Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Größe: px
Ab Seite anzeigen:

Download "Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg"

Transkript

1 Institut für hysikalische heie lbert-ludwigs-universität Freiburg Lösungen zu 7. Übungsblatt zur orlesung hysikalische heie I SS 04 rof. Dr. Bartsch 7. L Berechnen Sie aus der olaren Standardentropie des Neons bei 98 K die olare ntropie des Neons bei 500 K. Das oluen sowie, werden als konstant vorausgesetzt. ( S (Neon) 46.33JK ol, (Neon).49JK ol ) 98, Lösung: s gilt: du dq dw dq d Bei konstante oluen ist d 0, es folgt: dq du, ußerde gilt: U, dq ds ds dq du d n,d ds,d Integration: S500, 500K ds, S98, 98K d 500K S S ln 98K , 500K S S ln 98K , 500 S 46.33JK ol.49jk ol ln 5.79JK ol ol ethan H 4 (ideales Gas) werden von 5 auf 00 erhitzt und gleichzeitig von.0 at auf 0.0 at kopriiert. a) Berechnen Sie S (für das Syste). Hinweis: Leiten Sie zunächst einen usdruck für die Änderung der ntropie it de Druck ausgehend vo. Hauptsatz und der Definition der nthalpie her. Nutzen Sie dann die atsache, dass die ntropie eine Zustandfunktion ist. b) Läuft dieser rozess spontan ab? Begründen Sie Ihre ntwort it einer Rechnung.

2 Lösung: Da die ntropie eine Zustandsfunktion ist, ist der ndzustand vo Weg unabhängig. Das heißt, an kann den organg aufteilen in eine isobare eperaturerhöhung und eine isothere Druckerhöhung. S sys S sys S sys =? Wir berechnen zunächst die ntropieänderung für die isothere Kopression. Dazu lösen wir den. Hauptsatz nach der Wäre q auf, dq du dw du d, und ersetzen dann du durch dh du d du d d du dh d d Wir erhalten aus de ersten Haupsatz für dq. dq dh d. it der Definition der Wärekapazität bei konstante Druck H erhalten wir dh d n d, Dait ergibt sich für die ntropieänderung der folgende usdruck: dq dh d n,d d ds

3 Integration: n ds d d S, S Ideales Gasgesetz: nr nr, nr S d d n S n, ln nr ln lternative Herleitung: S n, ln nr ln Da der zweite Schritt als isothere Druckerhöhung ablaufen soll, uss das oluen in den Druck ugerechnet werden. Ideales Gasgesetz: nr nr nr / nr / S n, ln nr ln n, ln nr ln nr ln n, Rln nr ln n ln nr ln,, für ein ideales, gewinkeltes fünfatoiges Gas: Zahl der Freiheitsgrade FG: FG 3 N 35 5 s sind 3 ranslations- (/ R), 3 Rotations- (/ R) und 9 Schwingungsfreiheitsgrade ( R) angeregt. Für, folgt also:, 3 R 3 R 9R R ußerde gilt, dass für ein ideales Gas,, R ist, also folgt:, 3R 373K 98K S.9JK S.00ol JK ol ln.00ol 8.34JK ol ln 0at at b) Die Reaktion kann trotz des negativen orzeichens ablaufen, wenn die Gesatentropieänderung (Syste und Ugebung) größer 0 ist. Überprüfung durch Berechung der ntropieänderung der Ugebung. 3

4 ) Isobare eperaturerhöhung qsys n, qu Wir nehen an, dass die Wärekapazität der Ugebung unendlich groß ist, so dass bei der ufnahe oder bgabe einer Wäreenge q u sich die Ugebungsteperatur nicht ändert. Dait ergibt sich für die ntropieänderung der Ugebung bei eilschritt ). q n ( ).00 ol u p, Su 38.34J K 98K ol 75 K 54.4JK Für die isothere Kopression (eilschritt ) gilt: U q w 0 (ideales Gas!) q sys w nr ln nr ln, wobei i letzten Schritt die ideale Glasgleichung verwendet wurde. Dait ergibt sich für die entsprechende ntropieänderung der Ugebung: q nr ln( ).00 ol 373 K 8.34J K S 98K u u ol ln(/ 0) 6.35JK Dait erhalten wir für die Änderung der ntropie der Ugebung: S S S 7.95 JK. u u u Für die Gesatentropieänderung ergibt sich dait. Sges Ssys Su.9JK 7.95 JK 6.66JK 0 Der rozess läuft folglich freiwillig ab. 7.3 L Zu 00 g Wasser von 90 gibt an in eine isolierten Gefäß a) 00 g Wasser von 0. b) 00 g is von 0. Berechnen Sie jeweils die Änderung der ntropie. Der Druck sei konstant ( = at). erwenden Sie folgende Werte:,,Wasser = 75.3 J ol - K -, fush (is) = 6.0 kj ol - 4

5 Lösung: a) s ist d 0, woraus folgt: dh q d 0 q n Wäreengen: Kaltes Wasser:,, Wares Wasser: q n,,, n n s gilt: q q,,,,, und n,,,, ischungsteperatur: n n n,, n,, 73.5K 363.5K 38.5K ntropieänderung: S n, ln (vergleiche ufgabe 7.) S n,, ln n,, ln n, ln 00g Stoffenge: n.ol 8gol 38.5K S.ol 75.3JK ol ln 6.9JK 73.5K 363.5K b) Zu Schelzen des ises notwendige Wäreenge: qs n fush q n Wäreenge, die kaltes Wasser aufnit: k,, Gesatwäreenge, die das is aufnit: q qs qk n fush n,, Wäreenge, die wares Wasser abgibt: q n,, n n s gilt: q q,,,,,, und n ischungsteperatur: n n n H n n,,,, fus,,,, H,, fus, 75.3JK ol 73.5K 75.3JK ol 363.5K 600Jol 75.3JK ol 78.4K 5

