Praktikum Fahrzeugsysteme



Ähnliche Dokumente
Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Elektrischer Widerstand

Strom - Spannungscharakteristiken

Zeichen bei Zahlen entschlüsseln

Skalierung des Ausgangssignals

2 Gleichstrom-Schaltungen

Fit für die Prüfung Elektrotechnik Effektives Lernen mit Beispielen und ausführlichen Lösungen

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Messung der Ausgangsspannung an einem FU

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Fragebogen: Abschlussbefragung

Berechnungsgrundlagen

Kennlinienaufnahme elektronische Bauelemente

Professionelle Seminare im Bereich MS-Office

Leistungselektronik Grundlagen und Standardanwendungen. Praktikumsunterlagen

Technische Thermodynamik

ELEXBO A-Car-Engineering

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

E-Labor im WS / SS. Versuch HS Homogenes Strömungsfeld / Passive Zweipole

ELEKTROTECHNISCHES PRAKTIKUM 1

Praktikum 3 Aufnahme der Diodenkennlinie

OECD Programme for International Student Assessment PISA Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 1: Messungen an linearen und nichtlinearen Widerständen

Praktikum Physik. Protokoll zum Versuch: Kennlinien. Durchgeführt am Gruppe X. Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.

Aufgaben Wechselstromwiderstände

Wechselstromwiderstände

Was meinen die Leute eigentlich mit: Grexit?

Naturwissenschaftliche Fakultät II - Physik. Anleitung zum Anfängerpraktikum A2

file://c:\documents and Settings\kfzhans.BUERO1\Local Settings\Temp\ e...

Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum. Praktikum Nr. 2. Thema: Widerstände und Dioden

EO Oszilloskop. Inhaltsverzeichnis. Moritz Stoll, Marcel Schmittfull (Gruppe 2) 25. April Einführung 2

POGGENDORFSCHE KOMPENSATIONSMETHODE

Widerstände I (Elektrischer Widerstand, Reihen- und Parallelschaltung)

Virtueller Seminarordner Anleitung für die Dozentinnen und Dozenten

Eine Logikschaltung zur Addition zweier Zahlen

Elektrische Energie, Arbeit und Leistung

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

A1.7: Entropie natürlicher Texte

Geneboost Best.- Nr Aufbau Der Stromverstärker ist in ein Isoliergehäuse eingebaut. Er wird vom Netz (230 V/50 Hz, ohne Erdung) gespeist.

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4

Stationsunterricht im Physikunterricht der Klasse 10

Praktikum Grundlagen der Elektrotechnik

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet.

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2

Grundlagen der Elektrotechnik

Übungspraktikum 3 Physik II

Leseauszug DGQ-Band 14-26

Simulation LIF5000. Abbildung 1

Motorkennlinie messen

Übungen zur Softwaretechnik

Wärmedämmungsexperiment 1

Keine Disketteneinreichung ab 1. Februar 2014

Versuch 6 Agilent VEE Transistorkennlinie mittels VXI Systems mittels VXI-Plug&Play Driver über IEEE488-Bus

Mean Time Between Failures (MTBF)

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2

RT-E: Entwurf der Drehzahlregelung eines Gebläsemotors

Messung von Spannung und Strömen

Vergleichsklausur 12.1 Mathematik vom

Die Zentralheizung der Stadt Wer heizt wie?

Protokoll zu Versuch E5: Messung kleiner Widerstände / Thermoelement

Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 4: Reihenschwingkreis

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

Didaktik der Physik Demonstrationsexperimente WS 2006/07

Sicherheitseinstellungen... 2 Pop-up-Fenster erlauben... 3

Bundesverband Flachglas Großhandel Isolierglasherstellung Veredlung e.v. U g -Werte-Tabellen nach DIN EN 673. Flachglasbranche.

Das Formelzeichen der elektrischen Spannung ist das große U und wird in der Einheit Volt [V] gemessen.

UserManual. Handbuch zur Konfiguration einer FRITZ!Box. Autor: Version: Hansruedi Steiner 2.0, November 2014

E 1 - Grundversuche Elektrizitätslehre

Institut für Computational Engineering ICE. N ä h e r d ra n a m S ys t e m d e r Te c h n i k d e r Z u ku n f t. w w w. n t b.

Vorlesung: Prof. Dr.-Ing. Matthias Viehmann

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3.

Lösungsmethoden gewöhnlicher Differentialgleichungen (Dgl.)

Wie funktioniert eine Glühlampe?

In diesem Bereich wird beschrieben, wie Sie eine Datensicherung der Software Jack Plus durchführen können.

