Diskrete Modellierung (SS 08) Klausur (Modulabschlussprüfung)

Ähnliche Dokumente
Weitere Beweistechniken und aussagenlogische Modellierung

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie

Aufgabe Mögliche Punkte Erreichte Punkte a b c d Σ a b c d Σ x1 13

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung!

Lösungen zur 1. Klausur. Einführung in Berechenbarkeit, formale Sprachen und Komplexitätstheorie

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Lösungsvorschläge und Erläuterungen Klausur zur Vorlesung Grundbegriffe der Informatik 15. September 2016

Klausur: Modellierung Prof. Dr. U. Kastens, Universität Paderborn Wintersemester 2000/ , 09:00 11:00 Uhr

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2016/2017

Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Klausur zur Vorlesung Informatik III Wintersemester 2007/2008

Aufgabe 1: MC (10 Punkte) wahr 1P, falsch 0P, keine Ahnung 0.5P. Jede Struktur hat mindestens eine Substruktur

Nachklausur zur Vorlesung

Vorsemesterkurs Informatik

1. Welche der folgenden Aussagen zur Verifikation nach Hoare ist richtig?

Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2011/2012

Aufgabe Bonus.1. Aufgabe Bonus.2. Aufgabe Bonus.3. Aufgabe Bonus.4. HTWK Leipzig, Fakultät IMN Prof. Dr. Sibylle Schwarz

2. Schriftliche Leistungskontrolle (EK)

Klausur Algorithmentheorie

Theoretische Grundlagen der Informatik

Einführung in die Logik

Klausur zur Vorlesung Mathematische Logik

Vorlesung im Sommersemester Informatik IV. Probeklausurtermin: 21. Juni 2016

Klausur zur Vorlesung Grundbegriffe der Informatik 5. März 2014

2. Klausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2014/2015

Klausur SoSe Juli 2013

Modellierung. Prof.Dr. Hans Kleine Büning, Prof.Dr. Johannes Blömer. Paderborn, 6. Februar Universität Paderborn Institut für Informatik

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 =

Musterlösung zur Hauptklausur Theoretische Grundlagen der Informatik Wintersemester 2013/14

Maike Buchin 18. Februar 2016 Stef Sijben. Probeklausur. Theoretische Informatik. Bearbeitungszeit: 3 Stunden

Klausur: Modellierung. Bitte genau durchlesen!

2. Teilklausur zur Vorlesung Grundlagen der Theoretischen Informatik

Grundsätzlich gelten die in der Ordnung Ihres Studiengangs festgelegten Regelungen. Dieses hier sind nur ergänzende Hinweise.

3. Klausur Einführung in die Theoretische Informatik Seite 1 von 14

Klausur: Modellierung. Bitte genau durchlesen!

8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem

Die Prädikatenlogik erster Stufe: Syntax und Semantik

1. Klausur Einführung in die Theoretische Informatik Seite 1 von 14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Grundlagen der Theoretischen Informatik

Normalform. 2.1 Äquivalenz und Folgerung. 2.2 Die pränexe Normalform

Informatik 3 Theoretische Informatik WS 2016/17

1 Syntax und Semantik der Logik erster Stufe

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

1. Klausur zur Vorlesung Informatik III Wintersemester 2004/2005

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

TU Berlin Nachklausur TheGI 2 Automaten und Komplexität (Niedermeier/Hartung/Nichterlein, Sommersemester 2012)

2. Schriftliche Leistungskontrolle (EK)

Vorsemesterkurs Informatik

Tutorium 23 Grundbegriffe der Informatik (10. Sitzung)

Grundbegriffe der Informatik Tutorium 12

TheGI 1: Grundlagen und algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann Februar Schriftliche Leistungskontrolle (EK)

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011

Übungsaufgaben zu Formalen Sprachen und Automaten

Theorie der Informatik

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13)

Probeklausur Mathematische Logik

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen

3. Klausur Einführung in die Theoretische Informatik Seite 1 von Welches der folgenden klassischen Probleme der Informatik ist entscheidbar?

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1

Endliche Automaten, reguläre Ausdrücke, rechtslineare Grammatiken

Was bisher geschah Chomsky-Hierarchie für Sprachen: L 0 Menge aller durch (beliebige) Grammatiken beschriebenen Sprachen L 1 Menge aller monotonen

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch

Universität Karlsruhe Institut für Theoretische Informatik. Klausur: Informatik III

Musterlösung der Hauptklausur zur Vorlesung Theoretische Grundlagen der Informatik Wintersemester 2012/13

kontextfreie Grammatiken Theoretische Informatik kontextfreie Grammatiken kontextfreie Grammatiken Rainer Schrader 14. Juli 2009 Gliederung

Logik für Informatiker

Kapitel 1. Aussagenlogik

Beispiel Aussagenlogik nach Schöning: Logik...