6 qrev qs nfush ntropieänderung bei Schelzen: S ntropieänderung bei -änderung und d 0 : S S n, ln nfush ntropieänderung: S n,, ln n,, ln n H S n ln fus, 00g Stoffenge: n.ol 8gol.ol 600Jol 78.4K S.ol 75.3JK ol ln 73.5K 73.5K 363.5K S 37.JK 7.4 a) ragen Sie die olare ntropie gegen die eperatur von 0 bis 500 K für H O auf. Zeichnen Sie die Bereiche der festen, flüssigen und gasförigen hase sowie den Schelzpunkt und den Siedepunkt ein. b) Berechnen Sie die Differenz der olaren ntropien von flüssige Wasser und is bei at und -5. Skizzieren Sie dazu zunächst ein Diagra, in de Sie den erlauf der olaren ntropien für Wasser und is gegen die eperatur (-6 bis + ) darstellen. Gegeben sei die olare Schelzenthalpie von Wasser bei 0 und H = 6.0 kj ol - und die Differenz der olaren Wärekapazität a at, fus Schelzpunkt,, = 37.3 J K - ol -. c)berechnen Sie die ntropieänderung des Gesatsystes und diskutieren Sie, welcher Übergang bei -5 freiwillig abläuft. 6

7 Lösung: a) olare ntropie gegen eperatur für H O: gasförig B vap S S flüssig fest fus S [K] S Sd b) olare ntropie gegen eperatur i Bereich von 67 K bis 74 K, wobei sowohl der erlauf des Wassers als auch des ises dargestellt ist: fus S (73K) fus S (68K) Schelzentropie bei 73 K: S 73K 600Jol fuss 73K, 0Jol K 73,5K fus, weil dh dqrev,d 0 fush 73K Kreisprozess zur Berechnung von fuss 68K für d 0 : S 68K S 68K 73K S 73K S 73K 68K fus is, fus Wasser, 73K 68K,is,,Wasser, fuss 68K d fuss 73K d 68K 73K fus 7

8 S 68K d S 73K 73K fus 68K fus,is,,wasser, S 68K d S 73K 73K fus 68K fus, 73K fuss 68K, ln fuss 73K 68K 73K S 68K 37.3Jol K ln.0jol K 68K fus S 68K,3Jol K fus c) ntropieänderung der Ugebung bei 68 K: S 68K Kirchhoffsches Gesetz: H H d R R R, 68K H 68K H 73K d fus fus, 73K fus U fush 68K H 68K 600Jol 37.3Jol K 68K 73K H 68K 584Jol fus 584Jol SU 68K.7Jol K 68K Gesatentropieänderung: Sges 68K fuss 68K SU 68K Sges 68K.3Jol K.7Jol K S 68K 0.4Jol K ges Die Gesatentropieänderung S ges (68K) ist für den Übergang von is nach Wasser negativ. Da freiwillige rozesse ier unter ntropievergrößerung ablaufen, kann bei 68 K nur die ugekehrte Reaktion, also der Übergang von Wasser nach is freiwillig ablaufen. 8

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für hysikalische Cheie lbert-ludwigs-universität Freiburg Lösungen zu 8. Übungsblatt zur Vorlesung hysikalische Cheie I SS 00 rof. Dr. Bartsch 8. (5 unkte) Benzol erstarrt unter at bei 5,5 C;

Mehr

1u = A r = Die relativen Atom-, Molekül- und Ionenmassen. atomare Masseneinheit 1u. relative Atommasse A r :

1u = A r = Die relativen Atom-, Molekül- und Ionenmassen. atomare Masseneinheit 1u. relative Atommasse A r : Die relativen Ato-, Molekül- und Ionenassen atoare Masseneinheit u: u Masse von Kohlenstoffato C u,6655 7 kg relative Atoasse A r : Masse eines Atos A r atoare Masseneinheit u relative Molekülasse M r

Mehr

2. Klausur zur Vorlesung Einführung in die physikalische Chemie für Lehramtskandidaten Modul 4, Wintersemester 05/06

2. Klausur zur Vorlesung Einführung in die physikalische Chemie für Lehramtskandidaten Modul 4, Wintersemester 05/06 . Klausur zur Vorlesung Einführung in die hysikalische Cheie für Lehratskandidaten Modul 4, Winterseester 5/6 3. März 6, 9 5 45 Uhr Nae, Vornae:... Geburtsdatu, -ort:... Matrikelnuer:... Fachseester,.

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

. V2. = p 2 T 1 T 2. Normbedingungen Das Volumen von 1 Mol eines idealen Gases beträgt bei Normbedingungen (1.013 bar, 0 C) Liter.

. V2. = p 2 T 1 T 2. Normbedingungen Das Volumen von 1 Mol eines idealen Gases beträgt bei Normbedingungen (1.013 bar, 0 C) Liter. Wäreausdehnung der Gase LMPG_GASE LABA/B Während bei Flüssigkeiten und Festkörpern die Wäreausdehnung auch von der Art des Stoffes abhängt, ist dies bei Gasen nicht der Fall. Bei konstante Druck und einer

Mehr

25. Adiabatische Expansion eines idealen Gases 1

25. Adiabatische Expansion eines idealen Gases 1 25. Adiabatische Exansion eines idealen Gases 1 25. ADABASHE EXPANSON ENES DEALEN GASES 1. Aufgabe Für Luft als annähernd ideales Gas sollen sowohl die Molwäre bei konstante Druck, d.h.,, als auch das

Mehr

Institut für Abfallwirtschaft und Altlasten, TU-Dresden Seminar Thermische Abfallbehandlung - Veranstaltung 4 - Dampfkraftprozesse

Institut für Abfallwirtschaft und Altlasten, TU-Dresden Seminar Thermische Abfallbehandlung - Veranstaltung 4 - Dampfkraftprozesse Institut für Abfallwirtschaft und Altlasten, TU-Dresden Seinar Therische Abfallbehandlung - Veranstaltung 4 - Dapfkraftprozesse Dresden, 09. Juni 2008 Dipl.- Ing. Christoph Wünsch, Prof. Dr.- Ing. habil.