Wellen. 3.&6. November Alexander Bornikoel, Tewje Mehner, Veronika Wahl

Stellen Sie bitte den Cursor in die Spalte B2 und rufen die Funktion Sverweis auf. Es öffnet sich folgendes Dialogfenster

Physik III - Anfängerpraktikum- Versuch 302

Bedienungsanleitung EKZ Preis- und Produktvergleichsrechner

auf, so erhält man folgendes Schaubild: Temperaturabhängigkeit eines Halbleiterwiderstands

Elektrische Messtechnik, Labor

EMIS - Langzeitmessung

Physikalisches Praktikum

Installation OMNIKEY 3121 USB

IIE4. Modul Elektrizitätslehre II. Transformator

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Das Persönliche Budget in verständlicher Sprache

Versuch 3. Frequenzgang eines Verstärkers

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

Local Control Network

ρ = 0,055 Ωmm 2 /m (20 C)

Übungsaufgaben Tilgungsrechnung

Hinweise zum Ausfüllen der Zeiterfassung

Welche Unterschiede gibt es zwischen einem CAPAund einem Audiometrie- Test?

Praktikum Physik. Protokoll zum Versuch: Wechselstromkreise. Durchgeführt am Gruppe X

oder: AK Analytik 32. NET ( Schnellstarter All-Chem-Misst II 2-Kanäle) ToDo-Liste abarbeiten

Statistische Thermodynamik I Lösungen zur Serie 1

Transkript:

Fahrzeugsysteme und Grundlagen der Elektrotechnik Prof. Dr. rer. nat. L. Brabetz Praktikum Fahrzeugsysteme Versuchsunterlagen Dirk Schneider c Fachgebiet Fahrzeugsysteme und Grundlagen der Elektrotechnik

76 4 Messung/Modellierung an/von Fahrzeugkomponenten 4.1 Einführung Für Untersuchungen an größeren elektronischen Systemen wie dem Fahrzeugbordnetz werden vermehrt Simulationen eingesetzt. Hierbei müssen verschiedene zum Teil noch unbekannte Verbraucher modelliert werden. Mit diesen Modellen können elektronische Lasten angesteuert werden, die ihrerseits den Verbraucher im Bordnetz nachbilden. Ziel dieses Versuchs ist es einen einfachen Verbraucher messtechnisch zu charakterisieren und aus den resultierenden Daten ein Modell zu entwickeln, welches zur Ansteuerung einer elektronische Last geeignet ist. Anschließend ist das Modell anhand der aufgenommenen Messdaten zu verifizieren und zu bewerten. In einem weiteren Schritt erfolgt die Ansteuerung einer elektronischen Last aus dem Modell heraus. Abschließend soll auch diese Emulation evaluiert werden. 4.1.1 Modelle Bei der Modellierung ist zwischen zwei Verfahren zu unterscheiden: Das physikalische Modell bildet die Funktion anhand der physikalische Formalismen ab. Hierbei sind die physikalischen Abhängigkeiten formal zu erfassen, die daraus resultierenden Differenzialgleichungen zu bilden und diese mit geeigneten Hilfsmitteln (z.b. MATLAB/Simulink) zu lösen. Einen weiteren Ansatz stellt die Nachbildung der Kennlinien durch Approximationsansätze dar. Hierbei werden die Kennlinien durch P-I-D-Ansätze modelliert, wobei die Parameter über Optimierungsverfahren bestimmt werden. 4.1.2 Das physikalische Modell einer Glühlampe In diesem Versuch soll ein physikalisches Modell einer Glühlampe entworfen werden. Hierzu werden in diesem Abschnitt die physikalischen Gleichungen und Konstanten zum Erstellen eines (vereinfachten) mathematischen Modells einer Glühlampe beschrieben. Die Glühwendeln der heutigen Glühlampen bestehen fast ausschließlich aus Wolfram, weshalb sich alle Variablen und Konstanten dieser Beschreibung mit Index W auf materialspezifische Ergebnisse/Konstanten für Wolfram beziehen. In Tabelle 4.2 finden Sie alle nötigen Stoffkonstanten. Basis des Modells ist das Temperaturverhalten von Widerständen nach Gleichung 4.1.