Klausur: Berechenbarkeit und Komplexität (Niedermeier/Chen/Froese/Sorge, Sommersemester 2016)

Grundbegriffe der Informatik Tutorium 8

Was bisher geschah: klassische Aussagenlogik

5.2 Endliche Automaten

Logik erster Stufe FO

Grundlagen der Theoretischen Informatik

Automatentheorie und formale Sprachen

Diskrete Strukturen Wiederholungsklausur

Theoretische Informatik 2 bzw. Formale Sprachen und Berechenbarkeit. Sommersemester Herzlich willkommen!

Grammatiken. Grammatiken sind regelbasierte Kalküle zur Konstruktion von Systemen und Sprachen Überprüfung von Systemen und Sprachen

Lösungen zur Vorlesung Berechenbarkeit und Komplexität

Allgemeingültige Aussagen

Logik für Informatiker

Kapitel 1.5 und 1.6. Ein adäquater Kalkül der Aussagenlogik

Grundbegriffe der Informatik

Kapitel 1.5. Ein adäquater Kalkül der Aussagenlogik. Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls

Alphabet, formale Sprache

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie

1 Aussagenlogischer Kalkül

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Einführung in die Logik, Übungsklausur 2016/07/11

Tableaukalkül für Aussagenlogik

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch

(Prüfungs-)Aufgaben zu formale Sprachen

Klausur. Diskrete Mathematik I. Donnerstag, den um 14 Uhr

Notengebung. Teilnote Kreuzerlliste: 60% 69% 4; 70% 79% 3; 80% 89% 2; 90% 100% 1. Falls Sie weitere Fragen haben, bitte melden Sie sich bei mir.

Kontextfreie Grammatiken. Kontextfreie Grammatiken 1 / 45

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.

Datenstrukturen und Algorithmen 2. Klausur SS 2001

Logik für Informatiker

Transkript:

Johann Wolfgang Goethe-Universität Frankfurt am Main 8. September 2008 Institut für Informatik Theorie komplexer Systeme Prof. Dr. Nicole Schweikardt Diskrete Modellierung (SS 08) Klausur (Modulabschlussprüfung) Name: Vorname: Studiengang: BITTE GENAU LESEN Außer einem dokumentenechten Schreibstift sind zu dieser Klausur keine weiteren Hilfsmittel erlaubt. Bitte beachten Sie, dass das Mitbringen nicht zugelassener Hilfsmittel eine Täuschung darstellt und zwangsläufig zum Nichtbestehen der Klausur führt. Insbesondere müssen Sie Ihre Handys vor Beginn der Klausur ausschalten. Bitte legen Sie Ihre Goethe-Card bzw. Ihren Studierendenausweis und einen gültigen Lichtbildausweis deutlich sichtbar an Ihren Platz, damit wir im Laufe der Klausur die Identität überprüfen können. Zur Bearbeitung der Aufgaben stehen Ihnen 120 Minuten zur Verfügung. Überprüfen Sie, ob Ihr Exemplar der Klausur aus insgesamt 12 durchnummerierten Blättern besteht. Bitte schreiben Sie Ihre Lösungen direkt an die dafür vorgesehene Stelle. Gegebenenfalls können Sie auch die Rückseiten und die beigefügten Zusatzblätter benutzen. Weitere Blätter sind auf Nachfrage erhältlich. Begründungen sind nur dann notwendig, wenn die Aufgabenformulierung dies verlangt. Jedes Blatt der abgegebenen Lösung muss mit Namen, Vornamen und Matrikelnummer gekennzeichnet sein; andernfalls werden diese Blätter nicht gewertet. Schreiben Sie nicht mit Bleistift mit Bleistift angefertigte Lösungen werden nicht gewertet. Werden zu einer Aufgabe zwei oder mehr Lösungen angegeben, so gilt die Aufgabe als nicht gelöst. Entscheiden Sie sich also immer für eine Lösung. In der Klausur können maximal 100 Punkte erreicht werden. Die in den Übungsaufgaben im WS 07/08 erworbenen Bonuspunkte werden zu der in der Klausur erreichten Punktzahl hinzuaddiert. Werden insgesamt z 50 Punkte erreicht, so ist die Prüfung bestanden. Die Noten verteilen sich wie folgt: Note z Note z Note z Note 1: z 90 1, 0 90 > z 85 1, 3 2: 85 > z 80 1, 7 80 > z 76 2, 0 76 > z 72 2, 3 3: 72 > z 67 2, 7 67 > z 63 3, 0 63 > z 59 3, 3 4: 59 > z 54 3, 7 54 > z 50 4, 0 Die Ergebnisse der Klausur und Termine zur Klausureinsicht werden spätestens am 1.10.2008 auf der zur Vorlesung gehörigen Internetseite (www.informatik.uni-frankfurt.de/~tkshp/lehre/ws0708/dm/) bekanntgegeben. Aufgabe 1 2 3 4 5 6 Klausur Bonus Gesamt maximale Punkte 8 24 24 17 11 16 100 10 110 erreichte Punkte Note:

Aufgabe 1: vollständige Induktion (ca. 9 Minuten) (8 Punkte) Beweisen Sie durch vollständige Induktion nach n, dass für alle n N mit n 1 gilt: n (4i 1) = 2n 2 + n. i=1 Beweis: 1

Aufgabe 2: Aussagenlogik (ca. 28 Minuten) (24 Punkte) (a) An einer Straße befinden sich Ampeln für Autos und Fußgänger, d.h. ein Ampelpaar A 1, A 2 für Autos und ein Ampelpaar F 1, F 2 für Fußgänger: F 2 A 2 A 1 F 1 Natürlich zeigen die Ampeln A 1 und A 2 immer die gleichen Farben an. Analog für die Fußgängerampeln F 1 und F 2. Mit Hilfe der folgenden atomaren Aussagen lassen sich nun einfache Anforderungen an die Ampeln formulieren: X rot : X gelb : X grün : X Fußgänger : Die Ampeln A 1, A 2 zeigen rot. Die Ampeln A 1, A 2 zeigen gelb. Die Ampeln A 1, A 2 zeigen grün. Die Fußgängerampeln F 1, F 2 zeigen grün. Beispielsweise drückt die aussagenlogische Formel ( (X rot X gelb ) X grün ) aus, dass die Ampeln A 1, A 2 rot und gelb anzeigen, jedoch nicht grün. Geben Sie aussagenlogische Formeln an, die Folgendes aussagen: Falls die Ampeln A 1, A 2 grün oder gelb (oder beides) anzeigen, dann zeigen die Fußgängerampeln F 1, F 2 nicht grün. (2 Pkte) Die Ampeln A 1, A 2 zeigen (1) nur die Farbe rot (d.h. rot, aber nicht gelb und nicht grün), (2) nur die Farben rot und gelb, (3) nur die Farbe grün oder (4) nur die Farbe gelb an. (4 Pkte) 2

(b) Geben Sie für jede der folgenden aussagenlogischen Formeln an, ob sie erfüllbar, unerfüllbar und/oder allgemeingültig ist. Geben Sie außerdem folgendes für jede Formel an: Falls die Formel erfüllbar ist, geben Sie eine zur Formel passende Belegung an, die die Formel erfüllt. Falls die Formel nicht allgemeingültig ist, geben Sie eine zur Formel passende Belegung an, die die Formel nicht erfüllt. ϕ = ( X 1 (X 2 X 1 ) ) (9 Pkte) erfüllbar: ja nein unerfüllbar: ja nein allgemeingültig: ja nein Falls ϕ erfüllbar ist, geben Sie hier eine zu ϕ passende Belegung an, die ϕ erfüllt: Falls ϕ nicht allgemeingültig ist, geben Sie hier eine zu ϕ passende Belegung an, die ϕ nicht erfüllt: ψ = ( ( (X1 X 2 ) (X 1 X 3 ) ) ) (X 2 X 4 ) erfüllbar: ja nein unerfüllbar: ja nein allgemeingültig: ja nein Falls ψ erfüllbar ist, geben Sie hier eine zu ψ passende Belegung an, die ψ erfüllt: Falls ψ nicht allgemeingültig ist, geben Sie hier eine zu ψ passende Belegung an, die ψ nicht erfüllt: (c) Welche der folgenden Aussagen ist wahr, welche falsch? Kreuzen Sie alle richtigen Antworten an. Für jedes korrekte Kreuz bekommen Sie einen Punkt, für jedes falsche Kreuz wird ein Punkt abgezogen. Die Gesamtpunktzahl ist aber mindestens 0. Eine aussagenlogische Formel ϕ ist genau dann allgemeingültig, wenn ϕ unerfüllbar ist. Eine aussagenlogische Formel ϕ ist genau dann erfüllbar, wenn ϕ unerfüllbar ist. Zwei aussagenlogische Formeln ϕ und ψ sind genau dann äquivalent, wenn (ϕ ψ) allgemeingültig ist. wahr wahr wahr falsch falsch falsch 3