Mehr

Die Innere Energie U

Die Innere Energie U Die Innere Energie U U ist die Summe aller einem System innewohnenden Energien. Es ist unmöglich, diese zu berechnen. U kann nicht absolut angegeben werden! Differenzen in U ( U) können gemessen werden.

Mehr

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a)

a) Welche der folgenden Aussagen treffen nicht zu? (Dies bezieht sind nur auf Aufgabenteil a) Aufgabe 1: Multiple Choice (10P) Geben Sie an, welche der Aussagen richtig sind. Unabhängig von der Form der Fragestellung (Singular oder Plural) können eine oder mehrere Antworten richtig sein. a) Welche

Mehr

20. Kinetische Gastheorie

20. Kinetische Gastheorie Wärelehre Kinetische Gastheorie 0. Kinetische Gastheorie... behandelt ideale Gase, d.h., die Gasteilchen verhalten sich wie elastische Kugeln it vernachlässigbare Eigenvoluen.! 0.. Gasdruck und Zustandsgleichung

Mehr

Probeklausur STATISTISCHE PHYSIK PLUS

Probeklausur STATISTISCHE PHYSIK PLUS DEPARTMENT FÜR PHYSIK, LMU Statistische Physik für Bachelor Plus WS 2011/12 Probeklausur STATISTISCHE PHYSIK PLUS NAME:... MATRIKEL NR.:... Bitte beachten: Schreiben Sie Ihren Namen auf jedes Blatt; Schreiben

Mehr

Welcher Bewegungsspielraum ist für die beweglichen Auflager der Brücke zu berücksichtigen?

Welcher Bewegungsspielraum ist für die beweglichen Auflager der Brücke zu berücksichtigen? Ü 4. Längendehnung einer Autobahnbrücke Bei 0 beträgt die Länge einer Autobahnbrücke 60. Die eperaturschwankung beträgt -0 i Winter bis zu +4 i Soer. Der Wäredehnungskoeffizient des bei der Brückenkonstruktion

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 8 Lösungsvorschlag

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 8 Lösungsvorschlag T4p: Thermodynamik und Statistische Physik Pro Dr H Ruhl Übungsblatt 8 Lösungsvorschlag 1 Adiabatengleichung Als adiabatische Zustandssänderung bezeichnet man einen thermodynamischen organg, bei dem ein

Mehr

Entmischungsgleichgewichte

Entmischungsgleichgewichte ntischungsgleichgewichte Ideale binäre Mischungen Bei der Behandlung von Mischungserscheinungen in binären ysteen geht an von den beiden betreffenden reinen Koponenten aus. Für den jeweiligen toffengenanteil

Mehr

31. Der im p-v-diagramm angegebene

31. Der im p-v-diagramm angegebene Aufgaben zur allgeeinen Zustandsgleichung. Eine kugelförige Luftblase steigt i Wasser auf. In einer Tiefe von hat sie einen Durchesser von c. Welchen Durchesser hat sie kurz vor Erreichen der Oberfläche?

Mehr

5.2 Thermische Ausdehnung (thermische Zustandsgleichung)

5.2 Thermische Ausdehnung (thermische Zustandsgleichung) 5.2 herische Ausdehnung (therische Zustandsgleichung) Praktisch alle festen, gasförigen und flüssigen Stoffe dehnen sich bei Erwärung bei konstante Druck aus, vergrößern also ihr Voluen. Alle Stoffe lassen

Mehr

Musterlösung zu Übung 7

Musterlösung zu Übung 7 PCI hermodynamik G. Jeschke FS 05 Musterlösung zu Übung 7 08.04.05 a Der Goldbarren wird beim Einbringen in das Reservoir sprunghaft erwärmt. Der Wärmeaustausch erfolgt daher auf irreversiblem Weg. Um

Mehr

7 PHASENGLEICHGEWICHTE UND PHASENÜBERGÄNGE

7 PHASENGLEICHGEWICHTE UND PHASENÜBERGÄNGE -1-7 HASENGLEICHGEWICHE UND HASENÜBERGÄNGE 7.1 Ein-Koponenten-Systee Verdapfen, Gefrieren, oder die Uwandlung von Graphit in Diaant sind Beispiele für hasenüergänge einzelner Koponenten. Noralerweise werden

Mehr

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung

Thermo Dynamik. Mechanische Bewegung (= Arbeit) Wärme (aus Reaktion) maximale Umsetzung Thermo Dynamik Wärme (aus Reaktion) Mechanische Bewegung (= Arbeit) maximale Umsetzung Aussagen der Thermodynamik: Quantifizieren von: Enthalpie-Änderungen Entropie-Änderungen Arbeit, maximale (Gibbs Energie)

Mehr

1. Klausur zur Vorlesung Physikalische Chemie I

1. Klausur zur Vorlesung Physikalische Chemie I 1. Klausur zur Vorlesung Physikalische Chemie I Sommersemester 2006 8. Juni 2006 Angaben zur Person (BITTE LESERLICH UND IN DRUCKBUCHSTABEN) Name, Vorname... Geburtsdatum und -ort... Matrikelnummer...

Mehr

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 4 Lösung. P + a )

Prof. Dr. Peter Vogl, Thomas Eissfeller, Peter Greck. Übung in Thermodynamik und Statistik 4B Blatt 4 Lösung. P + a ) U München Physik Department, 33 http://www.wsi.tum.de/33 eaching) Prof. Dr. Peter ogl, homas Eissfeller, Peter Greck Übung in hermodynamik und Statistik 4B Blatt 4 Lösung. van der Waals Gas, Adiabatengleichung

Mehr

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse

T 300K,p 1,00 10 Pa, V 0, m,t 1200K, Kontrolle Physik Leistungskurs Klasse Hauptsatz, Kreisprozesse Kontrolle Physik Leistungskurs Klasse 2 7.3.207. Hauptsatz, Kreisprozesse. Als man früh aus dem Haus gegangen ist, hat man doch versehentlich die Kühlschranktür offen gelassen. Man merkt es erst, als man

Mehr

Ferienkurs Experimentalphysik 2 - Mittwoch-Übungsblatt. 1 Aufgabe: Adiabatengleichung fürs Ideale Gas