4.1 Einführung 77 Metalle wie Wolfram zeigen hier ein klassisches PTC-Verhalten (Kaltleiter, positiver Temperaturkoeffizient). R W = R 20 (1 + T α W + T 2 β W ) (4.1) mit folgt T = T W T U [K] (4.2) R W = R 20 (1 + (T W T U ) α W + (T W T U ) 2 β W ) [Ω] (4.3) Das Problem in diesem Modell ist die Wolframtemperatur T W. Beim Einschalten erhitzt sich die Glühwendel stark durch die aufgenommene elektrische Leistung und beginnt zu glühen, der Widerstand steigt und das System pendelt sich im Wärmeaustausch mit der Umgebungstemperatur T U auf eine konstante Temperatur T W ein. Der Temperaturanstieg von T W kann mit den folgenden Zusammenhängen in eine nichtlineare Differentialgleichung überführt werden. Vereinfachend wird von direkter Wärmestrahlung in die Umgebungsluft nach dem Stefan-Boltzmann-Gesetz ausgegangen (Eigentlich ist der Glaskolben einer Glühlampe mit Schutzgas gefüllt. Es gibt einen Wärmeaustausch zwischen Glaskolben Umgebung, Glaskolben Schutzgas und Schutzgas Glühwendel). Strahlungsleistung nach Stefan-Boltzmann: P = σ A T 4 [ W] (4.4) Beim Aufstellen der Gleichung für die Gesamtleistung ist darauf zu achten, dass die Glühwendel durch die elektrische Leistung und die Wärmestrahlung durch die Umgebungstemperatur erhitzt wird und sich durch Abstrahlen der hohen Wolframtemperatur abkühlt. Daraus ergibt sich die Wolframtemperatur T W : T W = Q C W [ K] (4.5) Die Wärmemenge Q ist eine Energie, also gilt: Q = P dt [ Ws] = [ J] (4.6) Die Wärmekapazität C W lässt sich mit Hilfe der spezifischen Wärmekapazität von Wolfram c W und der Masse des Glühdrates m W bestimmen: C W = c W m W [ J K ] (4.7) Damit kann die Differentialgleichung für T W aufgestellt werden.

4.1 Einführung 78 Tabelle 4.1: Daten zur Wendelgeometrie Wolframdrahtdurchmesser Länge der Wendel Wendeldurchmesser d wo = 0, 08 mm = 8 10 5 m l we = 5, 88 10 3 m d we = 7, 4 10 4 m Tabelle 4.2: Konstanten Stefan-Boltzmann-Konstante: σ = 5, 67 10 8 W m 2 K 4 Dichte von Wolfram ϱ W = 19, 27 kg dm 3 = 19, 27 10 3 kg m 3 spezifische Wärmekapazität von Wolfram c W = 0, 134 J gk kgk spezifischer Widerstand von Wolfram ρ W = 0, 055 Ωmm2 m = 0, 055 10 6 Ωm Temperaturbeiwert 1. Ordnung α W = 4, 1 10 3 1 K Temperaturbeiwert 2. Ordnung β W = 1 10 6 1 K 2 Wendelgeometrie Wolframdraht d we d wo I wo l we Abbildung 4.1: Vereinfachte Wendelgeometrie

4.2 Vorbereitungen 79 4.2 Vorbereitungen 4.2.1 Allgemein Bereiten Sie sich mit Hilfe der Einleitung, den Vorlesungsunterlagen und mit weiteren Quellen (Bibliothek, Internet) ausführlich vor. Sollten Fragen offen bleiben, wenden Sie sich bitte rechtzeitig an einen Betreuer oder Herrn Haas, R. 1322.1, WA 73. 4.2.2 Fragen zur Vorbereitung Beantworten Sie bitte zur Vorbereitung dieses Versuches schriftlich folgende Fragen: (Wählen Sie allgemeine Ansätze. Die konkreten Werte ergeben sich während des Versuchs!) 1. Schätzen Sie für das endgültige Systemmodell die Wendelgeometrie ab. Man benötigt für das Stefan-Boltzmann-Gesetz die Wendeloberfläche (Abstrahlfläche) und für die Masse das Wolframvolumen. Der Widerstand R 20 wird im Versuch gemessen. Erstellen Sie ein m-file 1 in dem die Wendeloberfläche, die Länge des Wolframdrahtes, der Wolframdrahtquerschnitt, das Wolframdrahtvolumen und die Masse des Drahtes in Abhängigkeit von R 20 und den gegebenen Konstanten berechnet werden. 2. Das Modell der Glühlampe basiert auf zwei Gleichungen. Die erste Gleichung ist die Gleichung 4.3 zur Bestimmung von R W. Stellen Sie die zweite Gleichung zur Bestimmung von T W auf. Diese Gleichung ist eine Differentialgleichung (DGL). Welche Eigenschaften hat diese DGL? 4.3 Versuchsdurchführung 4.3.1 I/U-Kennlinie einer Glühlampe Gegeben sind folgende Komponenten: Glühlampe, Quelle und zwei Multimeter. Nehmen Sie zu Beginn der Messungen den Kaltwiderstand R 20 der Glühlampe auf! Es soll das Strom-/Spannungsverhalten der Glühlampe aufgenommen werden. Bauen Sie hierfür eine geeignete Schaltung auf. Beachten Sie die Größenordnung des Glühlampenwiderstands. Welche Fehler können sich ergeben? Bewerten Sie die Messkette. 1 Kann auch als Textdatei geschrieben werden, wenn Sie keinen Zugriff auf Matlab haben

