Mathematische Grundlagen der Computerlinguistik

Größe: px
Ab Seite anzeigen:

Download "Mathematische Grundlagen der Computerlinguistik"

Transkript

1 Centrum für Informations- und Sprachverarbeitung (CIS) 23. Juni 2014

2 Table of Contents 1 2

3 Ordnung Ähnlich wie Äquivalenzrelationen den Begriff der Gleichheit generalisieren, generalisieren den Begriff einer Ordnung von Elementen. spielen immer dann eine Rolle, wenn man alle Elemente einer Menge in einer systematischen Reihenfolge behandeln will.

4 I Definition (Ordnungsrelation) Es sei R A A eine binäre Relation auf der Menge A. 1 R heißt Quasi-Ordnung auf A genau dann, wenn R reflexiv und transitiv ist. 2 R heißt partielle Ordnung auf A genau dann, wenn R transitiv, reflexiv und antisymmetrisch ist. 3 Eine partielle Ordnung R auf A heißt lineare Ordnung oder Totalordnung genau dann, wenn zusätzlich gilt: a, b A : (R(a, b) R(b, a))

5 II Ist R eine Ordnung des Typs 1-3, so schreibt man meist a R b oder a b anstatt R(a, b), außerdem a < b falls a b und nicht b a. Wie diese Schreibweise andeutet, werden anstelle der oben definierten partiellen und lineare Ordnungen manchmal auch strikte Versionen betrachtet, wo ein Element nie zu sich selbst in Relation steht.

6 Strikte Ordnungen Definition (strikte Ordnung) Sei R A A eine binäre Relation auf der Menge A. 1 R heißt strikte partielle Ordnung auf der Menge A genau dann wenn R irreflexiv und transitiv ist. 2 R heißt strikte lineare Ordnung genau dann, wenn außerdem gilt: a b A : R(a, b) R(b, a) Üblicherweise werden strikte Ordnungen mit dem Symbol < bezeichnet. Man beachte, dass jede strikte (partielle oder lineare) Ordnung < automatisch vollständig unsymmetrisch im folgenden Sinn ist: für a b A gilt niemals a < b und b < a. In der Tat folgt aufgrund der Transitivität aus a < b und b < a sofort auch a < a was der Irreflexivität widerspricht.

7 Strikte vs. nicht strikte Ordnungen Lemma Man kann aus jeder partiellen oder linearen Ordnung durch Weglassen der Identität eine strikte Version < erhalten und umgekehrt auch aus jeder strikten partiellen oder linearen Ordnung durch Vereinigung mit der Identitätsrelation Id A eine normale (d.h. reflexive) partielle oder lineare Ordnung erhalten. Aus dem Lemma folgt, dass es für die folgenden Betrachtungen nicht von Bedeutung ist, ob wir die strikte oder die nicht strikte Version der Ordnungsrelation betrachten. Wir werden auf strikte Ordnungen somit nicht weiter eingehen.

8 Maximale und minimale Elemente Definition (maximal / minimal) Es sei eine partielle Ordnung auf der menge A. 1 Das Element a A heißt minimal (maximal) bezüglich genau dann, wenn für alle b A aus b a (respektive a b) stets b = a folgt. 2 Das Element a A heißt das kleinste (größte) Element bezüglich genau dann, wenn für alle b A stets a b (respektive b a) gilt. Es muss nicht immer minimale (maximale), kleinste (größte) Elemente bezüglich einer gegebenen Ordnung geben. Falls das kleinste (größte) Element existiert ist es eindeutig und stets auch minimal (maximal); die Umkehrung gilt aber in der Regel nicht, da es viele minimale Elemente geben kann.

9 Beispiele I Die folgenden Beispiele sollen die charakteristischen Eigenschaften der drei Ordnungstypen verdeutlichen. Es gilt immer dass jede lineare Ordnung stets auch eine partielle Ordnung ist, jede partielle Ordnung wiederum eine Quasi-Ordnung. Es handelt sich somit um eine hierarchische Begriffsbildung. Man spricht von echten partiellen Ordnungen (echten Quasi-Ordnungen), wenn eine partielle Ordnung (Quasi-Ordnung) vorliegt, die nicht weitergehend eine linerare (partielle) Ordnung darstellt. 1 Die natürliche Ordnung auf der Menge N natürlichen Zahlen ist eine lineare Ordnung. Es ist 0 das eindeutig bestimmte kleinste Element von N bezüglich. Es gibt dagegen kein maximales Element.

