Satz 16 (Multiplikationssatz)

Ähnliche Dokumente
Satz 16 (Multiplikationssatz)

Wahrscheinlichkeitstheorie. Zapper und

Beispiel Zusammengesetzte Zufallsvariablen

2.2 Ereignisse und deren Wahrscheinlichkeit

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Kapitel 5. Stochastik

Wahrscheinlichkeitstheorie

15 Wahrscheinlichkeitsrechnung und Statistik

Grundbegriffe der Wahrscheinlichkeitstheorie

Discrete Probability - Übungen (SS5) Wahrscheinlichkeitstheorie. 1. KR, Abschnitt 6.1, Aufgabe 5: 2. KR, Abschnitt 6.1, Aufgabe 7:

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Venndiagramm, Grundmenge und leere Menge

Mathematische Grundlagen der Computerlinguistik

Wahrscheinlichkeitsrechnung für die Mittelstufe

Data Mining: Einige Grundlagen aus der Stochastik

Bayessche Netzwerke und ihre Anwendungen

Diskrete Verteilungen

Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg

2. Rechnen mit Wahrscheinlichkeiten

Lineare Abhängigkeit

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012

Wahrscheinlichkeitsrechnung

2 Mengen und Abbildungen

Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Klausur zur Vorlesung,,Algorithmische Mathematik II

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Allgemeine Definition von statistischer Abhängigkeit (1)

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Laplace und Gleichverteilung

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit

Kapitel ML:IV (Fortsetzung)

Lösungsvorschlag zu den Hausaufgaben der 8. Übung

Stochastik (Laplace-Formel)

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

Stochastik und Statistik für Ingenieure Vorlesung 4

Wirtschaftsstatistik I [E1]

10 Bedingte Wahrscheinlichkeit

Regelmäßigkeit (Erkennen von Mustern und Zusammenhängen) versus Zufall

18 Höhere Ableitungen und Taylorformel

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 5, Donnerstag, 20.

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

Kryptographie und Komplexität

Partitionen natürlicher Zahlen

Würfel-Aufgabe Bayern LK 2006

1 Sprechweisen und Symbole der Mathematik


Beurteilende Statistik

Aufgaben zum Wahrscheinlichkeitsrechnen

Zufallsvariablen: Die allgemeine Definition

Mathematik für Informatiker II Übungsblatt 7

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

Aufgaben zu Kapitel 38

Wahrscheinlichkeitsrechnung

Grundlagen der Mengenlehre

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2016

Einführung in die Wahrscheinlichkeitsrechnung und Statistik für Ingenieure

Einführung in die Computerlinguistik Statistische Grundlagen

Übungen zur Mathematik für Pharmazeuten

Mengensysteme, Wahrscheinlichkeitsmaße

Übungsblatt 9. f(x) = e x, für 0 x

Maximilian Gartner, Walther Unterleitner, Manfred Piok. Einstieg in die Wahrscheinlichkeitsrechnung

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Mengen und Abbildungen

Statistik 1: Einführung

Einführung in die Statistik

Bereiche der Stochastik

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge

Stochastik - Kapitel 2

LÖSUNGEN ZUM PREISAUSSCHREIBEN MIT DEM ZUFALL AUF DU UND DU

Methoden der KI in der Biomedizin Unsicheres Schließen

Angewandte Stochastik I

Vertiefung NWI: 13. Vorlesung zur Wahrscheinlichkeitstheorie

y P (Y = y) 1/6 1/6 1/6 1/6 1/6 1/6

Wahrscheinlichkeit. Kapitel Wahrscheinlichkeitsbegriff

9 Die Normalverteilung

Ein möglicher Unterrichtsgang

Diskrete Wahrscheinlichkeitsverteilungen

Würfelspiele und Zufall

Ebene algebraische Kurven

Dieser Begriff wurde von Jacob Bernoulli Ars conjectandi geprägt (1773), in dem das erste Gesetz der großen Zahlen bewiesen wurde.