(d) Geben Sie eine zur Formel ϕ := ( (X 1 X 2 ) X 3 ) äquivalente aussagenlogische Formel in disjunktiver Normalform an. (6 Pkte) 4

Aufgabe 3: Graphen (ca. 28 Minuten) (24 Punkte) (a) Sei G = (V, E) der folgende gerichtete Graph: a e b d c (i) Geben Sie die Knotenmenge V und die Kantenmenge E von G an. Repräsentieren Sie G außerdem durch eine Adjazenzliste. V = E = Adjazenzliste: (ii) Wie groß ist der Eingangsgrad des Knotens a in G? (1 Pkt) (iii) Geben Sie einen Weg vom Knoten e zum Knoten a in G an: (1 Pkt) 5

(b) Betrachten Sie die folgenden ungerichteten Graphen G 1, G 2, G 3 : (8 Pkte) b 1 4 1 4 a c d 2 3 2 3 G 1 G 2 G 3 Welche der folgenden Aussagen ist wahr, welche falsch? Kreuzen Sie alle richtigen Antworten an. Für jedes korrekte Kreuz bekommen Sie zwei Punkte, für jedes falsche Kreuz werden zwei Punkte abgezogen. Die Gesamtpunktzahl ist aber mindestens 0. G 1 und G 2 sind isomorph. wahr falsch G 3 ist ein Spannbaum von G 2. wahr falsch G 3 ist ein induzierter Teilgraph von G 2. wahr falsch Es gibt eine konfliktfreie Knotenmarkierung von G 1 mit den Elementen aus {1, 2, 3}. wahr falsch (c) Geben Sie ein Matching maximaler Größe in dem folgenden Graphen an. Sie müssen keine Begründung dafür angeben, warum Ihr Matching maximal ist. (4 Pkte) A B C D E 1 2 3 4 5 6

(d) Ein Reiseleiter plant eine Tour durch ein Museum mit dem folgenden Grundriss: 1 4 Eingang 2 5 7 3 6 8 (i) Modellieren Sie den Grundriss des Museums als einen ungerichteten Graphen. (2 Pkte) (ii) Gibt es eine Tour durch das Museum, die in Raum 2 startet, in Raum 2 endet und jede Tür (außer der Eingangstür) genau einmal passiert? Beweisen Sie, dass Ihre Antwort korrekt ist. (5 Pkte) 7

Aufgabe 4: Logik erster Stufe (ca. 19 Minuten) (17 Punkte) (a) Sei σ = {Ḋ} eine Signatur mit einem zweistelligen Relationssymbol Ḋ, wobei Ḋ(x, y) besagt, dass es einen direkten Flug von Stadt x nach Stadt y gibt. (i) Geben Sie eine Formel ϕ der Logik erster Stufe über der Signatur σ an, die aussagt, dass für alle Städte x und y, für die es einen direkten Flug von x nach y gibt, auch ein direkter Flug von y nach x existiert. (2 Pkte) ϕ = (ii) Geben Sie eine Formel ψ(x, y) der Logik erster Stufe über der Signatur σ an, die für zwei gegebene Städte x und y aussagt, dass x und y verschieden sind und man von x nach y mit höchstens einer Zwischenlandung fliegen kann. (2 Pkte) ψ(x, y) = (iii) Beschreiben Sie umgangssprachlich, was die Formel ( ( ) ) χ(x) := y Ḋ(x, y) z Ḋ(z, y) z =x aussagt. 8