10 Beispiele II 2 Die natürlichen Ordnungen der rationalen oder reellen Zahlen sind ebenfalls lineare Ordnungen. Sie besitzen weder minimale noch maximalen Elemente. 3 Es sei M eine beliebige Menge. Dann ist die Inklusionsbeziehung eine partielle Ordnung auf der Potenzmenge P(M). Hat M zumindest zwei Elemente, so ist diese Ordnung aber keine lineare Ordnung. Es ist das kleinste Element, M das größte Element bezüglich. Bei echten partiellen Ordnungen gibt es Elemente, die nicht miteinander vergleichbar sind. Falls M = {1, 2} so sind die beiden Teilmengen {1} und {2} bezüglich der Inklusionsbeziehung unvergleichbar.

11 Beispiele III Erhalten bleibt aber bei partiellen Ordnungen die folgende Eigenschaft: falls zwei verschiedene Elemente bezüglich vergleichbar sind, so legt die Ordnung stets eine eindeutige Reihenfolge zwischen den Elementen fest.

12 Beispiele IV 4 Es sei A eine Menge von Personen. Für a A sein f (a) die Größe der Person a gemessen in cm. Mit bezeichnen wir die übliche Ordnung auf N. Für a, b A definieren wir a b : f (a) f (b) Dann ist im allgemeinen Fall keine partielle Ordnung sondern eine Quasi-Ordnung.

13 Beispiele V In der Abbildung sind die Messungen von 4 Personen dargestellt. Person 1 und 2 (respektive 3 und 4) haben jeweils die selbe Körpergröße. Die Ordnung auf A ist durch Pfeile angedeutet. Sie wird die durch induzierte Quasiordnung auf A genannt. Es gilt unter Anderem 1 2 und 2 1. Dies verletzt die von partiellen Ordnungen geforderte Antisymmetrie. Bei Quasi-Ordnungen kann es also vorkommen, dass wir zwei verschiedene Elemente zwar mittels der Ordnung vergleichen können, aber daraus trotzdem keine eindeutige Reihenfolge der Elemente erhalten. Die meisten in der Praxis auftretenden Quasi-Ordnungen (nich alle) haben die Eigenschaft, dass man sogar stets zwei Elemente bezüglich der Ordnung vergleichen kann. Alle Arten von Messungen mit einer linearen Messskala definieren

14 Beispiele VI Quasi-Ordnungen diesen Typs auf der menge der messenden Objekte. Viele steigerbaren Adjektive (schneller, heißer, dicker, besser,... ) lassen sich mit Quasi-Ordnungen dies Typs assoziieren.

15 Nachfolger und Vorgänger Definition (Nachfolger und Vorgänger) Es sei eine partielle Ordnung auf der Menge A. Das Element b A heißt Nachfolger von a A genau dann, wenn a < b gilt. In dieser Situation heißt umgekehrt a sein Vorgänger von b. Gilt außerdem, dass es kein Element c A gibt mit a < c < b, so heißt b ein direkter Nachfolger von a, und umgekehrt heißt a ein direkter Vorgänger von b.

16 Beispiele I Hier folgt nun eine Liste von Beispielen um die Konzepte zu verdeutlichen. 1 Bezeichnet die übliche Ordnung auf N, so ist 0 das kleinste Element, für jedes n N ist stets n + 1 der direkter Nachfolger von n. 2 Bezeichnet die übliche Ordnung auf den reellen Zahlen so hat kein Element einen direkten Nachfolger oder einen direkten Vorgänger bezüglich und es gibt kein minimales (maximales) oder kleinstes (größtes) Element.

17 Beispiele II 3 Es sei A = {a 1, a 2,..., a n } ein Alphabet, A bezeichne die Menge aller Wörter über dem Alphabet A. Für jede Teilmenge W A definiert u v : u ist ein Präfix von v eine partielle Ordung auf W, die Präfixordnung genannt wird. Wir betrachten den Fall genauer, wo W endlich und unter Präfixbildung abgeschlossen ist. Das Diagramm hat hier die Form eines Baums. Der Baum, der sich für die Menge mit den Wörtern a, aa, aac, aach, aache, aachen, aal, aar, aas, ab, abb, abbau, abbi, abbil, abbild, an, anna, anne, anno, anni ergibt, ist in der nachfolgenden Abbildung dargestellt, wobei sich das einem Knoten η entsprechende Wort durch die Labels aller Knoten von der Wurzel bis zu η.

18 Beispiele III Ähnliche Bäume, sogenannte Tries, werden in der Informatik und der Computerlinguistik zur internen Repräsentation von Wörterbüchern verwendet.