4.3 Versuchsdurchführung 80 Nehmen Sie die Kennlinie I = f(u) auf. Achten Sie auf die Erwärmung der Glühlampe. Schätzen Sie die Aufwärm- bzw. Abkühlzeit. Was folgt hieraus für die Messung? Wählen Sie bis zum Beginn des Glühens sehr kleine Messintervalle! Werten Sie die Messung graphisch aus. Gibt es Auffälligkeiten im Kurvenverlauf? Wenn ja, wie sind diese zu erklären? Hat die Umgebungstemperatur einen Einfluss? 4.3.2 Einschaltverhalten einer Glühlampe Gegeben sind folgende Komponenten: Glühlampe, Quelle, Oszilloskop, Stromzange für Oszilloskop (Fluke i310s) und Quecksilberschalter (Prellfrei). Es soll das Einschaltverhalten der Glühlampe aufgenommen werden. Bauen Sie hierfür eine geeignete Schaltung auf. Welche Fehler können sich ergeben? Bewerten Sie die Messkette. Welchen Einfluss hat das Oszilloskop bzw. die Quelle? Stellen Sie die Kennlinien von Strom I und Spannung U jeweils als Funktion der Zeit t dar. Werten Sie die Messung graphisch aus. Schätzen Sie die Einschwingzeit und den stationären Wert des Stromes mit Hilfe der Messung ab. Bewertung Sie die Messung bezüglich Messfehlern und Dynamik. Berücksichtigen Sie dabei insbesondere die Eigenschaften der verwendeten Geräte!

4.3 Versuchsdurchführung 81 4.3.3 Umsetzung des Modells einer Glühlampe in MATLAB/Simulink Mit Hilfe des Softwaretools MATLAB/Simulink soll ein Modell der Glühlampe erstellt werden. Hierzu ist das in der Vorbereitung entstandene Modell mit Simulink umzusetzen. Vergleichen Sie Ihr Modell mit den Messergebnissen aus 4.3.1 und 4.3.2 hinsichtlich Kurvenform, Einschwingdauer und Endwert des Stromes. Was für Abweichungen ergeben sich und wie sind diese zu erklären? 4.3.4 Steuerung einer elektronischen Last durch das MATLAB/Simulink-Modell einer Glühlampe Mit dem Real Time Windows Target Blockset lassen sich Signale über eine analoge I/O-Card ein- und auslesen. Hierüber besteht die Möglichkeit eine elektronische Last anzusteuern und die an ihr anliegenden Größen zurückzulesen. Die Integration eines vorgefertigten Subsystem- Blocks (siehe Abbildung 4.2) in das Simulink-Modell ermöglicht die direkte Ansteuerung der Abbildung 4.2: Vorgefertigter Simulink-Block zur Ansteuerung der elektronischen Last elektronischen Last. Kopieren Sie die Blöcke Ihres kontinuierlichen Modells in das zeitdiskrete Modell mit dem Subsystem-Block. Falls weitere Anpassungen notwendig sind, nehmen Sie diese vor. Überprüfen Sie die Emulation durch eine vergleichende Messung mit Ihren zuvor gefundenen Ergebnissen in Abschnitt 4.3.2 (Messung mit Oszilloskop und Stromzange an der Last). Welche Abweichungen ergeben sich und wie sind diese zu erklären? Inwieweit beeinflusst das Thema Echtzeit die gefundenen Ergebnisse?

Literatur 82 Literatur [1] CLAUSERT, H. ; WIESEMANN, G. : Grundgebiete der Elektrotechnik 1. 8. Auflage. München, Wien : Oldenbourg, 2003 [2] TIETZE, U. ; SCHENK, C. : Halbleiter-Schaltungstechnik. 12. Auflage. Berlin : Springer, 2002 [3] STÖCKER, H. (Hrsg.): Taschenbuch der Physik. 4. Auflage. Thun, Frankfurt am Main : Verlag Harri Deutsch, 2000