Wirklichkeit beziehen, sind sie nicht sicher. Und insofern sie sich

Mehr

Programmierung 2. Dynamische Programmierung. Sebastian Hack. Klaas Boesche. Sommersemester 2012. hack@cs.uni-saarland.de. boesche@cs.uni-saarland.

Programmierung 2. Dynamische Programmierung. Sebastian Hack. Klaas Boesche. Sommersemester 2012. hack@cs.uni-saarland.de. boesche@cs.uni-saarland. 1 Programmierung 2 Dynamische Programmierung Sebastian Hack hack@cs.uni-saarland.de Klaas Boesche boesche@cs.uni-saarland.de Sommersemester 2012 2 Übersicht Stammt aus den Zeiten als mit Programmierung

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

fsq Ein Abfragesystem für syntaktisch annotierte Baumbanken

fsq Ein Abfragesystem für syntaktisch annotierte Baumbanken fsq Ein Abfragesystem für syntaktisch annotierte Baumbanken SFB 441, Universität Tübingen Syntaktisch annotierte Baumbanken Ursprünglich: Morphosyntaktische Tags (POS) Anreicherung mit syntaktischen Informationen

Mehr

Die Varianz (Streuung) Definition

Die Varianz (Streuung) Definition Die (Streuung) Definition Diskrete Stetige Ang., die betrachteten e existieren. var(x) = E(X EX) 2 heißt der Zufallsvariable X. σ = Var(X) heißt Standardabweichung der X. Bez.: var(x), Var(X), varx, σ

Mehr

Part-of-Speech Tagging. Stephanie Schuldes

Part-of-Speech Tagging. Stephanie Schuldes Part-of-Speech Tagging Stephanie Schuldes 05.06.2003 PS Erschließen von großen Textmengen Geißler/Holler SoSe 2003 Motivation Ziel: vollständiges Parsing und Verstehen natürlicher Sprache Herantasten durch

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

SLAM. Simultaneous Localization and Mapping. KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann

SLAM. Simultaneous Localization and Mapping. KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann SLAM Simultaneous Localization and Mapping KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann Simultaneous Localization And Mapping SLAM Problematik SLAM Arten SLAM Methoden: (E)KF SLAM GraphSLAM Fast

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 20.12.07 Bastian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Rückblick Semi-Thue-Systeme Ein Semi-Thue-System besteht

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Diskrete Verteilungen

Diskrete Verteilungen KAPITEL 6 Disrete Verteilungen Nun werden wir verschiedene Beispiele von disreten Zufallsvariablen betrachten. 1. Gleichverteilung Definition 6.1. Eine Zufallsvariable X : Ω R heißt gleichverteilt (oder

Mehr

11 Stochastisches Integral und Itô-Formel

11 Stochastisches Integral und Itô-Formel 11 Stochastisches Integral und Itô-Formel Im diskreten Finanzmodell bei selbstfinanzierender Strategie ϑ = {ϑ n n=,...,n mit Anfangswert V gilt : Ṽ n ϑ = V + n ϑ T j S j. j=1 Dieser diskontierte Wertprozess

Mehr

Lineare Programmierung

Lineare Programmierung Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS4 Slide 1 Wissensbasierte Systeme Vorlesung 4 vom 03.11.2004 Sebastian Iwanowski FH Wedel WBS4 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien

Mehr

Textmining Klassifikation von Texten Teil 1: Naive Bayes

Textmining Klassifikation von Texten Teil 1: Naive Bayes Textmining Klassifikation von Texten Teil 1: Naive Bayes Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten 1: Naive

Mehr

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie

1 Einführung. 2 Typ-0- und Typ-1-Sprachen. 3 Berechnungsmodelle. 4 Unentscheidbarkeit. 5 Unentscheidbare Probleme. 6 Komplexitätstheorie 1 Einführung 2 Typ-0- und Typ-1-Sprachen 3 Berechnungsmodelle 4 Unentscheidbarkeit 5 Unentscheidbare Probleme 6 Komplexitätstheorie 15 Ziele vgl. AFS: Berechnungsmodelle für Typ-0- und Typ-1-Sprachen (Nicht-)Abschlußeigenschaften

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Statistische Verfahren:

Statistische Verfahren: Statistische Verfahren: Hidden-Markov-Modelle für Multiples Alignment Stochastic Context-Free Grammars (SCFGs) für RNA-Multiples Alignment Übersicht 1 1. Hidden-Markov-Models (HMM) für Multiples Alignment