Ferienkurs Experimentalphysik 2 - Mittwoch-Übungsblatt. 1 Aufgabe: Adiabatengleichung fürs Ideale Gas Aufgabe: Gasrozess Ferienkurs Exerimentalhysik - Mittwoch-Übungsblatt 1 Aufgabe: Adiabatengleichung fürs Ideale Gas Aus dem 1. HS und den Wärmekaazitäten c und c olgt zusammen mit dem Adiabatenkoeffizienten

Mehr

Chemische Thermodynamik: Grundlagen

Chemische Thermodynamik: Grundlagen Cheische herodynai: Grundlagen Marosoische Größen aros. Obserable in aros. Syste Intensie Größen (engenunabhängig): Druc eeratur Magnetfeld H r Magnetisierung M r Eletrisches Feld E r... Etensie Größen

Mehr

3.3 Wärme als Energieform

3.3 Wärme als Energieform 3.3 Wäre als Energiefor Erinnere: Herleitung der Zustandsgleichung p V=n R T hatten wir die Teperatur eingeführt als Basisgröße die proportional zur Molekülenergie sein soll: 1 3 ε kin = u = kt d.h.: zur

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch herodynaik _ herodynaik Prof. Dr.-Ing. Peter Hakenesch eter.hakenesch@h.edu www.lrz-uenchen.de/~hakenesch _ herodynaik Einleitung Grundbegriffe 3 Systebeschreibung 4 Zustandsgleichungen 5 Kinetische Gastheorie

Mehr

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3 Aufgaben zum Stirlingschen Kreisrozess. Ein Stirling-Motor arbeite mit 50 g Luft ( M 0g mol )zwischen den emeraturen 50 C und 50 C sowie den olumina 000cm und 5000 cm. a) Skizzieren Sie das --Diagramm

Mehr

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen

Besprechung der thermodynamischen Grundlagen von Wärmekraftmaschinen und Wärmepumpen 3.5 Zustandsänderung nderung von Gasen Ziel: Besrehung der thermodynamishen Grundlagen von Wärmekraftmashinen und Wärmeumen Zustand von Gasen wird durh Druk, olumen, und emeratur beshrieben thermodyn.

Mehr

Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge

Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge Prof. Dr. Norbert Hampp 1/7 6. Freie Energie und Freie Enthalphie / 2. Hauptsatz Spontane und nicht spontane Vorgänge Freiwillig und nicht freiwillig ablaufende Vorgänge 1. Empirischer Befund: Bei einer

Mehr

Thermodynamik: Definition von System und Prozess

Thermodynamik: Definition von System und Prozess Thermodynamik: Definition von System und Prozess Unter dem System verstehen wir den Teil der elt, an dem wir interessiert sind. Den Rest bezeichnen wir als Umgebung. Ein System ist: abgeschlossen oder

Mehr

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke)

Statistische Physik - Theorie der Wärme (PD Dr. M. Falcke) Freie Universität Berlin W 006/007 Fachbereich Physik 8..006 tatistische Physik - heorie der Wärme (PD Dr. M. Falcke) Übungsblatt 9: hermodynamische Identitäten, hermische/kalorische Zustandsgleichung,

Mehr

Hochschule Heilbronn Technik Wirtschaft Informatik Heilbronn University Institut für math.-naturw. Grundlagen

Hochschule Heilbronn Technik Wirtschaft Informatik Heilbronn University Institut für math.-naturw. Grundlagen Technik Wirtschaft Inforatik Institut für ath-naturw Grundlagen Versuch : Kalorietrie 1 Aufgabenstellung Bestiung der Wärekapazität eines Kalorieters Bestiung der spezifischen Wärekapazität Festkörpern

Mehr

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf

TU-München, Musterlösung. Experimentalphysik II - Ferienkurs Andreas Schindewolf TU-München, 18.08.2009 Musterlösung Experimentalphysik II - Ferienkurs Andreas Schindewolf 1 Random Kreisprozess a Wärme wird nur im isochoren Prozess ab zugeführt. Hier ist W = 0 und Q ab = nc V t b T

Mehr

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg

Institut für Physikalische Chemie Albert-Ludwigs-Universität Freiburg Institut für Physikalische Chemie Albert-Ludwigs-Uniersität Freiburg Lösungen zum 11. Übungsblatt zur Vorlesung Physikalische Chemie I SS 214 Prof. Dr. Bartsch 11.1 L a) Die Bildungsgeschwindigkeit on

Mehr

11.2 Die absolute Temperatur und die Kelvin-Skala

11.2 Die absolute Temperatur und die Kelvin-Skala 11. Die absolute Temperatur und die Kelvin-Skala p p 0 Druck p = p(t ) bei konstantem olumen 1,0 0,5 100 50 0-50 -100-150 -00-73 T/ C Tripelpunkt des Wassers: T 3 = 73,16 K = 0,01 C T = 73,16 K p 3 p Windchill-Faktor

Mehr

Übungsaufgabe. Bestimmen Sie das molare Volumen für Ammoniak bei einem Druck von 1 MPa und einer Temperatur von 100 C nach

Übungsaufgabe. Bestimmen Sie das molare Volumen für Ammoniak bei einem Druck von 1 MPa und einer Temperatur von 100 C nach Übungsaufgabe Bestien Sie das olare Voluen für Aoniak bei eine Druck von 1 MPa und einer Teperatur von 100 C nach a) de idealen Gasgesetz b) der Van der Waals-Gleichung c) der Redlich-Kwong- Gleichung

Mehr

PCI (Biol./Pharm.) Thermodyn. Musterlösung Übung 5 H.P. Lüthi / R. Riek HS Musterlösung Übung 5

PCI (Biol./Pharm.) Thermodyn. Musterlösung Übung 5 H.P. Lüthi / R. Riek HS Musterlösung Übung 5 Musterlösung Übung 5 ufgabe 1: Enthalpieänderungen bei Phasenübergängen Es ist hilfreich, zuerst ein Diagramm wie das folgende zu konstruieren: (Die gesuchten Werte sind in den umrandeten oxen.) sub X