19 Beispiele IV 4 Es sei A = {a 1, a 2,..., a n } ein Alphabet, dass durch a 1 < A a 2 < A < A a n geordnet sei. Es bezeichne A die Menge aller Wörgter über dem Alphabet A. Dann wird durch x 1... x k y 1... y l : k l und x 1 = y 1,..., x k = y k i, 0 i < min(k, l) wo x 1 = y 1,..., x i = y i und x i+1 < A y i+1 eine lineare Ordnung auf A definiert, die lexikographische Ordnung von A genannt wird. Es handelt sich um die übliche Wortreihenfolge in Lexika, Telefonbüchern etc. Die Wortliste a, aa, aac, aach, aache, aachen, aal, aar, aas, ab, abb, abbau, abbi, abbil, abbild, an, anna, anne, anno, anni ist lexikographisch geordnet.

20 Quasi-Ordnungen I Das Beispiel mit der Ordnung zwischen Personen über deren Körpergröße verdeutlicht den eigentlichen Unterschied zwischen echten Quasi-Ordnungen und partiellen Ordnungen. Es kann (wird) vorkommen, dass zwei (oder mehr) Personen die selbe Körpergröße (in cm.) haben. Somit gibt es keine Möglichkeit, diese Personen eindeutig in eine Reihenfolge einzuordnen. Bei Quasi-Ordnungen kann es somit vorkommen, dass zwei vergleichbare Objekte nicht in eine eindeutige Reihenfolge einsortiert werden können.

21 Quasi-Ordnungen II Dieser unschöne Effekt soll nun im Weiteren aufgelöst werden. Eine naheliegende Idee um diesen unerwünschten Effekt aufzulösen, ist die Verwendung von Äquivalenzrelationen. Über eine geeignete Äquivalenzrelation auf der Menge A kann die Quasi-Ordnung auf der Quotientenmenge A/ ausgeführt werden. Es werden genau diejenigen Elemente von der Äquivalenzrelation identifiziert, die Probleme verursachen. Die Quotientenmenge kann als Vereinfachung der Menge A angesehen werden. Die Quasi-Ordnung kann dann auf der Quotientenmenge A/ in die echte partielle Ordnung überführt werden.

22 Quasi-Ordnungen III Beispiel Betrachtet man das Beispiel folgender Quasi-Ordnung, fällt auf, dass die Elemente der Teilmenge {1, 2} wechselseitig in der Relation stehen. Dasselbe gilt für die Elemente der Teilmente {3, 4}.

23 Quasi-Ordnungen IV Wenn man nun die nicht-umkehrbaren Pfeile ignoriert erhält man folgende Abbildung:

24 Quasi-Ordnungen V Gerade der Vergleich der Elemente 1 und 2 bzw. 3 und 4 ist problematisch, da er zu keiner eindeutigen Reihenfolge führt. Geht man nun durch die kanonische Abbildung κ auf die Quotientenmenge A/ über, werden eben diese problematischen Paare identifiziert. Es bleib noch eine Ordnung in geeigneter Weise zu definieren, die die Quasi-Ordnung wiederspiegelt und eine partielle Ordnung ist. Es gibt eine natürliche Weise: da jedes Element von [3] = {3, 4} bezüglich kleiner ist als jedes Element von [1] = {1, 2} definiert man einfach [3] < [1].

25 Lemma (Quasi-Ordnung) Lemma (Quasi-Ordnung) Es sei eine Quasi-Ordnung auf der Menge A. Dann wird durch a b : (a b b a) eine Äquivalenzrelation auf A definiert. Auf der Quotientenmenge A/ sei nun die Relation durch [a] [b] : a b erklärt. ist dann wohldefiniert und eine partielle Ordnung.

26 Beweis I Wohldefiniertheit Es seien [a 1 ] = [a 2 ] und [b 1 ] = [b 2 ] Äquivalenzklassen in A/. Wir müssen zeigen, dass wir dasselbe Resultat erhalten, wenn wir zur Definition von einerseits [a 1 ] und [b 1 ], andererseits [a 2 ] und [b 2 ] verwenden. Es muss also gezeigt werden, dass a 1 b 1 und a 2 b 2 äquivalent sind. Wegen der Symmetrie reicht eine Richtung aus. Es gilt also a 1 b 1. Wegen [a 1 ] = [a 2 ] und [b 1 ] = [b 2 ] gelten auch a 2 a 1 und b 1 b 2. Wegen der Transitivität gilt nun auch a 2 b 2.

27 Quasi-Ordnungen und Zyklen Wen man mit κ die kanonische Abbildung von A in die Quotientenmenge A/ bezeichnet, so ist in der vorherigen Situation genau die durch κ und induzierte Quasi-Ordnung auf A. Folgendes Lemma verdeutlicht nochmals den Unterschied zwischen Quasi-Ordnungen und partiellen Ordnungen von einer anderen Perspektive. Lemma (Quasi-Ordnungen und Zyklen) Es sei eine Quasi-Ordnung auf der Menge A. Dann ist eine partielle Ordnung genau dann, wenn A keine nicht-trivialen -Zyklen enthält (nur triviale -Zyklen enthält).