Mehr

Automatisches Lernen von Regeln zur quellseitigen Umordnung

Automatisches Lernen von Regeln zur quellseitigen Umordnung Automatisches Lernen von Regeln zur quellseitigen Umordnung E I N A N S AT Z V O N D M I T R I Y G E N Z E L Duwaraka Murugadas Fortgeschrittene Methoden der statistischen maschinellen Übersetzung (Miriam

Mehr

Simulation von Zufallsvariablen und Punktprozessen

Simulation von Zufallsvariablen und Punktprozessen Simulation von Zufallsvariablen und Punktprozessen 09.11.2009 Inhaltsverzeichnis 1 Einleitung 2 Pseudozufallszahlen 3 Punktprozesse Zufallszahlen Definition (Duden): Eine Zufallszahl ist eine Zahl, die

Mehr

Geometrische Brownsche Bewegung und Brownsche Brücke

Geometrische Brownsche Bewegung und Brownsche Brücke Seminar: Grundlagen der Simulation und Statistik von dynamischen Systemen SoSe 2012 Geometrische Brownsche Bewegung und Brownsche Brücke Korinna Griesing 10. April 2012 Dozentin: Prof. Dr. Christine Müller

Mehr

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden: Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es

Mehr

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y

In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y Approximationen In der Praxis werden wir häufig mit relativ komplexen Funktionen konfrontiert. y y = f (x) x Um das Arbeiten mit einer komplizierten Funktion zu vermeiden, können wir versuchen, diese Funktion

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Registermaschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Registermaschinen Algorithmusbegriff konkretisiert formale Beschreibung

Mehr

Monte Carlo Methoden in Kreditrisiko-Management

Monte Carlo Methoden in Kreditrisiko-Management Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n i=1 L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen

Mehr

Brückenkurs Elementarmathematik

Brückenkurs Elementarmathematik Brückenkurs Elementarmathematik IV. Ungleichungen November 13, 2013 Inhalt 1 Ungleichungen 2 Umformungen von Ungleichungen 2.1 Äquivalenzumformungen 2.2 Addition und Multiplikation von Ungleichungen 3

Mehr

23.1 Constraint-Netze

23.1 Constraint-Netze Grundlagen der Künstlichen Intelligenz 1. April 2015 2. Constraint-Satisfaction-Probleme: Constraint-Netze Grundlagen der Künstlichen Intelligenz 2. Constraint-Satisfaction-Probleme: Constraint-Netze Malte

Mehr

Simulationsmethoden in der Bayes-Statistik

Simulationsmethoden in der Bayes-Statistik Simulationsmethoden in der Bayes-Statistik Hansruedi Künsch Seminar für Statistik, ETH Zürich 6. Juni 2012 Inhalt Warum Simulation? Modellspezifikation Markovketten Monte Carlo Simulation im Raum der Sprungfunktionen

Mehr

QUALITY-APPs Applikationen für das Qualitätsmanagement. Probieren und Studieren

QUALITY-APPs Applikationen für das Qualitätsmanagement. Probieren und Studieren QUALITY-APPs Applikationen für das Qualitätsmanagement Probieren und Studieren Der Netzplan (Activity Network Diagram AND) Planung und Steuerung erfolgreicher Projekte Autor: Jürgen P. Bläsing (nach einer

Mehr

Customization (Zuschneiden)

Customization (Zuschneiden) Customization (Zuschneiden) Anpassen der (Graph)Datenstruktur an die Anwendung. I Ziel: schnell, kompakt. I benutze Entwurfsprinzip: make the common case fast I Listen vermeiden Mögliches Problem: Software-Engineering-Alptraum

Mehr

Probe-Klausur zur Vorlesung Multilinguale Mensch-Maschine Kommunikation 2013

Probe-Klausur zur Vorlesung Multilinguale Mensch-Maschine Kommunikation 2013 Probe-Klausur zur Vorlesung Multilinguale Mensch-Maschine Kommunikation 2013 Klausurnummer Name: Vorname: Matr.Nummer: Bachelor: Master: Aufgabe 1 2 3 4 5 6 7 8 max. Punkte 10 5 6 7 5 10 9 8 tats. Punkte

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block

Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block Inhalt: InsertionSort BubbleSort QuickSort Block M.: "Java-Intensivkurs - In 14 Tagen lernen Projekte erfolgreich zu realisieren", Springer-Verlag 2007 InsertionSort I Das Problem unsortierte Daten in

Mehr

Algorithmen mit konstantem Platzbedarf: Die Klasse REG

Algorithmen mit konstantem Platzbedarf: Die Klasse REG Algorithmen mit konstantem Platzbedarf: Die Klasse REG Sommerakademie Rot an der Rot AG 1 Wieviel Platz brauchen Algorithmen wirklich? Daniel Alm Institut für Numerische Simulation Universität Bonn August

