Klausur zu ausgew. Themen der Mathematik MasterStudiengang

Größe: px
Ab Seite anzeigen:

Download "Klausur zu ausgew. Themen der Mathematik MasterStudiengang"

Transkript

1 Klausur zu ausgew. Themen der Mathematik MasterStudiengang WS 2016/17, Prof. Dr. Hans-Jürgen Steens Name: Vorname: Matrikelnummer: Die Klausur besteht aus 19 Aufgaben. Es sind maximal 173 Punkte zu erreichen. Es sind alle Hilfsmittel zur selbständigen Bearbeitung erlaubt. Aufgabe Punkte

2 1. Teil: Komplexe Zahlen und Geometrie Aufgabe 1: ( Punkte) (zum warm werden) Berechnen Sie: a) (x2 +1) (x i) b) 5 c) d) 2 i ( 2 ( 2 2 (1 + i) ) (1 + i) ) n Aufgabe 2: (4 Punkte) Gegeben seien komplexe Zahlen x 1 + iy 1 und x 2 + iy 2 und es gelte (für ein α R) x 1 + iy 1 = i α (x 2 + iy 2 ). Rechnen Sie nach, dass diese komplexen Zahlen, aufgefasst als Vektoren des R 2 also (x 1, y 1 ) = x 1 + iy 1 und (x 2, y 2 ) = x 2 + iy 2, senkrecht aufeinander stehen. Aufgabe 3: (6 Punkte) Sei α : [0, 1] R 2 mit t (cos(2πt), sin(2πt)) ein Kreis um den Nullpunkt mit Radius 1. Zeigen Sie, dass der resultierende Geschwindigkeitsvektor α (t) jeweils senkrecht auf dem Ortsvektor α(t) steht und der Beschleunigungsvektor α (x) jeweils senkrecht auf dem Geschwindigkeitsvektor α (x). Hinweis: Sie können die Aufgabe elementar lösen, oder aber elegant mit Hilfe der Aufgabe 2. Aufgabe 4: (6 Punkte) Berechnen Sie alle Nullstellen des folgenden (komplexen) Polynoms ( z C): y = z 3 z 2 2iz + 2i. Hinweis: Suchen Sie eine (leicht zu ndende) reelle Nullstelle x 0 R dividieren sie durch den sich daraus ergebenden Linearfaktor (x x 0 ) und nden Sie für das verbleibende komplexe Polynom zweiten Grades dann die restlichen Nullstellen. 2

3 2. Teil Reelle und komplexe Dierenzierbarkeit, Integrale Aufgabe 5: (6 Punkte) Ist die komplexe Funktion z zz 2 komplex dierenzierbar? Wie sieht die Matrix der partiellen Ableitungen aus? Aufgabe 6: (12 Punkte) i) Die komplexe Exponentialfunktion ist deniert durch exp z = exp(x + iy) = e x (cos(y) + i sin(y)) Zeigen Sie, dass die komplexe Exponentialfunktion dierenzierbar ist und dass gilt: exp (z) = exp(z). ii) Die reelle Exponentialfunktion ist bekannterweise injektiv, so dass es eine eindeutige Umkehrfunktion gibt, nämlich den Logarithmus mit exp(log(x) = x(x > 0 und log(exp(x) = x(x R). Ist die komplexe Exponentialfunktion ebenfalls injektiv? iii) Können Sie Bereiche in der komplexen Zahlenebene angeben, in denen die komplexe Exponentialfunktion injektiv ist? iv) In den Bereichen, wo die komplexe Exponentialfunktion injektiv ist, hat sie natürlich eine Umkehrfunktion, der in Analogie zur reellen Exponentialfunktion ebenfalls Logarithmus, log(z) genannt wird und die ebenfalls komplex dierenzierbar ist. Zeigen Sie, dass log (z) = 1 z. (Hinweis: Benutzen Sie die Gleichung exp(log(z)) = z und die Kettenregel (die im Komplexen ebenso gilt wie im Reellen.) Aufgabe 7: (4 Punkte) Berechnen Sie das folgende Integral (d.h. nden sie eine Stammfunktion) e x cos(x)dx. Hinweis: Sie können das Integral auf zwei verschiedene Weisen berechen: Per partieller Integration oder indem Sie eine Abkürzung durch das Komplexe machen. Im letzteren Fall berechnen Sie zunächst die komplexe Stammfunktion e x e ix (warum wohl?). 3