Mehr

D o n n e r s t a g, 1 4. J u l i

D o n n e r s t a g, 1 4. J u l i D o n n e r s t a g, 1 4. J u l i 2 0 1 6 L a m p e n f i e b e r M e i n N a m e i s t A r i s a W a t a n a b e. I c h k o m m e a u s J a p a n, Y o k o h a m a. I c h b i n 1 6 J a h r e H e u t e

Mehr

D o n n e r s t a g, 1 4. J u l i

D o n n e r s t a g, 1 4. J u l i D o n n e r s t a g, 1 4. J u l i 2 0 1 6 L a m p e n f i e b e r M e i n N a m e i s t A r i s a W a t a n a b e. I c h k o m m e a u s J a p a n, Y o k o h a m a. I c h b i n 1 6 J a h r e H e u t e

Mehr

D i e n s t a g, 1 1. J u l i

D i e n s t a g, 1 1. J u l i D i e n s t a g, 1 1. J u l i 2 0 1 7 A l l e s w u n d e r b a r D i e d r i t t e W o c h e w a r s e h r s c h ö n!! A m M o n t a g h a b e n w i r e t w a s ü b e r M ä r c h e n g e l e r e i n S

Mehr

C Metallkristalle. Allgemeine Chemie 60. Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4. Tabelle 7: weiter Strukturtypen. kubisch innenzentriert KZ = 8

C Metallkristalle. Allgemeine Chemie 60. Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4. Tabelle 7: weiter Strukturtypen. kubisch innenzentriert KZ = 8 Allgemeine Chemie 60 Fluorit CaF 2 KZ(Ca) = 8, KZ(F) = 4 Tabelle 7: weiter Strukturtypen C Metallkristalle kubisch primitiv KZ = 6 kubisch innenzentriert KZ = 8 kubisch flächenzentriert, kubisch dichteste

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung a) Ein Kilogramm Wasser bei = C wird in thermischen Kontakt mit einem Wärmereservoir bei

Mehr

Gase. Der Druck in Gasen. Auftrieb in Gasen. inkl. Exkurs: Ideale Gase

Gase. Der Druck in Gasen. Auftrieb in Gasen. inkl. Exkurs: Ideale Gase Physik L17 (16.11.212) Der Druck in n inkl. Exkurs: Ideale uftrieb in n 1 Wiederholung: Der Druck in Flüssigkeiten Der Druck in Flüssigkeiten nit it zunehender Tiefe zu: Schweredruck Die oberen Wasserschichten

Mehr

16. Kinetische Gastheorie und ideales Gasgesetz

16. Kinetische Gastheorie und ideales Gasgesetz 8.3.3 6. Kinetische Gastheorie und ideales Gasgesetz Geg.:,,, P sind Zustandsgrößen eines Systes P Druck (p Ipuls) U ein Gas () einzuschließen (), uß ein Druck (P) ausgeübt werden. Frage: wie hängen diese

Mehr

Theorie der Wa rme Musterlo sung 3.

Theorie der Wa rme Musterlo sung 3. heorie der Wa rme Musterlo sung 3 U bung 1 FS 2014 Prof Renner Ideales Gas (i) Zeige, dass fu r ein ideales Gas in einem adiabatischen Prozess die Gleichung /C /C = 0 0, gilt, wobei n die Stoffmenge, R

Mehr

Lösung. Nachholklausur zur Vorlesung Physikalische Chemie I - Sommersemester 2002

Lösung. Nachholklausur zur Vorlesung Physikalische Chemie I - Sommersemester 2002 Lösung Nachholklausur zur orlesung Physikalische hemie I - Sommersemester 00 6. Oktober 00, 9 5-5 Uhr Hineise - Bitte Namen auf jedes Blatt schreiben. - Auch Blatt-Rückseiten beschreiben. - Ggf. eitere

Mehr

Übung zur Vorlesung PC I Chemische Thermodynamik B.Sc. Blatt 2

Übung zur Vorlesung PC I Chemische Thermodynamik B.Sc. Blatt 2 Prof. Dr. Norbert Ha Soerseester 009.05.009 Übung zur orlesung PC I Cheische Therodynaik B.Sc. Blatt. Abweichungen o idealen erhalten bei Gasen lassen sich durch Angabe des Koressionsfaktors Z = / RT charakterisieren,

Mehr

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung

1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases. f=5 Translation + Rotation. f=7 Translation + Rotation +Vibration. Wiederholung 1. Wärmelehre 2.4. Die Freiheitsgrade eines Gases Wiederholung Speziische molare Wärmekapazität c m,v = 2 R R = N A k B = 8.315 J mol K =5 Translation + Rotation =7 Translation + Rotation +ibration 1.

Mehr

Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik

Hochschule Düsseldorf University of Applied Sciences. 13. April 2016 HSD. Energiespeicher. Thermodynamik 13. April 2016 Energiespeicher Thermodynamik Prof. Dr. Alexander Braun // Energiespeicher // SS 2016 26. April 2017 Thermodynamik Grundbegriffe Prof. Dr. Alexander Braun // Energiespeicher // SS 2017 26.