Mehr

abgeschlossen unter,,,, R,

abgeschlossen unter,,,, R, Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

VERSICHERUNGEN AUF MEHRERE LEBEN. Marta Ja lowiecka. 23 Januar 2009

VERSICHERUNGEN AUF MEHRERE LEBEN. Marta Ja lowiecka. 23 Januar 2009 VERSICHERUNGEN AUF MEHRERE LEBEN Marta Ja lowiecka 23 Januar 2009 1 1 Einführung Im Folgenden werden betrachtet- basierend auf Modellen und Formeln für einfache Versicherungen auf ein Leben- verschiedene

Mehr

Gewöhnliche Dierentialgleichungen

Gewöhnliche Dierentialgleichungen Gewöhnliche Dierentialgleichungen sind Gleichungen, die eine Funktion mit ihren Ableitungen verknüpfen. Denition Eine explizite Dierentialgleichung (DGL) nter Ordnung für die reelle Funktion t x(t) hat

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

Matrizen. Aufgabe 1. Sei f R 2 R 3 definiert durch. x y x Berechnen Sie die Matrix Darstellung von f. Lösung von Aufgabe 1.

Matrizen. Aufgabe 1. Sei f R 2 R 3 definiert durch. x y x Berechnen Sie die Matrix Darstellung von f. Lösung von Aufgabe 1. Matrizen Aufgabe Sei f R R 3 definiert durch ( x 3y x f x + y y x Berechnen Sie die Matrix Darstellung von f Lösung von Aufgabe ( f ( f 3 Die Matrix Darstellung von f ist somit A 3 Aufgabe Eine lineare

Mehr

Schritte plus Alpha 1: Transkriptionen der Hörtexte. Lektion: Guten Tag. Track 2 Lektion 1 A/a, Ananas, Apfel, Ampel

Schritte plus Alpha 1: Transkriptionen der Hörtexte. Lektion: Guten Tag. Track 2 Lektion 1 A/a, Ananas, Apfel, Ampel Schritte plus Alpha : Transkriptionen der Hörtexte Lektion: Guten Tag Track Lektion A/a, Ananas, Apfel, Ampel Track Lektion N/n, Nase, Nudeln, Nuss Track Lektion E/e, Ente, Erdbeere, Essen Track 5 Lektion

Mehr

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen 5.1 Lernen mit Entscheidungsbäumen Falls zum Beispiel A = {gelb, rot, blau} R 2 und B = {0, 1}, so definiert der folgende Entscheidungsbaum eine Hypothese H : A B (wobei der Attributvektor aus A mit x

Mehr

Summe von Zufallsvariablen

Summe von Zufallsvariablen Summe von Zufallsvariablen Gegeben sind die unabhängigen, gleichverteilten Zufallsvariablen X und Y mit den Wahrscheinlichkeitsdichten f() und g(). { für f() = g() = sonst Wir interessieren uns für die

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Wissensrepräsentation und -verarbeitung: Wissensbasis Kontextwissen Problemdarstellung fallspezifisches Wissen repräsentiert

Mehr

Kapitel 9. Hidden Markov Modelle (HMMs)

Kapitel 9. Hidden Markov Modelle (HMMs) Kapitel 9 Hidden Markov Modelle (HMMs) p. 1/24 Kapitel 9 Hidden Markov Modelle (HMMs) Markov-Ketten Von der Markov-Kette zum HMM HMM Topologien Drei klassische Algorithmen für HMMs HMMs in der Praxis und

Mehr

A.12 Nullstellen / Gleichungen lösen

A.12 Nullstellen / Gleichungen lösen A12 Nullstellen 1 A.12 Nullstellen / Gleichungen lösen Es gibt nur eine Hand voll Standardverfahren, nach denen man vorgehen kann, um Gleichungen zu lösen. Man sollte in der Gleichung keine Brüche haben.