4 3. Teil: Lineare Algebra, Funktionenräume und Hilberträume Aufgabe 8: (6 Punkte) Wir betrachten den Vektorraum der stetigen Funktionen p : [0, 1] R auf dem Intervall [0, 1]. i) Welche Länge haben die folgenden Polynome: a) y = x b) y = x 2. ii) Normieren Sie den Vektor y = x und projizieren Sie den Vektor y = x 2 auf ihn, um danach einen Vektor zu erhalten, der orthogonal auf y = x steht. Aufgabe 9: (12 Punkte) Finden Sie Eigenwerte und Eigenvektoren in C 2 für folgende Matrizen ( ) 1 i a) i 1 ( ) i 1 b) 1 i Zusatzfrage: Welche der Matrizen ist hermitesch? Was bedeutet dies für die Eigenvektoren? (Testen Sie dies.) Aufgabe 10: (10 Punkte) Wir betrachten den Vektorraum C 2 mit den Basisvektoren e 1 >= (i, 0) und e 2 >= (0, 1) i) Berechnen Sie die Koezienten des Vektors (1 + i, 2) bzgl. dieser Basis. ii) Berechnen Sie die Koezienten des Vektors (1 + i, 2) bzgl. der Basis f 1 >= (1/ 2, 1/ 2) und f 2 >= ( i/ 2, i/ 2). iii) Berechnen Sie die allgemeine Transformationsmatrix, die die Komponenten eines Vektors ψ > bzgl. der ersten Basis in Komponenten bzgl. der zweiten Basis umrechnet. Überprüfen Sie hiermit ihr Ergebnis aus i) und ii). Aufgabe 11: (8 Punkte) Berechnen Sie die Fouriertransformierte der Rechteckfunktion { 1 x 1; r(x) = 0, sonst. und skizzieren Sie diese (Sie spielt eine wichtige Rolle in der Mess- und Sensortechnik). 4

5 3. Teil: Potenzialfunktionen, Gradienten und Kurvenintegrale Aufgabe 12: (10 Punkte) Zeigen sie, dass das folgende Vektorfeld ein Potenzial besitzt und berechnen Sie dieses: F (x, y, z) = (ye xy + z, xe xy, x + 2z) Aufgabe 13: (10 Punkte) Besitzt die folgende Funktion lokale Extremwerte, wenn ja wo und welche? Aufgabe 14: (10 Punkte) f(x, y) = x 3 + y 3 + 3xy. Entwickeln Sie folgende Funktion in eine Taylorreihe um den Punkt ( 1, 1) in e ein Taylorpolynom bis zur zweiten Näherung: Aufgabe 15: (8 Punkte) f(x, y) = y ln(x) + xe y+2 Gegeben sei das folgende Vektorfeld im R 2 : F (x, y) = ( 2x 1 x 2 + x 2 2, 2x 1 x 2 + x 2 1). Berechnen Sie das Kurvenintegral auf dem Weg von ( 1, 1) bis (1, 1) und von da bis (1, 2). Aufgabe 16: (10 Punkte) Ist die folgende Funktion f : R 2 R dierenzierbar? x 6 + y 5 f(x, y) = x 4, (x, y) (0, 0) + y4 0 (x, y) = (0, 0) Aufgabe 17: (10 Punkte) Gegeben seien die beiden Funktionen f(x, y) = (x + y, xy) und g(x, y) = (ye x, xe y ) jeweils von R 2 nach R 2. Berechnen die das Dierenzial der Funktion f(g(x)) einmal direkt und einmal per Kettenregel. Aufgabe 18: (12 Punkte) i) Berechnen sie das komplexe Kurvenintegral ze z dz entlang eines Krei- (z i) 2 ses mit Radius 2 um den Nullpunkt. ii) Berechnen Sie das komplexe Kurvenintegral mit Radius 1 um den Nullpunkt. z z dz entlang eines Kreises 5