Übungsrunde 4, Gruppe 2 LVA , Übungsrunde 4, Gruppe 2, Markus Nemetz, TU Wien, 10/2006

Kapitel 3. Natürliche Zahlen und vollständige Induktion

4. Grundzüge der Wahrscheinlichkeitsrechnung

1 1. Übung. Einleitung. 1.1 Urnenmodelle. 1.2 Beispiele. 1.3 Aufgaben

Kapitel 10. Bayes sche Verfahren Einführung Das Theorem von Bayes

6.1 Grundlagen der Wahrscheinlichkeitsrechnung Definitionen und Beispiele Beispiel 1 Zufallsexperiment 1,2,3,4,5,6 Elementarereignis

Definition der Entropie unter Verwendung von supp(p XY )

Themenbereich 1: Proportionalitätszuordnungen. Proportionale Zuordnungen. y bzw. Umgekehrt proportionale Zuordnungen. 6000g

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln

Simulation von Zufallsvariablen und Punktprozessen

4. Vektorräume und Gleichungssysteme

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

RUPRECHTS-KARLS-UNIVERSITÄT HEIDELBERG

Transkript:

Haug verwendet man die Denition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A \ B] = Pr[BjA] Pr[A] = Pr[AjB] Pr[B] : (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1 ; : : : ; A n gegeben. Falls Pr[A 1 \ : : : \ A n ] > 0 ist, gilt Pr[A 1 \ : : : \ A n ] = Pr[A 1 ] Pr[A 2 ja 1 ] Pr[A 3 ja 1 \ A 2 ] : : : : : : Pr[A n ja 1 \ : : : \ A n 1 ] : DWT 2 Bedingte Wahrscheinlichkeiten 44/460

Beweis: Zunachst halten wir fest, dass alle bedingten Wahrscheinlichkeiten wohldeniert sind, da Pr[A 1 ] Pr[A 1 \ A 2 ] : : : Pr[A 1 \ : : : \ A n ] > 0. Die rechte Seite der Aussage im Satz konnen wir umschreiben zu Pr[A 1 ] 1 Pr[A 1 \ A 2 ] Pr[A 1 ] Pr[A 1 \ A 2 \ A 3 ] Pr[A 1 \ A 2 ] : : : Oensichtlich kurzen sich alle Terme bis auf Pr[A 1 \ : : : \ A n ]. Pr[A 1 \ : : : \ A n ] Pr[A 1 \ : : : \ A n 1 ] : DWT 2 Bedingte Wahrscheinlichkeiten 45/460

Beispiel 17 (Geburtstagsproblem) Wie gro ist die Wahrscheinlichkeit, dass in einer m-kopgen Gruppe zwei Personen am selben Tag Geburtstag haben? Umformulierung: Man werfe m Balle zufallig und gleich wahrscheinlich in n Korbe. Wie gro ist die Wahrscheinlichkeit, dass nach dem Experiment jeder Ball allein in seinem Korb liegt? Fur das Geburtstagsproblem: n = 365 DWT 46/460

Oensichtlich muss m n sein, damit uberhaupt jeder Ball allein in einem Korb liegen kann. Wir nehmen an, dass die Balle nacheinander geworfen werden. A i bezeichne das Ereignis " Ball i landet in einem noch leeren Korb\. Das gesuchte Ereignis " Alle Balle liegen allein in einem Korb\ bezeichnen wir mit A. Nach Satz 16 konnen wir Pr[A] berechnen durch Pr[A] = Pr [\ m i=1a i ] = Pr[A 1 ] Pr[A 2 ja 1 ] : : : Pr[A m j \ m 1 i=1 A i]: Unter der Bedingung, dass die ersten j 1 Balle jeweils in einem leeren Korb gelandet sind, bedeutet A j, dass der j-te Ball in eine der n (j 1) leeren Korbe fallen muss, die aus Symmetriegrunden jeweils mit derselben Wahrscheinlichkeit gewahlt werden. DWT 2 Bedingte Wahrscheinlichkeiten 47/460

Daraus folgt Pr[A j j \ j 1 A n (j 1) i=1 i] = = 1 n j=1 j 1 n : Mit der Abschatzung 1 x e x und wegen Pr[A 1 ] = 1 erhalten wir my j 1 Pr[A] = 1 n my j=2 e (j 1)=n = e (1=n) P m 1 j=1 j = e m(m 1)=(2n) =: f(m) : DWT 48/460

1,0 ѵ 0,8 0,6 0,4 0,2 0,0 0 50 100 150 200 250 300 350 Verlauf von f(m) fur n = 365 DWT 49/460

Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1 ; : : : ; A n seien paarweise disjunkt und es gelte B A 1 [ : : : [ A n. Dann folgt Pr[B] = nx i=1 Pr[BjA i ] Pr[A i ] : Analog gilt fur paarweise disjunkte Ereignisse A 1 ; A 2 ; : : : mit B S 1 i=1 A i, dass Pr[B] = 1X i=1 Pr[BjA i ] Pr[A i ] : DWT 50/460