28 Beweis Beweis Es sei eine partielle Ordnung und somit antisymmetrisch. Es sei a 0 a 1 a n ein -Zyklus. Somit gilt per Definition a 0 = a n. Falls der Zyklus nicht-trivial ist (er enthält zwei unterschiedliche Elemente) muss es ein Element a i a 0 geben. Aus der Transitivität von folgt einerseits a 0 a i, andererseits auch a i a n = a 0. Dies ist ein Widerspruch mit der Antisymmetrie von : a 0 a i und a i a 0 und a i a 0. Der Widerspruch zeigt, dass der Zyklus a 0,..., a n trivial sein muss. Umgekehrt nehmen wir an, dass A keine nicht-trivialen -Zyklen enthält. Dann muss antisymmetrisch sein: andernfalls gäbe es Elemente a 0, a 1 A mit a 0 a 1 und a 1 a 0. Dann wäre die Folge a 0, a 1, a 0 ein nicht-trivialer Zyklus.

29 Beweis durch Kontraposition Im ersten Teil des Beweises wurde die Trivialität des betrachteten Zyklus dadurch bewiesen, dass aus der gegenteiligen Annahme ein Widerspruch zur Voraussetzung, nämlich dass eine partielle Ordnung ist, hergeleitet. Man nennt diese Technik Beweis durch Kontraposition.

30 Lemma Lemma Es sei eine partielle Ordnung auf der nichtleeren endlichen Menge A. Dann besitzt A ein bezüglich minimales Element und ein bezüglich maximales Element.

31 Beweis Da A können wir ein Element a 0 A auswählen. Falls a 0 minimal ist, sind wir fertig. Wenn a 0 nicht minimal ist, so muss es ein Element a 1 < a 0 geben. Solange wir kein minimales Element gefunden haben fahren wir auf diese Weise fort. Da A endlich ist, und keine nicht-trivialen -Zyklen enthält müssen wir nach endlich vielen Schritten an einem minimalen Element ankommen. Wen wir dieselbe Methode auf die duale Ordnung anwenden, erreichen wir ein minimales Element bezüglich, also ein maximales Element bezüglich.

32 Table of Contents 1 2

33 tl;dr Quasi-Ordnungen sind reflexive, transitive binäre Relationen. Partielle Ordnungen sind antisymmetrische Quasi-Ordnungen. Lineare Ordnungen sind partielle Ordnungen, deren alle Elemente mit Pfeilen verbunden sind. Strikte (partielle oder Quasi-) Ordnungen sind irreflexiv anstatt reflexiv.

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Centrum für Informations- und Sprachverarbeitung (CIS) 10. Juni 2014 Table of Contents 1 2 Äquivalenz Der Begriff der Äquivalenz verallgemeinert den Begriff der Gleichheit. Er beinhaltet in einem zu präzisierenden

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents 1 2 Ähnlich wie Funktionen besitzen Relationen charakteristische Eigenschaften. Diese Eigenschaften definieren wie

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik kartesische Produkte und und Funktionen (Teil I) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents kartesische Produkte und 1 kartesische Produkte und 2 Darstellung

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Centrum für Informations- und Sprachverarbeitung (CIS) 13. Juni 2014 Table of Contents 1 2 Hüllen Wie bereits beim Übergang von Quasi-Ordnungen zu partiellen Ordnungen gesehen ist es oftmals sinnvoll von

Mehr

Zusammenfassung der letzten LVA. Diskrete Mathematik

Zusammenfassung der letzten LVA. Diskrete Mathematik Zusammenfassung Zusammenfassung der letzten LVA Diskrete Mathematik Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom (Beweisformen) Beweisformen sind etwa (i) deduktive

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 23. November 2017 1/40 Satz 4.27 (Multinomialsatz) Seien r, n N 0. Dann gilt für

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch

5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch 5.9 Permutationsgruppen Definition 103 Eine Permutation ist eine bijektive Abbildung einer endlichen Menge auf sich selbst; o. B. d. A. sei dies die Menge U := {1, 2,..., n}. S n (Symmetrische Gruppe für

Mehr

3. Relationen. 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen. Rolf Linn. 3.

3. Relationen. 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen. Rolf Linn. 3. 3. Relationen 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen 3. Relationen GM 3-1 Wozu Relationen? Mathematik Theoretische Informatik Kryptographie

Mehr

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Dozentin: Wiebke Petersen 4. Foliensatz Wiebke Petersen math. Grundlagen 89 starke / schwache Ordnungen Eine Ordnung R einer Menge A ist

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 21: Relationen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