6 4. Teil: Bonusaufgabe Dierenzialgleichungen Aufgabe 19 : (18 Punkte) Vorbemerkung: Eine Dierenzialgleichung ist eine Gleichung, in der nicht nur eine Beziehung zwischen y und x hergestellt wird, um daraus einen funktionalen Zusammenhang y = f(x) zu gewinnen. Eine Dierenzialgleichung ist eine Gleichung, in der eine Beziehung zwischen y, y und x hergestellt wird und die Lösung in einer Funktion y = f(x) besteht, so dass mit y = f (x) und y = f(x) die Gleichung erfüllt wird. i) Zeigen Sie, dass f(x) = e x x 2 2x 2 eine Lösung der folgenden Dierenzialgleichung ist: y = y + x 2. ii) Dierenzialgleichungen können auch höhere Ableitungen beinhalten. Wichtige Beispiele sind die linearen Dierenzialgleichungen, die bei der Beschreibung von Schwingungen eine groÿe Rolle spielen. Sie haben die Form: y (n) bedeutet die n-te Ableitung von y. a n (x)y (n) + a 1 (x)y (1) + a 0 (x)y = f(x). Ist f(x) konstant 0, spricht man von einer homogenen linearen Dierenzialgleichung. Zeigen Sie, dass der Raum aller Lösungsfunktionen einer solchen homogenen Dierenzialgleichung einen Vektorraum bildet. iii) Eine wichtige Rolle spielen lineare Dierenzialgleichungen mit konstanten Koef- zienten. Bei ihnen sind die Funktionen a n (x) bis a 0 (x) Konstante. Testen Sie wie ein Lösungsansatz der Form y = e λx zu einer Lösung mit bestimmtem λ führen könnte. Untersuchen Sie also, wie dieser Ansatz zu einer Gleichung zur Bestimmung der λ und damit zu Lösungen führt. Benutzen Sie diesen Ansatz um Lösungen für folgende homogene lineare Dierenzialgleichung mit konstanten Koezienten zu nden: y y 6y = 0. 6

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4

Aufgabe 2 (5 Punkte) y = 1 x. y + 3e 3x+2 x. von f. (ii) Für welches u in R 2 gilt f(u) = [3, 3, 4] T? x 2 + a x 3 x 1 4x 2 + a x 3 2x 4 Prof. Dr. B. Billhardt Wintersemester 4/5 Klausur zur Vorlesung Höhere Mathematik II (BNUW) 4.3.5 Aufgabe (a) Ermitteln Sie die Nullstellen des Polynoms p(z) = z 4 4z 3 + 3z + 8z. Tipp: p( + i) =. (b)

Mehr

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det

Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik. Lösungsvorschläge. det UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Herbst 9.9.9 Diplom Vorprüfung bzw. Bachelor Modulprüfung Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge Aufgabe

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, Januar D BIOL, D CHAB Lösungen zu Mathematik I/II. ( Punkte) a) Wir benutzen L Hôpital lim x ln(x) L Hôpital x 3 = lim 3x + x L Hôpital = lim x ln(x) x 3x 3 = lim ln(x) x 3 x

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12

Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12 Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale (Wiederholung) HÖHERE MATHEMATIK 3 für Chemieingenieurwesen

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale (Wiederholung) HÖHERE MATHEMATIK 3 für Chemieingenieurwesen ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

= 11 ± 5, also k 1 = 3 und k 2 = 8.

= 11 ± 5, also k 1 = 3 und k 2 = 8. Stroppel Musterlösung.8.5, 8min Aufgabe (6 Punkte) Gegeben sei die Funktion f: R R: x x e x. (a) Zeigen Sie durch vollständige Induktion, dass für alle x R und alle k N gilt: f (k) (x) = ( ) k (x kx+(k

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010

Aufgaben für die 14. Übung zur Vorlesung Mathematik 2 für Informatiker: Analysis Sommersemester 2010 Aufgaben für die 4. Übung zur Vorlesung Mathematik für Informatiker: Analysis Sommersemester 4. Bestimmen Sie den Flächeninhalt der dreiblättrigen Kleeblattkurve γ für ein Kleeblatt. Die Polarkoordinaten-

Mehr

Modulprüfung Mathematik I Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik WS 2013/

Modulprüfung Mathematik I Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik, Wirtschaftsinformatik WS 2013/ Fakultät für Mathematik Institut für Algebra und Geometrie Prof. Dr. Martin Henk, Dr. Michael Höding Modulprüfung Mathematik I Fachrichtung: Computer Science in Engineering, Computervisualistik, Informatik,

Mehr

Technische Universität Berlin

Technische Universität Berlin Technische Universität Berlin Fakultät II Institut für Mathematik WS /5 G. Bärwol, A. Gündel-vom-Hofe..5 Februar Klausur Analysis II für Ingenieurswissenschaften Lösungsskizze. Aufgabe 6Punkte Bestimmen