Beweis: Wir zeigen zunachst den endlichen Fall. Wir halten fest, dass B = (B \ A 1 ) [ : : : [ (B \ A n ) : Da fur beliebige i; j mit i 6= j gilt, dass A i \ A j = ;, sind auch die Ereignisse B \ A i und B \ A j disjunkt. Wegen (1) folgt Pr[B \ A i ] = Pr[BjA i ] Pr[A i ] (auch fur den Fall, dass Pr[A i ] = 0!). Wir wenden nun den Additionssatz (Lemma 8, Teil 5) an Pr[B] = Pr[B \ A 1 ] + : : : + Pr[B \ A n ] = Pr[BjA 1 ] Pr[A 1 ] + : : : + Pr[BjA n ] Pr[A n ] und haben damit die Behauptung gezeigt. Da der Additionssatz auch fur unendlich viele Ereignisse A 1 ; A 2 ; : : : gilt, kann dieser Beweis direkt auf den unendlichen Fall ubertragen werden. DWT 2 Bedingte Wahrscheinlichkeiten 51/460

Mit Hilfe von Satz 18 erhalten wir leicht einen weiteren nutzlichen Satz: Satz 19 (Satz von Bayes) Die Ereignisse A 1 ; : : : ; A n seien paarweise disjunkt, mit Pr[A j ] > 0 fur alle j. Ferner sei B A 1 [ : : : [ A n ein Ereignis mit Pr[B] > 0. Dann gilt fur ein beliebiges i = 1; : : : ; n Pr[A i jb] = Pr[A i \ B] Pr[B] = Pr[BjA i ] Pr[A i ] P n j=1 Pr[BjA j] Pr[A j ] : Analog gilt fur paarweise disjunkte Ereignisse A 1 ; A 2 ; : : : mit B S 1 i=1 A i, dass Pr[A i jb] = Pr[A i \ B] Pr[B] = Pr[BjA i ] Pr[A i ] P 1 j=1 Pr[BjA j] Pr[A j ] : DWT 52/460

Mit dem Satz von Bayes dreht man gewissermaen die Reihenfolge der Bedingung um. Gegeben die Wahrscheinlichkeit von B unter den Bedingungen A i (sowie die Wahrscheinlichkeiten der A i selbst), berechnet man die Wahrscheinlichkeit von A i bedingt auf das Ereignis B. Thomas Bayes (1702{1761) war ein bekannter Theologe und Mitglied der Royal Society. Als sein bedeutendstes Werk gilt sein Beitrag zur Wahrscheinlichkeitstheorie Essay Towards Solving a Problem in the Doctrine of Chances\. Diese Arbeit wurde " erst 1763 publiziert. DWT 2 Bedingte Wahrscheinlichkeiten 53/460

3. Unabhangigkeit Bei einer bedingten Wahrscheinlichkeit Pr[AjB] kann der Fall auftreten, dass die Bedingung auf B, also das Vorwissen, dass B eintritt, keinen Einuss auf die Wahrscheinlichkeit hat, mit der wir das Eintreten von A erwarten. Es gilt also Pr[AjB] = Pr[A], und wir nennen dann die Ereignisse A und B unabhangig. DWT 54/460

Beispiel 20 (Zweimaliges Wurfeln) := f(i; j) j 1 i; j 6g : Alle Elementarereignisse erhalten nach dem Prinzip von Laplace die Wahrscheinlichkeit 1 36. Wir denieren die Ereignisse A := Augenzahl im ersten Wurf ist gerade; B := Augenzahl im zweiten Wurf ist gerade; C := Summe der Augenzahlen beider Wurfe betragt 7: Es gilt Pr[A] = Pr[B] = 1 2 und Pr[C] = 1. Wie gro ist Pr[BjA]? 6 DWT 55/460

Beispiel 20 (Forts.) Nach unserer Intuition beeinusst der Ausgang des ersten Wurfs den zweiten Wurf nicht. Daher gewinnen wir durch das Eintreten von A keine Information in Bezug auf das Ereignis B hinzu: Daraus folgt B \ A = f(2; 2); (2; 4); (2; 6); (4; 2); (4; 4); (4; 6); (6; 2); (6; 4); (6; 6)g: Pr[B \ A] Pr[BjA] = = Pr[A] 9 36 1 2 = 1 2 = Pr[B] : Das Eintreen des Ereignisses B hat mit dem Ereignis A " nichts zu tun\. DWT 3 Unabhangigkeit 56/460

Denition 21 Die Ereignisse A und B heien unabhangig, wenn gilt Pr[A \ B] = Pr[A] Pr[B] : Falls Pr[B] 6= 0, so konnen wir diese Denition zu Pr[A] = Pr[A \ B] Pr[B] = Pr[AjB] umschreiben. DWT 3 Unabhangigkeit 57/460