Mehr

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler

Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler TU München Reinhard Scholz Physik Department, T33 Thomas Eissfeller, Peter Greck, Tillmann Kubis, Christoph Schindler http://www.wsi.tum.de/t33/teaching/teaching.htm Übung in Theoretischer Physik B (Thermodynamik)

Mehr

T 1 T T Zustandsverhalten einfacher Systeme (Starthilfe S ) - Prozess und Zustandsänderung. Prozess (Q 12

T 1 T T Zustandsverhalten einfacher Systeme (Starthilfe S ) - Prozess und Zustandsänderung. Prozess (Q 12 . Zustandserhalten einfacher Systeme (Starthilfe S. 9-38) - Prozess und Zustandsänderung Zustandsänderung δq Prozess (Q ) - thermodynamisch einfache Systeme reiner Stoff feste flüssige damfförmige Phase

Mehr

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 6

Physik I TU Dortmund WS2017/18 Gudrun Hiller Shaukat Khan Kapitel 6 Physik I U Dortmund WS7/8 Gudrun Hiller Shaukat Khan Kapitel Carnotscher Kreisprozess Modell eines Kreisprozesses (Gedankenexperiment). Nicht nur von historischem Interesse (Carnot 84), sondern auch Prozess

Mehr

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert. Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,

Mehr

1 EMK-Messung thermodynamischer Aktivitäten mit einer Konzentrationszelle

1 EMK-Messung thermodynamischer Aktivitäten mit einer Konzentrationszelle EMK 1.1 1 EMK-Messung therodynaischer ktivitäten it einer Konzentrationszelle 1.1 Grundlagen Je nachde, ob in einer binären flüssigen oder festen Lösung -B die nziehungskräfte zwischen den - und B-eilchen

Mehr

Hauptsatz der Thermodynamik

Hauptsatz der Thermodynamik 0.7. Hauptsatz der Thermodynamik Die einem System von außen zugeführte Wärmemenge Q führt zu Erhöhung U der inneren Energie U und damit Erhöhung T der Temperatur T Expansion des olumens gegen den äußeren

Mehr

Statistische Thermodynamik I Lösungen zur Serie 11

Statistische Thermodynamik I Lösungen zur Serie 11 Statistische Thermodynamik I Lösungen zur Serie Verschiedenes 20 Mai 206 Barometrische Höhenformel: Betrachte die rdatmosphäre im homogenen Gravitationspotential M gz der rde Unter der Annahme, dass sich

Mehr

Versuch 3. Kalorimetrie. Versuchsziel:

Versuch 3. Kalorimetrie. Versuchsziel: Versuch 3 Kalorietrie Versuchsziel: Cheische und dait auch physiologische Reaktionen sind ier it der Produktion oder de Verbrauch von Wäre verknüpft. Bis zur Mitte des 9. Jahrhunderts nah an an, daß Wäre

Mehr

Mitschrift Thermodynamik

Mitschrift Thermodynamik Mitschrift hermodynamik Herleitung für den Gasdruck Berechnung des oberen Kreisradius d cosϕ dϕ dψ d N eilchen im Gesamtvolumen dn d N Aufschlagswahrscheinlichkeit eines eilchens Fläche df df sinϕ Gesamte

Mehr

Druck. Aufgaben. 1. Wie groß ist der Auflagedruck eines Würfels mit der Kantenlänge von 8 cm, der aus Holz gefertigt wurde ( ρ= 0,8 g/cm³)?

Druck. Aufgaben. 1. Wie groß ist der Auflagedruck eines Würfels mit der Kantenlänge von 8 cm, der aus Holz gefertigt wurde ( ρ= 0,8 g/cm³)? Druck ufgaben. Wie groß ist der uflagedruck eines Würfels it der Kantenlänge von 8 c, der aus Holz gefertigt wurde ( ρ 0,8 g/c³)?. Ein frisches Ei wird it einer Kraft von 0 N auf die Nadelspitze eines

Mehr

Der Zweite Hauptsatz der TD- Lernziele

Der Zweite Hauptsatz der TD- Lernziele Der Zweite Hautsatz der D- Lernziele o Einleitung o Entroie (Definition, Entroie als Zustandsfunktion, die Clausius sche Ungleichung) o Der Zweite Hautzatz der D o Die Entroieänderungen bei seziellen Prozessen

Mehr

Physikalische Chemie: Kreisprozesse

Physikalische Chemie: Kreisprozesse Physikalische Chemie: Kreisprozesse Version vom 29. Mai 2006 Inhaltsverzeichnis 1 Diesel Kreisprozess 2 1.1 Wärmemenge Q.................................. 2 1.2 Arbeit W.....................................

Mehr

1. Thermodynamische Potentiale, Maxwellgleichungen

1. Thermodynamische Potentiale, Maxwellgleichungen 69 KAPIEL G hermodynamische Potentiale 1. hermodynamische Potentiale, Maxwellgleichungen hermodynamische Potentiale sind Funktionen von den Zustandsvariablen. Wir haben schon die innere Energie kennengelernt,

Mehr

Vorwort. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: Weitere Informationen oder Bestellungen unter

Vorwort. Gernot Wilhelms. Übungsaufgaben Technische Thermodynamik ISBN: Weitere Informationen oder Bestellungen unter Vorwort Gernot Wilhels Übungsaufgaben Technische Therodynaik ISBN: 978-3-446-42514-9 Weitere Inforationen oder Bestellungen unter http://www.hanser.de/978-3-446-42514-9 sowie i Buchhandel. Carl Hanser

Mehr

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/7 11. Phasendiagramme. Phasendiagramme

Physikalische Chemie Physikalische Chemie I SoSe 2009 Prof. Dr. Norbert Hampp 1/7 11. Phasendiagramme. Phasendiagramme Physikalische Cheie Physikalische Cheie I SoSe 29 Prof. Dr. Norbert Ha /7. Phasendiagrae Phasendiagrae In Phasendiagraen wird die eeratur- und Druckabhngigkeit der Aggregatzustnde von Stoffen bzw. Stoffischungen

Mehr

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt 9 8. Wärmelehre 8. emperatursala Wärmeenergie: emperatur: inetische und potentielle Energie, die ein System bei emperaturänderung aunimmt oder abgibt Maß ür mittlere inetische Energie eines Systems (im

Mehr

Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme

Hochschule Düsseldorf University of Applied Sciences. 20. April 2016 HSD. Energiespeicher Wärme Energiespeicher 02 - Wärme Wiederholung Energiearten Primärenergie Physikalische Energie Kernenergie Chemische Energie Potentielle Energie Kinetische Energie Innere Energie Quelle: Innere Energie Innere

Mehr

Kryoskopie = +. 1 cm. Theoretische Grundlagen

Kryoskopie = +. 1 cm. Theoretische Grundlagen Kryoskopie 1 Theoretische Grundlagen Der Dapfdruckerniedrigung eines Lösungsittels in einer Lösung (Raoultsches Gesetz) entspricht eine Siedeteperaturerhöhung und - sofern das reine Lösungsittel auskristallisiert