Mehr

III Reelle und komplexe Zahlen

III Reelle und komplexe Zahlen Mathematik für Elektrotechniker Klausur Vorbereitung Prof Dr Volker Bach, Dr Sébastien Breteaux, Institut für Analysis und Algebra Jeder Satz, der einen Namen hat, ist wichtig III Reelle und komplexe Zahlen

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 3. Mai 203 *Aufgabe. Bestimmen Sie alle Punkte (x 0, y 0 ), an denen der Gradient der Funktion f(x, y) = (xy 2 8)e x+y Null ist. Untersuchen Sie, ob diese Punkte lokale

Mehr

Musterlösung Höhere Mathematik I/II Di. Aufgabe 1 (11 Punkte) Geben Sie die Matrixbeschreibung der Quadrik

Musterlösung Höhere Mathematik I/II Di. Aufgabe 1 (11 Punkte) Geben Sie die Matrixbeschreibung der Quadrik Aufgabe Punkte Geben Sie die Matrixbeschreibung der Quadrik {x R 3x 3x 8x x +x +4x +7 = 0} an Berechnen Sie die euklidische Normalform der Quadrik und ermitteln Sie die zugehörige Koordinatentransformation

Mehr

Übungen zum Ferienkurs Analysis II

Übungen zum Ferienkurs Analysis II Übungen zum Ferienkurs Analysis II Implizite Funktionen und Differentialgleichungen 4.1 Umkehrbarkeit Man betrachte die durch g(s, t) = (e s cos(t), e s sin(t)) gegebene Funktion g : R 2 R 2. Zeigen Sie,

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/

Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/ Mathematik für Wirtschaftswissenschaftler I (Lineare Algebra) 2. Klausur Wintersemester 2011/2012 21.03.2012 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN. Nachname:...................................................................

Mehr

Lösungshinweise zur Klausur

Lösungshinweise zur Klausur Höhere Mathematik 1 und 4..14 Lösungshinweise zur Klausur für Studierende der Fachrichtungen el, kyb,mecha,phys Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind.

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I (E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). September 7 (Hans-Georg Rück) Aufgabe (6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft Re(z) = und (z

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x).

cos(x)cos(2x)cos(4x) cos(2 n x) = sin(2n+1 x) 2 n+1 sin(x) = sin(2n+2 x) 2 n+2 sin(x). Stroppel/Sändig Musterlösung 8. 3., min Aufgabe 5 Punkte Beweisen Sie für alle x R {zπ z Z} die Formel für n N mit Hilfe der vollständigen Induktion. cosxcosxcosx cos n x = sinn+ x n+ sinx Dabei dürfen

Mehr

Mathematik I für MB und ME

Mathematik I für MB und ME Übungsaufgaben Aufgaben zur Wiederholung Mathematik I für MB und ME Fachbereich Grundlagenwissenschaften Prof Dr Viola Weiÿ Wintersemester 06/07 a) Stellen Sie die Gleichung a b 3+c = a +c, a, b > 0, nach

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 2011 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total Vollständigkeit

Mehr

KLAUSUR. Mathematik II (E-Techniker/Mechatroniker/W-Ingenieure) (W.Strampp) Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.

KLAUSUR. Mathematik II (E-Techniker/Mechatroniker/W-Ingenieure) (W.Strampp) Name: Vorname: Matr. Nr./Studiengang: Versuch Nr. KLAUSUR Mathematik II (E-Techniker/Mechatroniker/W-Ingenieure) 39 (WStrampp) Name: Vorname: Matr Nr/Studiengang: Versuch Nr: Für jede Aufgabe gibt es Punkte Zum Bestehen der Klausur sollten 7 Punkte erreicht

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. W. Farkas ETH Zürich, Februar 2018 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 2 3 4 5 6 Total

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, August 015 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 3 4 5 6 Total Vollständigkeit

Mehr

Polynome, Stetigkeit, Dierenzierbarkeit

Polynome, Stetigkeit, Dierenzierbarkeit Polynome, Stetigkeit, Dierenzierbarkeit Inhaltsverzeichnis 1 Polynome 1 1.1 Denitionen...................................................... 1 1.2 Nullstellen.......................................................