(b) Seien ϕ und ψ Formeln der Logik erster Stufe über einer Signatur σ. Was bedeutet es, dass ψ aus ϕ folgt? Geben Sie eine exakte Definition an. (c) Welche der folgenden Aussagen ist wahr, welche falsch? Kreuzen Sie alle richtigen Antworten an. Für jedes korrekte Kreuz bekommen Sie einen Punkt, für jedes falsche Kreuz wird ein Punkt abgezogen. Die Gesamtpunktzahl ist aber mindestens 0. x ϕ is äquivalent zu x ϕ. wahr falsch x y ϕ ist äquivalent zu y x ϕ. wahr falsch Aus ( x ϕ x ψ) folgt x(ϕ ψ). wahr falsch (d) Sei σ := {Ė} eine Signatur mit einem 2-stelligen Relationssymbol Ė. Geben Sie für die Formel ϕ := x 1 x 2 ( (Ė(x1, x 2 ) x 1 =x 2 ) x3 (Ė(x3, x 1 ) Ė(x 3, x 2 ) ) ) (4 Pkte) zwei σ-strukturen A, B an, so dass A die Formel ϕ erfüllt und B die Formel ϕ nicht erfüllt. A = B = 9

Aufgabe 5: endliche Automaten, reguläre Ausdrücke (ca. 12 Minuten) (11 Punkte) (a) Sei A der folgende deterministische endliche Automat: a a z 1 z 2 z 3 b b b a Welche der folgenden Wörter werden von A akzeptiert, welche nicht? Kreuzen Sie alle richtigen Antworten an. Für jedes korrekte Kreuz bekommen Sie einen Punkt, für jedes falsche Kreuz wird ein Punkt abgezogen. Die Gesamtpunktzahl ist aber mindestens 0. Wort... wird akzeptiert? baa ja nein baab ja nein aababaa ja nein (b) Geben Sie die graphische Darstellung eines nicht-deterministischen endlichen Automaten an, der genau diejenigen Wörter über dem Alphabet {a, b} akzeptiert, die mit einem Buchstaben enden, der vorher schon in dem Wort vorkam, d.h. alle Wörter der Form xuyu, wobei x, y {a, b} und u {a, b}. (4 Pkte) (c) Geben Sie einen regulären Ausdruck R an, der die Sprache aller Wörter über dem Alphabet Σ = {a, b,..., z, /, } definiert, die die Form (4 Pkte) /Name t x t haben, wobei Name ein nicht-leeres Wort ist, in dem weder / noch (also nur a, b,..., z) vorkommt. Wörter dieser Sprache sind z.b. /liesmich txt und /a txt, aber nicht die Wörter liesmich txt, /liesmich txt, /liesmich oder / txt. R = 10

Aufgabe 6: kontextfreie Grammatiken (ca. 19 Minuten) (16 Punkte) (a) Sei G = (T, N, S, P ) die kontextfreie Grammatik mit der Menge der Terminalsymbole T = {a, b, c} der Menge der Nichtterminalsymbole N = {S, X, Y } dem Startsymbol S der Menge der Produktionen P = { S XaY, X bx, X b, Y XcX } (i) Welche der folgenden Wörter gehören zu der von G erzeugten Sprache L(G), welche nicht? Kreuzen Sie alle richtigen Antworten an. Für jedes korrekte Kreuz bekommen Sie einen Punkt, für jedes falsche Kreuz wird ein Punkt abgezogen. Die Gesamtpunktzahl ist aber mindestens 0. liegt in L(G)? babbcb ja nein babbc ja nein babb ja nein (ii) Geben Sie einen Ableitungsbaum für das Wort bbabcb an: (iii) Geben Sie eine (mathematische oder umgangssprachliche) Beschreibung der Sprache L(G), die von der oben angegebenen Grammatik G erzeugt wird, an. 11

(b) Die Menge BA der Booleschen Ausdrücke ist die Menge der Wörter über dem Alphabet Σ = {0, 1,,,, (, )}, die rekursiv wie folgt definiert ist: Basisregeln: (B) Die Symbole 0 und 1 sind in BA. Rekursive Regeln: (R1) Ist b BA, so ist auch b in BA. (R2) Sind b 1 und b 2 in BA, so sind auch (b 1 b 2 ) und (b 1 b 2 ) in BA. (i) Welche der folgenden Wörter gehören zur Sprache BA, welche nicht? Kreuzen Sie alle richtigen Antworten an. Für jedes korrekte Kreuz bekommen Sie einen Punkt, für jedes falsche Kreuz wird ein Punkt abgezogen. Die Gesamtpunktzahl ist aber mindestens 0. Wort... liegt in BA? (1 0) 0 ja nein (0 ( 1 0)) ja nein ( 1 0) ja nein (ii) Geben Sie eine kontextfreie Grammatik G BA an, die genau die Sprache BA erzeugt. (4 Pkte) 12