5 Der Transzendenzgrad

5 Der Transzendenzgrad $Id: trgrad.tex,v 1.6 2009/05/11 14:48:57 hk Exp $ 5 Der Transzendenzgrad Wir stellen nun einige der Tatsachen über die Mächtigkeit von Mengen zusammen, die Ihnen wahrscheinlich aus den ersten Semester

Mehr

3.2 Unabhängigkeitsstrukturen

3.2 Unabhängigkeitsstrukturen 80 3.2 Unabhängigkeitsstrukturen Unser Ziel ist der Nachweis, daß in Vektorräumen, also in Moduln über Körpern, Basen existieren und zwei endliche Basen gegebenenfalls von derselben Ordnung sind. (Basen

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.11.2016 (Teil 2) 23. November 2016 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016

Mehr

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen:

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen: 4. Mathematische und notationelle Grundlagen 4.1 Mengen Beispiel 3 A 1 = {2, 4, 6, 8}; A 2 = {0, 2, 4, 6,...} = {n N 0 ; n gerade} Bezeichnungen: x A A x x A B A B A { } x Element A x nicht Element A B

Mehr

Relationen. Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B.

Relationen. Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B. Mathematik I für Informatiker Relationen auf einer Menge p. 1 Relationen Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B. Ein wichtiger Spezialfall ist der,

Mehr

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Dozentin: Wiebke Petersen 4. Foliensatz Wiebke Petersen math. Grundlagen 86 starke / schwache Ordnungen Eine Ordnung R einer Menge A ist

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 9. November 2017 1/34 Beispiel 3.6 Wir können die rationalen Zahlen wie folgt konstruieren:

Mehr

Ordnungsrelationen auf Mengen. Beispiel einer Ordnungsrelation. Spezielle Elemente von Ordnungen. Spezielle Elemente von Ordnungen

Ordnungsrelationen auf Mengen. Beispiel einer Ordnungsrelation. Spezielle Elemente von Ordnungen. Spezielle Elemente von Ordnungen Ordnungsrelationen auf Mengen! Eine (partielle) Ordnungsrelation oder kurz Ordnung O auf einer Menge M ist eine Relation, die reflexiv, antisymmetrisch und transitiv ist. Beispiel: M = { 1, 2, 3 }, O =

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen (Teil I) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents Mengen und ihre Darstellung Darstellung endlicher Mengen Darstellung unendlicher

Mehr

Teil 4. Mengen und Relationen

Teil 4. Mengen und Relationen Teil 4 Mengen und Relationen KAPITEL 10 Äquivalenzrelationen und Faktormengen 1. Äquivalenzrelationen Wir nennen eine Relation von A nach A auch eine Relation auf A. DEFINITION 10.1. SeiΡeine Relation

Mehr

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen)

Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen) DEPENDABLE SYSTEMS AND SOFTWARE Fachrichtung 6. Informatik Universität des Saarlandes Christian Eisentraut, M.Sc. Julia Krämer Mathematik-Vorkurs für Informatiker (Wintersemester 0/3) Übungsblatt 8 (Relationen

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Aufgaben zur Verbandstheorie

Aufgaben zur Verbandstheorie TU Bergakademie Freiberg WS 2005/06 Institut für Diskrete Mathematik & Algebra Prof. Dr. Udo Hebisch Aufgaben zur Verbandstheorie 1. Für ein beliebiges n IN sei X n die Menge aller Teiler von n. Definiert

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 17: Relationen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2009/2010 1/77 Überblick Äquivalenzrelationen Definition Äquivalenzrelationen

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011.

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011. Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen 21. März 2011 Tanja Geib Inhaltsverzeichnis 1 Aussagen 1 2 Mengenlehre 3 2.1 Grundlegende Definitionen

Mehr

6. Boolesche Algebren

6. Boolesche Algebren 6. Boolesche Algebren 6.1 Definitionen Eine Boolesche Algebra ist eine Algebra S,,,, 0, 1,, sind binäre, ist ein unärer Operator, 0 und 1 sind Konstanten. Es gilt: 1 und sind assoziativ und kommutativ.

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Geordnete Mengen. Eine Relation heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist.