Mehr

Lösung zur Klausur zur Analysis II

Lösung zur Klausur zur Analysis II Otto von Guericke Universität Magdeburg 9.7.4 Fakultät für Mathematik Lösung zur Klausur zur Analysis II Vorlesung von Prof. L. Tobiska, Sommersemester 4 Bitte benutzen Sie für jede Aufgabe ein eigenes

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, Februar 014 BIOL-B HST PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Sändig 06. 09. 0 Klausur zur Höheren Mathematik / für Ingenieurstudiengänge Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 40 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhändig

Mehr

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth

REPETITORIUM DER HÖHEREN MATHEMATIK. Gerhard Merziger Thomas Wirth REPETITORIUM DER HÖHEREN MATHEMATIK Gerhard Merziger Thomas Wirth 6 INHALTSVERZEICHNIS Inhaltsverzeichnis Fl Formelsammlung F2 Formelsammlung Alphabete 11 Zeichenindex 12 1 Grundbegriffe 14 1.1 Logische

Mehr

Mathematik für Anwender I. Beispielklausur 3 mit Lösungen

Mathematik für Anwender I. Beispielklausur 3 mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur mit en Dauer: Zwei volle Stunden + 0 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Knarr 07. 09. 009 Klausur zur Höheren Mathematik / für Ingenieurstudiengänge Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 80 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhändig

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 3.9.5, min Aufgabe (8 Punkte) Gegeben ist der Körper K : {(x, y, z) R 3 x + 4y, z 3}. Berechnen Sie der Ausfluss von g : R 3 R 3 durch den Rand K mit g(x, y, z) (x

Mehr

Mathematik für Anwender I. Beispielklausur I mit Lösungen

Mathematik für Anwender I. Beispielklausur I mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 12/13 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch

Technische Universität Berlin Fakultät II Institut für Mathematik WS 12/13 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch Technische Universität Berlin Fakultät II Institut für Mathematik WS /3 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch 6.4.3 Rechenteil April Klausur Analysis II für Ingenieure. Aufgabe Punkte a Es gilt:

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, Januar 0 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 3 6 Total Vollständigkeit Bitte

Mehr

3 2 = 3 = 6. = lim. ln(n) ln(n+1) = ln(3) ln(n) = 1

3 2 = 3 = 6. = lim. ln(n) ln(n+1) = ln(3) ln(n) = 1 Stroppel Musterlösung.0.06, 80min Aufgabe 5 Punkte Bestimmen Sie die folgenden Grenzwerte. Falls die untersuchte Reihe nicht konvergiert, begründen Sie dies. 3 a n b c n! 3 n ln n n+ lnn+ lnn a Umformen

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte.

Stroppel Musterlösung , 180min. Aufgabe 1 (4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte. Stroppel Musterlösung 3908, 80min Aufgabe 4 Punkte) Bestimmen Sie die folgenden Grenzwerte und Funktionengrenzwerte a) 4n 3 9 lim b) lim n n + n) n + )5n 4) c) lim x 0 sinlnx + )) sinhx) a) Es ist lim

Mehr

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Mathematik für Informatiker und Softwaretechniker

Klausur. Wir wünschen Ihnen viel Erfolg! Klausur Mathematik für Informatiker und Softwaretechniker Apl. Prof. Dr. W.-P. Düll Fachbereich Mathematik Universität Stuttgart Klausur für Studierende der Fachrichtungen inf, swt Bitte unbedingt beachten: Bitte beschriften Sie jeden Ihrer Zettel mit Namen und

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Sei f : R R gegeben durch f(x 1, x ) = x 3

Mehr

Klausur zur Mathematik für Maschinentechniker

Klausur zur Mathematik für Maschinentechniker SS 04. 09. 004 Klausur zur Mathematik für Maschinentechniker Apl. Prof. Dr. G. Herbort Aufgabe. Es sei f die folgende Funktion f(x) = 4x 4x 9x 6 x (i) Was ist der Definitionsbereich von f? Woistf differenzierbar,

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3 4 5 6 -

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 5.9.7 Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (6+8+6 Punkte) a) Zeigen Sie durch Induktion nach n N: n (k ) = n k= b) Stellen Sie die folgenden Mengen

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben. ( Punkte) a) Wir berechnen lim sin(x ) x 3 + 4x L Hôpital = lim x cos(x ) 3x + 8x = 4. b) Wir benutzen L Hôpital lim

Mehr

Stroppel/Sändig Musterlösung , 240min. Aufgabe 1 (8 Punkte) Gegeben sind die Mengen. 4 z i = z +i. M 1 = z C z i Im(z +i) und M 2 = z C