Mehr

Hauptsätze der Thermodynamik

Hauptsätze der Thermodynamik Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Hauptsätze der Thermodynamik Dominik Pfennig, 31.10.2012 Inhalt 0. Hauptsatz Innere Energie 1. Hauptsatz Enthalpie Satz von Hess 2. Hauptsatz

Mehr

Physikalische Chemie Praktikum. Reale Gase, Kritischer Punkt

Physikalische Chemie Praktikum. Reale Gase, Kritischer Punkt Hochschule Eden / Leer Physikalische Cheie Praktiku Reale Gase, Kritischer Punkt Vers.Nr. 1 April 015 Allgeeine Grundlagen Reale Gase, Kopressionsfaktor (Realgasfaktor), Van der Waals Gleichung, Kritischer

Mehr

Der Zweite Hauptsatz der TD- Lernziele

Der Zweite Hauptsatz der TD- Lernziele Der Zweite Hautsatz der D- Lernziele o Einleitung o Entroie (Definition, Entroie als Zustandsfunktion, die Clausius sche Ungleichung) o Der Zweite Hautzatz der D o Die Entroieänderungen bei seziellen Prozessen

Mehr

Spezifische Erstarrungs- und Verdampfungsenthalpie des Wassers (Latente Wärme)

Spezifische Erstarrungs- und Verdampfungsenthalpie des Wassers (Latente Wärme) Spezifische Erstarrungs- und Verdapfungsenthalpie des Wassers (Latente Wäre) Stichworte: Erster Hauptsatz der Therodynaik, Kalorieter, Phasenuwandlung, Latente Wäre 1 Grundlagen Solange ein cheisch einheitlicher

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ;

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ; 4.11. Innere Energie (ideals. Gas): U =!! nr Erhöhung der inneren Energie durch emperaturerhöhung um Δ: bei konstanten olumen (isochor): ΔU = C! Δ Differentiell: du = C v d δq=du=c d => d=δq/c 1. Hauptsatz

Mehr

PC I Thermodynamik J. Stohner/M. Quack Sommer Übung 12

PC I Thermodynamik J. Stohner/M. Quack Sommer Übung 12 PC I Thermodynamik J. Stohner/M. Quack Sommer 2006 Übung 12 Ausgabe: Dienstag, 20. 6. 2006 Rückgabe: Dienstag, 27. 6. 2006 (vor Vorlesungsbeginn) Besprechung: Freitag, 30.6./Montag, 3.7.2006 (in der Übungsstunde)

Mehr

Enthalpie H (Wärmeinhalt, Wärmefunktion)

Enthalpie H (Wärmeinhalt, Wärmefunktion) Enthalpie H (Wärmeinhalt, Wärmefunktion) U = Q + W Innere Energie: Bei konstantem Volumen ablaufende Zustandsänderung (isochorer Prozess, dv=) W=p V= U=Q v Bei Zustandsänderung unter konstantem Druck (isobarer

Mehr

22. Entropie; Zweiter Hauptsatz der Wärmelehre

22. Entropie; Zweiter Hauptsatz der Wärmelehre 22. Entropie; Zweiter Hauptsatz der Wärmelehre Nicht alle Prozesse, die dem Energiesatz genügen, finden auch wirklich statt Beispiel: Um alle Energieprobleme zu lösen, brauchte man keine Energie aus dem

Mehr

Zur Theorie - die Dampfdruckkurve

Zur Theorie - die Dampfdruckkurve Labor Therodynaik Zur Theorie - die I Zweihasengebiet liegt siedende Flüssigkeit zusaen it ihre gesättigten Daf vor. Der Druck eines solchen Systes ist auf einer Isothere konstant. Man kann also i Zweihasengebiet

Mehr

Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz

Zur Erinnerung. Wärmetransport durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung. Planck sches Strahlungsgesetz. Stefan-Boltzman-Gesetz Zur Erinnerung Stichworte aus der 9. orlesung: Wärmetransort durch: -Wärmekonvektion -Wärmestrahlung -Wärmeleitung Planck sches Strahlungsgesetz Stefan-Boltzman-Gesetz Wiensches erschiebungsgesetz Hautsätze

Mehr

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 1

T4p: Thermodynamik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt 1 T4p: Therodynaik und Statistische Physik Prof. Dr. H. Ruhl Übungsblatt Lösungsvorschlag. Noral-Verteilung Die Noral-Verteilung ist definiert als w() Ce ( ) /σ. a) Bestien Sie die Konstante C sodass w()

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

Tabellen und Formelsammlung Chemie

Tabellen und Formelsammlung Chemie Tabellen und Forelsalung Cheie Fakultät Maschinenbau Stand SS 2015 Nachfolgende Tabellen und Inforationen staen aus de Lehrbuch G. Kickelbick, Cheie für Ingenieure, Pearson-Verlag, 2008 soweit nicht anderweitig

Mehr

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert

Festkörper - System steht unter Atmosphärendruck gemessenen Wärmen erhalten Index p : - isoliert Kalorimetrie Mit Hilfe der Kalorimetrie können die spezifischen Wärmekapazitäten für Festkörper, Flüssigkeiten und Gase bestimmt werden. Kalorische Grundgleichung: ΔQ = c m ΔT Festkörper - System steht

Mehr

Zweiter Hauptsatz der Thermodynamik

Zweiter Hauptsatz der Thermodynamik Zweiter Hauptsatz der hermodynamik Spontan ablaufende Prozesse: Expansion von ideale Gasen Diffusion Wärmeaustausch Der 2. Hauptsatz der hermodynamik liefert Kriterien, mit deren Hilfe sich die Richtung

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 27. August 2012 Technische Universität Braunschweig Prof. Dr. ürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

5.6 Kreisprozesse. Folge von Zustandsänderungen eines Arbeitsmittels Endzustand = Anfangszustand

5.6 Kreisprozesse. Folge von Zustandsänderungen eines Arbeitsmittels Endzustand = Anfangszustand 5.6 Kreisprozesse Große technische Bedeutung haben ärekraftaschinen (Motoren, Turbinen, Strahltriebwerke), d.h. Maschinen r Uwandlung von therischer Energie in echanische Energie. Gleiches gilt für Kühlaschinen

Mehr

-1- In diesem Kapitel geht es nur um nicht-reaktive Mischungen, d.h. die einzelnen Substanzen reagieren nicht chemisch miteinander.