Mehr

Schriftlicher Test Teilklausur 2

Schriftlicher Test Teilklausur 2 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2009 / 2010 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

KI-Kolloquium am 23.10.2006. Part-of-Speech-Tagging für Deutsch. Referent: Stefan Bienk

KI-Kolloquium am 23.10.2006. Part-of-Speech-Tagging für Deutsch. Referent: Stefan Bienk Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für Informatik 8 (KI) Prof. Dr. H. Stoyan KI-Kolloquium am 23.10.2006 Part-of-Speech-Tagging für Deutsch Referent: Stefan Bienk Übersicht Aufgabenstellung

Mehr

Classpad 300 / Classpad 330 (Casio) Der Taschenrechner CAS:

Classpad 300 / Classpad 330 (Casio) Der Taschenrechner CAS: Der Taschenrechner CAS: Classpad 300 / Classpad 330 (Casio) Übersicht: 1. Katalog (wichtige Funktionen und wie man sie aufruft) 2. Funktionen definieren (einspeichern mit und ohne Parameter) 3. Nullstellen

Mehr

Netzwerkmodelle. Seminar Netzwerkanalyse. Sommersemester 2005 Jasmine Metzler

Netzwerkmodelle. Seminar Netzwerkanalyse. Sommersemester 2005 Jasmine Metzler Netzwerkmodelle Seminar Netzwerkanalyse Sommersemester 2005 Jasmine Metzler 1 Grundlegende Modelle Das Graph Modell (G n,p ) Definition Verschiedene Modelle Small World Modell Lokale Suche Power Law Modelle

Mehr

Berufliches Gymnasium Gelnhausen

Berufliches Gymnasium Gelnhausen Berufliches Gymnasium Gelnhausen Fachbereich Mathematik Die inhaltlichen Anforderungen für das Fach Mathematik für Schülerinnen und Schüler, die in die Einführungsphase (E) des Beruflichen Gymnasiums eintreten

Mehr

ITWM Workshopserie 2012: Mehrfaktor-Zinsmodelle und ihre Implementation

ITWM Workshopserie 2012: Mehrfaktor-Zinsmodelle und ihre Implementation ITWM Workshopserie 2012: Mehrfaktor-Zinsmodelle und ihre Implementation Aspekte des 2-Faktor-Hull-White-Modells 8. November 2012 Inhalt Weshalb ein Mehrfaktor Modell? 2-Faktor-Modelle Das ursprüngliche

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

14. Rot-Schwarz-Bäume

14. Rot-Schwarz-Bäume Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).

Mehr

Thema 10 Gewöhnliche Differentialgleichungen

Thema 10 Gewöhnliche Differentialgleichungen Thema 10 Gewöhnliche Differentialgleichungen Viele Naturgesetze stellen eine Beziehung zwischen einer physikalischen Größe und ihren Ableitungen (etwa als Funktion der Zeit dar: 1. ẍ = g (freier Fall;

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

Seminar Kompressionsalgorithmen Huffman-Codierung, arithmetische Codierung

Seminar Kompressionsalgorithmen Huffman-Codierung, arithmetische Codierung Huffman-Codierung, arithmetische Codierung Theoretische Informatik RWTH-Aachen 4. April 2012 Übersicht 1 Einführung 2 3 4 5 6 Einführung Datenkompression Disziplin,die Kompressionsalgorithmen entwirft

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der

Mehr

Maschinelles Lernen in der Bioinformatik

Maschinelles Lernen in der Bioinformatik Maschinelles Lernen in der Bioinformatik Spezialvorlesung Modul 10-202-2206 (Fortgeschrittene Methoden in der Bioinformatik) VL 2 HMM und (S)CFG Jana Hertel Professur für Bioinformatik Institut für Informatik

Mehr

liefern eine nicht maschinenbasierte Charakterisierung der regulären

liefern eine nicht maschinenbasierte Charakterisierung der regulären Reguläre Ausdrücke 1 Ziel: L=L M für NFA M L=L(r) für einen regulären Ausdruck r Reguläre Ausdrücke über einem Alphabet Σ Slide 1 liefern eine nicht maschinenbasierte Charakterisierung der regulären Sprachen

Mehr

Entwicklung eines Distanzmaßes zwischen Bildern über dem Modell der Fields of Visual Words

Entwicklung eines Distanzmaßes zwischen Bildern über dem Modell der Fields of Visual Words Entwicklung eines Distanzmaßes zwischen Bildern über dem Modell der Fields of Visual Words André Viergutz 1 Inhalt Einführung. Einordnung der Arbeit in die zugrunde liegenden Konzepte Das Modell der Fields

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

10. Vorlesung. Grundlagen in Statistik. Seite 291. Martin-Luther-Universität Halle/Wittenberg

10. Vorlesung. Grundlagen in Statistik. Seite 291. Martin-Luther-Universität Halle/Wittenberg . Vorlesung Grundlagen in Statistik Seite 29 Beispiel Gegeben: Termhäufigkeiten von Dokumenten Problemstellung der Sprachmodellierung Was sagen die Termhäufigkeiten über die Wahrscheinlichkeit eines Dokuments

Mehr