Stroppel/Sändig Musterlösung , 240min. Aufgabe 1 (8 Punkte) Gegeben sind die Mengen. 4 z i = z +i. M 1 = z C z i Im(z +i) und M 2 = z C Stroppel/Sändig Musterlösung 6. 9. 2, 24min Aufgabe (8 Punkte) Gegeben sind die Mengen { } { M = z C z i Im(z +i) und M 2 = z C } 4 z i = z +i in der komplexen Zahlenebene. (a) Skizzieren Sie M und M 2.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2) MA923 http://wwwm5matumde/allgemeines/ma923_26s Sommersem 26 Probeklausur (4726) Krümmung

Mehr

H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur

H. Schmidli Mathematik für Physiker WS 10/11. Lösung der Klausur H. Schmidli Mathematik für Physiker WS / Lösung der Klausur. a) Zähler und Nenner konvergieren gegen. Somit verwenden wir die Regel von L Hospital e sin x x x e cos x (cos x)e sin x x (sin x)e cos x x

Mehr

Mathematik für Sicherheitsingenieure I A

Mathematik für Sicherheitsingenieure I A Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 9.0.08 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I A Aufgabe. (5+5+6+4 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

Mathematik für Sicherheitsingenieure I A

Mathematik für Sicherheitsingenieure I A Prof. Dr. J. Ruppenthal Wuppertal, 3.8.8 Dr. T. Pawlaschyk Mathematik für Sicherheitsingenieure I A Aufgabe. (5+5+5+5 Punkte) a) Geben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist.

Mehr

Höhere Mathematik 3 Herbst 2014

Höhere Mathematik 3 Herbst 2014 IMNG, Fachbereich Mathematik Universität Stuttgart Prof. Dr. K. Höllig Höhere Mathematik 3 Herbst 214 Aufgabe 1 Entscheiden Sie, welche der folgenden Aussagen richtig und welche falsch sind. (i) rot(2

Mehr

BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften

BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften Musterl osung BERGISCHE UNIVERSITÄT WUPPERTAL Fachbereich C Mathematik und Naturwissenschaften Analysis II Klausur WS 211/212 Prof. Dr. Hartmut Pecher 3.2.212, 9:15 Uhr Name Matr.Nr. Studienfach Fachsemester

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 13 Dr. Ana Cannas Serie 13: Online Test Einsendeschluss: 31. Januar 214 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1.

fj 2 = f n f n+1. fj 2 = 0 2 = 0 = 0 1 = f 0 f 1. f 2 j = f n f n+1 +fn+1 = (f n +f n+1 )f n+1 = f n+2 f n+1 = f n+1 f (n+1)+1. Stroppel Musterlösung 4..4, 8min Aufgabe 3 Punkte) Sei f n ) n N die Fibonacci-Folge, die durch f :=, f := und f n+ := f n +f n definiert ist. Beweisen Sie durch vollständige Induktion, dass für alle n

Mehr

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu:

Ordnen Sie die Bilder den zugehörigen Funktionen z = f(x, y) zu: 6. Februar 2012 Lösungshinweise Theorieteil Aufgabe 1: Die folgenden Bilder zeigen drei Niveaumengen N 0 {(x, y) R 2 : f(x, y) 0}: Ordnen Sie die Bilder den zugehörigen Funktionen z f(x, y) zu: (a) z (x

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. W. Farkas ETH Zürich, August 017 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 3 4 5 6 Total Bitte

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 10

Technische Universität München Zentrum Mathematik. Übungsblatt 10 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt Hausaufgaben Aufgabe. Sei f : R 2 R gegeben durch x 2 y für (x, y)

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel/Sändig 08. 0. 00 Klausur zur Höheren Mathematik / für Ingenieurstudiengänge Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 40 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhändig

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel 4.0.04 Klausur zur Höheren Mathematik / für Ingenieurstudiengänge Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 80 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhändig handbeschrieben.

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching

Analysis I. 14. Übungsstunde. Steven Battilana. battilana.uk/teaching Analysis I 4. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching June 6, 207 Erinnerung Die Reihe a k konvergiert falls, lim S n = lim n n n a k =: a k existiert. Satz (Majoranten/Minorantenkriterium)

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Mathematik II Sammlung von Klausuraufgaben

Mathematik II Sammlung von Klausuraufgaben Mathematik II Sammlung von Klausuraufgaben Die Klausur wird aus etwa 10 Aufgaben bestehen. Die folgenden Aufgaben sollen einen Eindruck vom Typ der Aufgaben vermitteln, die Bestandteil der Klausur sein

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel.08.05 Klausur zur Höheren Mathematik / für Ingenieurstudiengänge Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 80 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhändig handbeschrieben.