Geordnete Mengen. Eine Relation heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist. Geordnete Mengen Eine Relation heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist. Ist eine Ordnungsrelation auf eine geordnete Menge., dann nennt man Die Namensgebung

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

modulo s auf Z, s. Def

modulo s auf Z, s. Def 16. Januar 2007 Arbeitsblatt 5 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen I. Gasser, H. Strade, B. Werner WiSe 06/07 21.11.06 Präsenzaufgaben: 1) Seien

Mehr

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Einführung in die Logik - 6 mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Modelltheoretische / Denotationelle Semantik der Prdikatenlogik Ein Modell ist ein künstlich geschaffenes

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten

Mehr

13 Auswahlaxiom und Zornsches Lemma

13 Auswahlaxiom und Zornsches Lemma 13 Auswahlaxiom und Zornsches Lemma Handout zur Funktionalanalysis I von H. Glöckner, 25.11.2008 Wichtige Teile der modernen Mathematik beruhen auf dem sogenannten Auswahlaxiom der Mengenlehre. Dieses

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 1-14. Sitzung Dennis Felsing dennis.felsing@student.kit.edu http://www.stud.uni-karlsruhe.de/~ubcqr/2010w/tut gbi/ 2011-02-07 Äquivalenzrelationen 1 Äquivalenzrelationen

Mehr

1 Mathematische Grundbegriffe

1 Mathematische Grundbegriffe 1 1 Mathematische Grundbegriffe 1.1 Relationen und Funktionen Seien A 1,..., A n Mengen. Ein n-tupel über A 1,..., A n ist eine Folge (a 1,..., a n ) von Objekten a i A i, für i = 1,..., n. Zwei n-tupel

Mehr

Vorkurs Mathematik Abbildungen

Vorkurs Mathematik Abbildungen Vorkurs Mathematik Abbildungen Philip Bell 19. September 2016 Diese Arbeit beruht im Wesentlichen auf dem Vortrag Relationen, Partitionen und Abbildungen von Fabian Grünig aus den vorangehenden Jahren.

Mehr

Lösungen zu Kapitel 2

Lösungen zu Kapitel 2 Lösungen zu Kapitel 2 Lösung zu Aufgabe 1: Wir zeigen die Behauptung durch vollständige Induktion über n. Die einzige Menge mit n = 0 Elementen ist die leere Menge. Sie besitzt nur sich selbst als Teilmenge,

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 1: Wiederholung 1 Mengen 2 Abbildungen 3 Exkurs Beweistechniken 4 Relationen Definition Operationen Eigenschaften Äquivalenzrelationen

Mehr

Relationen (Teschl/Teschl 5.1)

Relationen (Teschl/Teschl 5.1) Relationen (Teschl/Teschl 5.1) Eine (binäre) Relation zwischen den Mengen M und N ist eine Teilmenge R der Produktmenge M N. Beispiele M Menge aller Studierenden, N Menge aller Vorlesungen, R : {(x, y)

Mehr

Mathematische Grundlagen der Computerlinguistik. Relationen und Funktionen (Teil 1)

Mathematische Grundlagen der Computerlinguistik. Relationen und Funktionen (Teil 1) Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen (Teil 1) Geordnetes Paar, Tupel, kartesisches Produkt, Relationen Exzerpt aus dem Skript von Prof. Dr. Klaus U. Schulz Michaela

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker Grundlagen der Mathematik für Informatiker Mengen, Relationen, Funktionen. Mengen Definition. [Georg Cantor 895] Eine Menge ist eine Zusammenfassung bestimmter,

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

Vorlesung 4. Tilman Bauer. 13. September 2007

Vorlesung 4. Tilman Bauer. 13. September 2007 Vorlesung 4 Universität Münster 13. September 2007 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Definition Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische)

Mehr

Elemente in Φ werden Wurzeln genannt. Bemerkung 3.2. (a) Zu einem Wurzelsystem können wir immer eine Spiegelungsgruppe definieren

Elemente in Φ werden Wurzeln genannt. Bemerkung 3.2. (a) Zu einem Wurzelsystem können wir immer eine Spiegelungsgruppe definieren 3. Wurzelsysteme Als erstes führen wir den Begriff eines Wurzelsystems ein. Definition 3.1 (Wurzelsystem). Eine endliche Teilmenge Φ V {0} heißt Wurzelsystem falls gilt: (R1) Φ Rα = {±α} für α Φ, (R2)

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 17: Relationen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/76 Überblick Äquivalenzrelationen Definition Äquivalenzrelationen

Mehr

Relationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Relationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Relationen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Relationen Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von

Mehr

Ordnung ins Chaos bringen

Ordnung ins Chaos bringen Ordnung ins Chaos bringen 1 1 Einleitung Ordnung ins Chaos bringen Vor kurzem tauchte in einer Diskussion auf dem Weg von einer Vorlesung zur nächsten innerhalb einer Gruppe von Studenten (größtenteils

Mehr

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Dozentin: Wiebke Petersen 2. Foliensatz Wiebke Petersen math. Grundlagen 20 n-tupel und Cartesisches Produkt Mengen sind ungeordnet,

Mehr

6. Induktives Beweisen - Themenübersicht

6. Induktives Beweisen - Themenübersicht 6. Induktives Beweisen - Themenübersicht Ordnungsrelationen Partielle Ordnungen Quasiordnungen Totale Ordnungen Striktordnungen Ordnungen und Teilstrukturen Noethersche Induktion Anwendung: Terminierungsbeweise

Mehr

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen.