-1- In diesem Kapitel geht es nur um nicht-reaktive Mischungen, d.h. die einzelnen Substanzen reagieren nicht chemisch miteinander. -1-8 MISCHUNGEN In diese Kapitel geht es nur u nicht-reaktive Mischungen, d.h. die einzelnen Sustanzen reagieren nicht cheisch iteinander. 8.1 Ideale Mischungen von Gasen Möchte an sich it Mischungen eschäftigen,

Mehr

Die innere Energie and die Entropie

Die innere Energie and die Entropie Die innere Energie and die Entropie Aber fangen wir mit der Entropie an... Stellen Sie sich ein System vor, das durch die Entropie S, das Volumen V und die Stoffmenge n beschrieben wird. U ' U(S,V,n) Wir

Mehr

Übung 11 Physikalische Eigenschaften der Metalle

Übung 11 Physikalische Eigenschaften der Metalle Werkstoffe und Fertigung II Prof.Dr. K. Wegener Soerseester 2007 C1 Nae Vornae Legi-Nr. Übung 11 Physikalische Eigenschaften der Metalle Musterlösung usgabe: 29.05.2007 bgabe: 31.05.2007 Institut für Werkzeugaschinen

Mehr

(der sogenannte nullte Hauptsatz der Thermodynamik). Während des Vorganges kann sich die innere Energie U des Körpers

(der sogenannte nullte Hauptsatz der Thermodynamik). Während des Vorganges kann sich die innere Energie U des Körpers Kapitel 13 13.1 Der erste Hauptsatz der Das zentrale Konzept der ist die Existenz der Temperatur (der sogenannte nullte Hauptsatz der ). Wir betrachten z.b. zwei Körper A und B. Der Körper A erscheint

Mehr

O. Sternal, V. Hankele. 5. Thermodynamik

O. Sternal, V. Hankele. 5. Thermodynamik 5. Thermodynamik 5. Thermodynamik 5.1 Temperatur und Wärme Systeme aus vielen Teilchen Quelle: Wikimedia Commons Datei: Translational_motion.gif Versuch: Beschreibe 1 m 3 Luft mit Newton-Mechanik Beschreibe

Mehr

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik.

1 I. Thermodynamik. 1.1 Ideales Gasgesetz. 1.2 Vereinfachte kinetische Gastheorie. 1.3 Erster Hauptsatz der Thermodynamik. 1 I. hermodynamik 1.1 Ideales Gasgesetz eilchenzahl N Stoffmenge: n [mol], N A = 6.022 10 23 mol 1 ; N = nn A molare Größen: X m = X/n ideales Gasgesetz: V = nr, R = 8.314JK 1 mol 1 Zustandsgrößen:, V,,

Mehr

11. Ideale Gasgleichung

11. Ideale Gasgleichung . Ideale Gasgleichung.Ideale Gasgleichung Definition eines idealen Gases: Gasmoleküle sind harte punktförmige eilchen, die nur elastische Stöße ausführen und kein Eigenvolumen besitzen. iele Gase zeigen

Mehr

XII.1 Van der Waals-Gleichung Grundlage bei der Betrachtung idealer Gase war die Idealgasgleichung. p V = R T

XII.1 Van der Waals-Gleichung Grundlage bei der Betrachtung idealer Gase war die Idealgasgleichung. p V = R T XII. Reale Gase In Kaitel XI hatten wir zwei wesentliche Annahen für ideale Gase geacht: 1. die Moleküle sind Punktassen. es existieren keine zwischenolekularen Kräfte Zude hatten wir bereits festgestellt,

Mehr

Thermodynamik (Wärmelehre) II Wärmeenergie

Thermodynamik (Wärmelehre) II Wärmeenergie Physik A L25 (06.12.2012) Therodynaik (Wärelehre) II Wäreenergie Wäreenge und Wärekaazität Energieerhaltung bei therodynaishen Systeen 1. Hautsatz der Therodynaik Arbeit und innere Energie bei Gasen 1

Mehr

Entropie und 2. Hauptsatz der Thermodynamik

Entropie und 2. Hauptsatz der Thermodynamik Entropie und 2. Hauptsatz der hermodynamik Seminar Didaktik der Physik Datum: 20.11.1006 LV-Nummer: 706099 Vortragende: Markus Kaldinazzi Mathias Scherl Inhalte Reversible und Irreversible Prozesse Drei

Mehr

Zur Thermodynamik des idealen Gases (GK Physik 1)

Zur Thermodynamik des idealen Gases (GK Physik 1) Zur hermodynamik des idealen Gases (GK Physik 1 Zusammenfassung im Hinblick auf Prozesse. Reinhard Honegger, im Januar 2012. 1 Grundbegriffe 1.1 Zustandsgleichung = Ideale Gasgleichung Druck, olumen, emeratur

Mehr

4. Freie Energie/Enthalpie & Gibbs Gleichungen

4. Freie Energie/Enthalpie & Gibbs Gleichungen 4. Freie Energie/Enthalie & Gibbs Gleichungen 4.3. Gibbs sche Gleichungen Fundamentalgleichungen der D weitere Fundamentalgleichungen basierend auf: einsetzen von (): d d d Ausdifferenzierung der Definition

Mehr

Aufgabe 1: Theorie Punkte

Aufgabe 1: Theorie Punkte Aufgabe 1: Theorie.......................................... 30 Punkte (a) (2 Punkte) In einen Mischer treten drei Ströme ein. Diese haben die Massenströme ṁ 1 = 1 kg/s, ṁ 2 = 2 kg/s und ṁ 3 = 2 kg/s.

Mehr