Mehr

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 23 (5.8.23). Gegeben seien die Matrizen A = 2 3 3 und B = 5 2 5 (a) Bestimmen Sie die Eigenwerte von A und B sowie die

Mehr

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3

Prof. Schneider Höhere Mathematik I/II Musterlösung A = x 1 = 6x 1 + x 3 x 2 = 2x 2 x 3 = x 1 + 6x 3 Aufgabe ( Punkte) a) Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix 6 A = 6 b) Bestimmen Sie die allgemeine Lösung des Differentialgleichungssystems x = 6x + x 3 x = x x 3 = x + 6x 3 c) Bestimmen

Mehr

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik I Wiederholung Mathematik für Bauingenieure Wiederholungsaufgaben: Mathematik I Aufgabe : Für die Aussagenverbindung T = (A B) ( A) gebe man

Mehr

Klausur Analysis II

Klausur Analysis II WS 28/9 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis II 6.2.28 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

Lineare Differentialgleichungen n-ter Ordnung

Lineare Differentialgleichungen n-ter Ordnung KAPITEL 5 Lineare Differentialgleichungen n-ter Ordnung 1 Veränderliche Koeffizienten Analog zu den linearen Dierentialgleichungen 2 Ordnung gilt: 75 76 5 LINEARE DIFFERENTIALGLEICHUNGEN n-ter ORDNUNG

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Lösungen der Aufgaben zu Kapitel 9

Lösungen der Aufgaben zu Kapitel 9 Lösungen der Aufgaben zu Kapitel 9 Abschnitt 9. Aufgabe a) Wir bestimmen die ersten Ableitungen von f, die uns dann das Aussehen der k-ten Ableitung erkennen lassen: fx) = x + e x xe x, f x) = e x e x

Mehr

Klausur zur Höheren Mathematik 1/2

Klausur zur Höheren Mathematik 1/2 Stroppel.9.08 Klausur zur Höheren Mathematik / für Ingenieurstudiengänge Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 80 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhändig handbeschrieben.

Mehr

Klausur: Differentialgleichungen Version mit Lösungen

Klausur: Differentialgleichungen Version mit Lösungen Universität Kassel Fachbereich 10/16 Dr. Sebastian Petersen 16.03.2016 Klausur: Differentialgleichungen Version mit Lösungen Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede

Mehr

Klausur zu Analysis und Wahrscheinlichkeitsrechnung AI 2

Klausur zu Analysis und Wahrscheinlichkeitsrechnung AI 2 1 Klausur zu Analysis und Wahrscheinlichkeitsrechnung AI 2 WS 2014/15, 21.01.2015 Prof. Dr. Hans-Jürgen Steens Name: Vorname: Matrikelnummer: Die Klausur besteht aus 23 Aufgaben. Es sind maximal 200 Punkte

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2018/2019 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Höhere Mathematik II für die Fachrichtung Physik. Übungs- und Scheinklausur

Höhere Mathematik II für die Fachrichtung Physik. Übungs- und Scheinklausur Institut für Analysis SS17 PD Dr. Peer Christian Kunstmann 15.7.17 Dipl.-Math. Leonid Chaichenets, Johanna Richter, M.Sc., Tobias Ried, M.Sc., Tobias Schmid, M.Sc. Höhere Mathematik II für die Fachrichtung

Mehr

Fakultät für Physik Jan von Delft, Olga Goulko, Florian Bauer T0: Rechenmethoden für Physiker, WiSe 2012/13. Probeklausur. Mittwoch,

Fakultät für Physik Jan von Delft, Olga Goulko, Florian Bauer T0: Rechenmethoden für Physiker, WiSe 2012/13. Probeklausur. Mittwoch, Fakultät für Physik Jan von Delft, Olga Goulko, Florian Bauer T0: Rechenmethoden für Physiker, WiSe 2012/13 http://homepages.physik.uni-muenchen.de/~vondelft/lehre/12t0/ Probeklausur Mittwoch, 16.01.2013

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Gewöhnliche Differentialgleichungen Prof.