Beispiel 20 (Zweimaliges Wurfeln, Forts.) Zur Erinnerung: A := Augenzahl im ersten Wurf ist gerade; B := Augenzahl im zweiten Wurf ist gerade; C := Summe der Augenzahlen beider Wurfe betragt 7: Bei den Ereignissen A und B ist die Unabhangigkeit klar, da oensichtlich kein kausaler Zusammenhang zwischen den Ereignissen besteht. Wie steht es mit A und C? und damit A \ C = f(2; 5); (4; 3); (6; 1)g Pr[A \ C] = 3 36 = 1 2 1 6 = Pr[A] Pr[C] bzw. Pr[CjA] = Pr[C] : DWT 58/460

Beispiel 20 (Forts.) Also sind auch A und C (und analog B und C) unabhangig. Bemerkung: Im Beispiel ist A \ C 6= ;. Es gilt sogar allgemein fur zwei unabhangige Ereignisse A und B mit Pr[A]; Pr[B] > 0, dass sie gar nicht disjunkt sein konnen, da ansonsten 0 = Pr[;] = Pr[A \ B] 6= Pr[A] Pr[B] : DWT 3 Unabhangigkeit 59/460

Beispiel 20 (Zweimaliges Wurfeln (Forts.)) Zur Erinnerung: A := Augenzahl im ersten Wurf ist gerade; B := Augenzahl im zweiten Wurf ist gerade; C := Summe der Augenzahlen beider Wurfe betragt 7: Wir betrachten das Ereignis A \ B \ C. Wenn A \ B eintritt, so sind beide gewurfelten Augenzahlen gerade und somit ergibt auch die Summe davon eine gerade Zahl. Daraus folgt Pr[A \ B \ C] = 0 bzw. Pr[CjA \ B] = 0 6= Pr[C]. Das Ereignis A \ B liefert uns also Information uber das Ereignis C. DWT 60/460

Denition 22 Die paarweise verschiedenen Ereignisse A 1 ; : : : ; A n heien unabhangig, wenn fur alle Teilmengen I = fi 1 ; : : : ; i k g f1; : : : ; ng mit i 1 < i 2 < : : : < i k gilt, dass Pr[A i1 \ : : : \ A ik ] = Pr[A i1 ] : : : Pr[A ik ]: (2) Eine unendliche Familie von paarweise verschiedenen Ereignissen A i mit i 2 N heit unabhangig, wenn (2) fur jede endliche Teilmenge I N erfullt ist. DWT 61/460

Lemma 23 Die (paarweise verschiedenen) Ereignisse A 1 ; : : : ; A n sind genau dann unabhangig, wenn fur alle (s 1 ; : : : ; s n ) 2 f0; 1g n gilt, dass wobei A 0 i = A i und A 1 i = A i. Pr[A s 1 1 \ : : : \ Asn n ] = Pr[As 1 1 ] : : : Pr[Asn n ]; (3) DWT 3 Unabhangigkeit 62/460

Beweis: Zunachst zeigen wir, dass aus (2) die Bedingung (3) folgt. Wir beweisen dies durch Induktion uber die Anzahl der Nullen in s 1 ; : : : ; s n. Wenn s 1 = : : : = s n = 1 gilt, so ist nichts zu zeigen. Andernfalls gelte ohne Einschrankung s 1 = 0. Aus dem Additionssatz folgt dann Pr[ A 1 \ A s 2 2 \ : : : \ Asn n ] = Pr[As 2 2 \ : : : \ Asn n ] Pr[A 1 \ A s 2 2 \ : : : \ Asn n ]: Darauf konnen wir die Induktionsannahme anwenden und erhalten Pr[ A 1 \ A s 2 2 \ : : : \ Asn n ] = Pr[A s 2 2 ] : : : Pr[Asn n ] Pr[A 1] Pr[A s 2 2 ] : : : Pr[Asn n ] = (1 Pr[A 1 ]) Pr[A s 2 2 ] : : : Pr[Asn n ]; woraus die Behauptung wegen 1 Pr[A 1 ] = Pr[ A 1 ] folgt. DWT 63/460