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Vorlesung 4 Universität Münster 13. September 2007 1 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische) Produkt

Mehr

Grundlagen. Kapitel Mengen

Grundlagen. Kapitel Mengen Kapitel 1 Grundlagen 1.1 Mengen Grundobjekte mathematischer Theorien sind Mengen. Zwar stellt man sich darunter Gesamtheiten von gewissen Dingen (den Elementen der Menge) vor, doch führt die uneingeschränkte

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 015/016 30.10.015 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 1. Übungsblatt

Mehr

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb.

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb. 4. Relationen 4.1 Grundlegende Definitionen Relation R in einer Menge M: Beziehung zwischen je 2 Elementen von M. Beispiel

Mehr

1.3 Relationen und Funktionen

1.3 Relationen und Funktionen 1.3. RELATIONEN UND FUNKTIONEN 1 1.3 Relationen und Funktionen Es gibt eine Konstruktion (Übungsaufgabe!) einer Klasse (a, b) mit der Eigenschaft (a, b) = (c, d) a = c b = d. Diese Klasse (a, b) heißt

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale

1 Axiomatische Charakterisierung der reellen. 3 Die natürlichen, die ganzen und die rationalen. 4 Das Vollständigkeitsaxiom und irrationale Kapitel I Reelle Zahlen 1 Axiomatische Charakterisierung der reellen Zahlen R 2 Angeordnete Körper 3 Die natürlichen, die ganzen und die rationalen Zahlen 4 Das Vollständigkeitsaxiom und irrationale Zahlen

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Große Mengen und Ultrafilter. 1 Große Mengen

Große Mengen und Ultrafilter. 1 Große Mengen Vortrag zum Seminar zur Analysis, 31.10.2012 Marcel Marnitz In diesem Vortrag wird das Konzept mathematischer Filter eingeführt. Sie werden in späteren Vorträgen zur Konstruktion der hyperreellen Zahlen

Mehr

5. Ordinalzahlen (Vorlesung 11)

5. Ordinalzahlen (Vorlesung 11) EINFÜHRUNG IN DIE LOGIK UND MENGENLEHRE 29 5.. Grundlegende Eigenschaften. 5. Ordinalzahlen (Vorlesung ) Definition 5. (Wohlordnung). Eine lineare Ordnung < auf einer Menge a heißt Wohlordnung, wenn jede

Mehr

Ordnungsrelationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Ordnungsrelationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Ordnungsrelationen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Geordnete Mengen Eine Relation R A A heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv,

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

3. Für beliebiges A bezeichnet man die Menge A A manchmal auch mit A 2 (in Worten:

3. Für beliebiges A bezeichnet man die Menge A A manchmal auch mit A 2 (in Worten: 35 4 Paarungen 4. Produktmengen Die Mengen {x, y} und {y, x} sind gleich, weil sie die gleichen Elemente enthalten. Manchmal legt man aber zusätzlich Wert auf die Reihenfolge der Elemente. Die Objekte

Mehr

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule

Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule Berufsfeldbezogenes Fachseminar - Zahlentheorie Lisa Laudan Prof. Dr. Jürg Kramer Wintersemester 2014/2015 Dezimaldarstellung ganzer Zahlen (Division mit Rest) 1 Division mit Rest in der Hochschule 1.1

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

7 Äquivalenzrelationen

7 Äquivalenzrelationen 71 7 Äquivalenzrelationen 7.1 Äquivalenzrelationen und Klassen Definition Eine Relation R auf einer Menge oder einem allgemeineren Objektbereich heißt eine Äquivalenzrelation, falls sie reflexiv, symmetrisch

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 0/ Thomas Timmermann 8. Januar 0 Kardinalzahlen und die Mächtigkeit von Mengen Gleichmächtigkeit von Menge Zur Erinnerung: Wir wollen unendlich große Mengen hinsichtlich

Mehr

Kapitel 6. Fixpunkte und semantische Bereiche

Kapitel 6. Fixpunkte und semantische Bereiche Kapitel 6 Fixpunkte und semantische Bereiche Sowohl bei der Definition der operationalen Semantik als auch bei der Definition der mathematischen Semantik haben wir mehr oder weniger explizit Fixpunkte

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 4

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 4 Prof. Dr. Bernhard Steffen Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt

Mehr

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10 Fakultät für Mathematik Fachgebiet Mathematische Informatik Anhang Lineare Algebra I Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA Wintersemester 2009/10 A Relationen Definition A.1. Seien X, Y beliebige