Mehr

Stg.: AIW BU BVT ET EUT IIW LUM MB MEC SB VT Sonstige

Stg.: AIW BU BVT ET EUT IIW LUM MB MEC SB VT Sonstige Technische Universität Hamburg Wintersemester 7/8 Institut für Mathematik Prof. Dr. Marko Lindner Klausur zur Mathematik II (Veranstaltung: Lineare Algebra II) 5.3.8 Sie haben 6 Minuten Zeit zum Bearbeiten

Mehr

Prof. Dr. Rolf Linn

Prof. Dr. Rolf Linn Prof. Dr. Rolf Linn 6.4.5 Übungsaufgaben zu Mathematik Analysis. Einführung. Gegeben seien die Punkte P=(;) und Q=(5;5). a) Berechnen Sie den Anstieg m der Verbindungsgeraden von P und Q. b) Berechnen

Mehr

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. Analysis I, WiSe 2013/14, 04.02.2014 (Iske), Version A 1 Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. a) Welche der folgenden Aussagen über Folgen sind sinnvoll und

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Mathematik für Anwender I. Klausur

Mathematik für Anwender I. Klausur Fachbereich Mathematik/Informatik 27. März 2012 Prof. Dr. H. Brenner Mathematik für Anwender I Klausur Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

Wann heit eine Menge reeller Zahlen beschrankt? oen? abgeschlossen? Was ist das Supremum (Inmum) Maximum (Minimum) einer Teilmenge

Wann heit eine Menge reeller Zahlen beschrankt? oen? abgeschlossen? Was ist das Supremum (Inmum) Maximum (Minimum) einer Teilmenge 1 1 Check-Liste Analysis 1.1 Mengen und Abbildungen Wann heit eine Menge reeller Zahlen beschrankt? oen? abgeschlossen? kompakt? Was ist das Supremum (Inmum) Maximum (Minimum) einer Teilmenge von R? Was

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

Beispiele. zum Tutorium Numerisches Rechnen und Lineare Algebra WS 2016/2017

Beispiele. zum Tutorium Numerisches Rechnen und Lineare Algebra WS 2016/2017 Beispiele zum Tutorium Numerisches Rechnen und Lineare Algebra WS 6/7 Zur positiven Beurteilung der LV ist es notwendig, dass aus jedem der 9 Abschnitte (Lineare Gleichungssysteme, Determinanten, Vektorräume,

Mehr

Öffnen Sie den Klausurbogen erst nach Aufforderung! Mathematische Grundlagen I (CES) WS 2017 Klausur

Öffnen Sie den Klausurbogen erst nach Aufforderung! Mathematische Grundlagen I (CES) WS 2017 Klausur Professor Dr. Benjamin Berkels Professurvertreter Dr. Jan Giesselmann Öffnen Sie den Klausurbogen erst nach Aufforderung! Zugelassene Hilfsmittel: Mathematische Grundlagen I (CES) WS 2017 Klausur 15.03.2018

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Michael Wolf Daniel Stilck França Stefan Huber Zentralübung Z7.. Komplexe Wegintegrale TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Berechnen Sie die folgenden Integrale: (a cos(z e z z

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix

Stroppel Musterlösung , 180min. Aufgabe 1 (3 Punkte) Bestimmen Sie die Determinante der Matrix Stroppel Musterlösung 7.., 8min Aufgabe Punkte Bestimmen Sie die Determinante der Matrix A =. Geben Sie alle Lösungen x des homogenen Gleichungssystems Ax = an. Entwicklung nach der ersten Spalte: deta

Mehr

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016

Mathematik I+II. für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 Mathematik I+II für FT, LOT, PT, WT im WS 2015/2016 und SS 2016 I. Wiederholung Schulwissen 1.1. Zahlbereiche 1.2. Rechnen mit reellen Zahlen 1.2.1. Bruchrechnung 1.2.2. Betrag 1.2.3. Potenzen 1.2.4. Wurzeln

Mehr

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils

g(x) := (x 2 + 2x + 4) sin(x) für z 1 := 1 + 3i und z 2 := 1 + i. Geben Sie das Ergebnis jeweils . Aufgabe Punkte a Berechnen Sie den Grenzwert n + n + 3n. b Leiten Sie die folgenden Funktionen ab. Dabei ist a R eine Konstante. fx : lnx e a, gx : x + x + 4 sinx c Berechnen Sie z z und z z in der Form

Mehr

, die Folge (T n (f,x,0)) n N konvergiert.

, die Folge (T n (f,x,0)) n N konvergiert. König.08.05 Klausur zur Höheren Mathematik / für el, kyb, mech, phys Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 80 Minuten Erlaubte Hilfsmittel: Vier Seiten DIN A4 eigenhändig handbeschrieben.

Mehr