Beweis (Forts.): Fur die Gegenrichtung zeigen wir nur, dass aus (3) Pr[A 1 \ A 2 ] = Pr[A 1 ] Pr[A 2 ] folgt. Es gilt wegen des Satzes von der totalen Wahrscheinlichkeit, dass Pr[A 1 \ A 2 ] = = und es folgt die Behauptung. X X s 3 ;:::;s n2f0;1g s 3 ;:::;s n2f0;1g = Pr[A 1 ] Pr[A 2 ] = Pr[A 1 ] Pr[A 2 ]; Pr[A 1 \ A 2 \ A s 3 3 \ : : : \ Asn n ] Pr[A 1 ] Pr[A 2 ] Pr[A s 3 3 ] : : : Pr[Asn n ] X s 3 =0;1 Pr[A s 3 3 ] : : : X s n=0;1 Pr[A sn n ] DWT 64/460

Aus der Darstellung in Lemma 23 folgt die wichtige Beobachtung, dass fur zwei unabhangige Ereignisse A und B auch die Ereignisse A und B (und analog auch A und B bzw. A und B) unabhangig sind! Ebenso folgt: DWT 3 Unabhangigkeit 65/460

Lemma 24 Seien A, B und C unabhangige Ereignisse. Dann sind auch A \ B und C bzw. A [ B und C unabhangig. Beweis: Die Unabhangigkeit von A \ B und C folgt unmittelbar aus Denition 22. Aus Pr[(A [ B) \ C] = Pr[(A \ C) [ (B \ C)] = Pr[A \ C] + Pr[B \ C] Pr[A \ B \ C] = Pr[C] (Pr[A] + Pr[B] Pr[A \ B]) = Pr[A [ B] Pr[C] folgt die Unabhangigkeit von A [ B und C. DWT 66/460

4. Zufallsvariablen 4.1 Grundlagen Anstatt der Ereignisse selbst sind wir oft an " Auswirkungen\ oder " Merkmalen\ der (Elementar)Ereignisse interessiert. Denition 25 Sei ein Wahrscheinlichkeitsraum auf der Ergebnismenge gegeben. Eine Abbildung X :! R heit (numerische) Zufallsvariable. Eine Zufallsvariable X uber einer endlichen oder abzahlbar unendlichen Ergebnismenge heit diskret. DWT 67/460

Bei diskreten Zufallsvariablen ist der Wertebereich W X := X() = fx 2 R; 9! 2 mit X(!) = xg ebenfalls wieder endlich (bzw. abzahlbar unendlich). DWT 68/460

Beispiel 26 Wir werfen eine ideale Munze drei Mal. Als Ergebnismenge erhalten wir := fh; T g 3. Die Zufallsvariable Y bezeichne die Gesamtanzahl der Wurfe mit Ergebnis " Head\. Beispielsweise gilt also Y (HT H) = 2 und Y (HHH) = 3. Y hat den Wertebereich W Y = f0; 1; 2; 3g. DWT 4.1 Grundlagen 69/460

Fur W X = fx 1 ; : : : ; x n g bzw. W X = fx 1 ; x 2 ; : : :g betrachten wir (fur ein beliebiges 1 i n bzw. x i 2 N) das Ereignis A i := f! 2 ; X(!) = x i g = X 1 (x i ): Bemerkung: Anstelle von Pr[X 1 (x i )] verwendet man haug auch die Schreibweise Pr[ " X = x i \]. Analog setzt man Pr[ " X x i \] = X Oft lasst man auch die Anfuhrungszeichen weg. x2w X : xx i Pr[ " X = x\] = Pr[f! 2 ; X(!) x i g] : DWT 70/460

Denition 27 Die Funktion f X : R 3 x 7! Pr[X = x] 2 [0; 1] (4) nennt man (diskrete) Dichte(funktion) der Zufallsvariablen X. Die Funktion F X : R 3 x 7! Pr[X x] = X x 0 2W X : x 0 x heit Verteilung(sfunktion) der Zufallsvariablen X. Pr[X = x 0 ] 2 [0; 1] (5) DWT 71/460

Beispiel 28 Fur die Zufallsvariable Y erhalten wir Pr[Y = 0] = Pr[T T T ] = 1 8 ; Pr[Y = 1] = Pr[HT T ] + Pr[T HT ] + Pr[T T H] = 3 8 ; Pr[Y = 2] = Pr[HHT ] + Pr[HT H] + Pr[T HH] = 3 8 ; Pr[Y = 3] = Pr[HHH] = 1 8 : DWT 72/460

1,0 1,0 0,8 0,8 0,6 0,6 0,4 0,4 0,2 0,2 0,0 0 1 2 3 0,0 0 1 2 3 Dichte und Verteilung von Y Bemerkung: Man kann statt auch den zugrunde liegenden Wahrscheinlichkeitsraum uber W X betrachten. DWT 4.1 Grundlagen 73/460