Mehr

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst

Mehr

3 Topologische Gruppen

3 Topologische Gruppen $Id: topgr.tex,v 1.2 2010/05/26 19:47:48 hk Exp hk $ 3 Topologische Gruppen Als letztes Beispiel eines topologischen Raums hatten wir die Zariski-Topologie auf dem C n betrachtet, in der die abgeschlossenen

Mehr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

17 R E L AT I O N E N

17 R E L AT I O N E N 17 R E L AT I O N E N 17.1 äquivalenzrelationen 17.1.1 Definition In Abschnitt 11.2.1 hatten wir schon einmal erwähnt, dass eine Relation R M M auf einer Menge M, die reflexiv, symmetrisch und transitiv

Mehr

Kapitel 0: Grundbegriffe Gliederung

Kapitel 0: Grundbegriffe Gliederung Gliederung 0. Grundbegriffe 1. Endliche Automaten 2. Formale Sprachen 3. Berechenbarkeitstheorie 4. Komplexitätstheorie 5. Kryptographie 0/2, Folie 1 2009 Prof. Steffen Lange - HDa/FbI - Theoretische Informatik

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Kapitel 2 Mathematische Grundlagen Skript zur Vorlesung Einführung in die Programmierung im Wintersemester 2012/13 Ludwig-Maximilians-Universität

Mehr

4. Relationen. Beschreibung einer binären Relation

4. Relationen. Beschreibung einer binären Relation 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B

Mehr

Invariantentheorie. Vorlesung 2. Gruppenoperationen

Invariantentheorie. Vorlesung 2. Gruppenoperationen Prof. Dr. H. Brenner Osnabrück WS 2012/2013 Invariantentheorie Vorlesung 2 Gruppenoperationen In den beiden Beispielen der ersten Vorlesung operiert eine Gruppe auf einer Menge: Die Kongruenzabbildungen

Mehr

Grundlagen der linearen Algebra und analytischen Geometrie

Grundlagen der linearen Algebra und analytischen Geometrie Grundlagen der linearen Algebra und analytischen Geometrie Sascha Trostorff 27. Oktober 2017 Inhaltsverzeichnis I. Einführung in die Mengenlehre 3 1. Grundlagen der Aussagenlogik 4 2. Naive Mengenlehre

Mehr

3 Topologische Gruppen

3 Topologische Gruppen $Id: topgr.tex,v 1.4 2010/05/31 08:41:53 hk Exp hk $ 3 Topologische Gruppen Nachdem wir jetzt gezeigt haben das Quotienten G/H topologischer Gruppen wieder topologische Gruppen sind, wollen wir das Ergebnis

Mehr

11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen

11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen 11 Dezimalbruchdarstellung reeller Zahlen; Mächtigkeitsvergleich von Mengen 11.1 g-adische Entwicklung von Zahlen aus [0, 1[ 11.2 g-adische Entwicklung reeller Zahlen 11.3 g-adische Entwicklung nicht-negativer

Mehr

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität).

Analysis 1, Woche 2. Reelle Zahlen. 2.1 Anordnung. Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). Analysis 1, Woche 2 Reelle Zahlen 2.1 Anordnung Definition 2.1 Man nennt eine Anordnung für K, wenn: 1. Für jeden a K gilt a a (Reflexivität). 2. Für jeden a, b K mit a b und b a gilt a = b (Antisymmetrie).

Mehr

1.4 Äquivalenzrelationen

1.4 Äquivalenzrelationen 8 1.4 Äquivalenzrelationen achdem nun die axiomatische Grundlage gelegt ist, können wir uns bis zur Einführung der Kategorien das Leben dadurch erleichtern, daß wir bis dorthin, also bis auf weiteres,

Mehr

2. Relationen und Funktionen

2. Relationen und Funktionen 2. Relationen und Funktionen 15 2. Relationen und Funktionen Nachdem wir Mengen eingeführt haben, wollen wir nun auch mehrere von ihnen miteinander in Beziehung setzen können. Das Grundkonzept hierfür

Mehr

Einführung in die Mengenlehre

Einführung in die Mengenlehre Einführung in die Mengenlehre D (Menge von Georg Cantor 845-98) Eine Menge ist eine Zusammenfassung bestimmter wohlunterschiedener Objekte unseres Denkens oder unserer Anschauung zu einem Ganzen wobei

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 11: Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/42 Graphische Darstellung von Zusammenhängen schon an vielen Stellen

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 48 / 155 Überblick

Mehr

Zur Zykelschreibweise von Permutationen

Zur Zykelschreibweise von Permutationen Zur Zykelschreibweise von Permutationen Olivier Sète 16. Juni 2010 1 Grundlagen Definition 1.1. Eine Permutation von {1, 2,..., n} ist eine bijektive Abbildung σ : {1, 2,..., n} {1, 2,..., n}, i σ(i).

Mehr