Überzeugungen aufgeben: Full meet, Maxichoice

Größe: px
Ab Seite anzeigen:

Download "Überzeugungen aufgeben: Full meet, Maxichoice"

Transkript

1 Überzeugungen aufgeben: Full meet, Maxichoice Dr. Uwe Scheffler [Technische Universität Dresden] Mai 2011

2 Withdrawal die Rücknahme Rücknahme (Withdrawal, Makinson) heißt ein Operator auf einer Überzeugungsmenge, wenn er allen Gärdenfors- Postulaten außer Recovery genügt. Beispiel Wenn α A, dann A α = A Wenn α A, dann A α = Cn( ) Closure A α = Cn(A α) Inclusion A α A Vacuity α Cn(A) = A α = A Success α Cn( ) = α Cn(A α) Extensionality α β Cn( ) = A α = A β Recovery A Cn((A α) {α}) Dr. Uwe Scheffler 2

3 Noch einmal Full-Meet-Kontraktion Restemenge Sei A eine Satzmenge und α ein Satz. A α ist die Menge aller Mengen B so, daß: 1. B A 2. α Cn(B) 3. Es gibt kein B so, daß B B A und α Cn(B ). Full Meet K α = (K α) α-kern β aus A ist genau dann Element des α-kerns, wenn es kein A A so gibt, daß A = α, aber A {β} = α. Beispiel Was gehört zum p-kern von A = {p, q, p q, r}? p nicht, denn A, = p, {p} = p p q nicht: {q} A, {q} = p, {q} {p q} = p q nicht: {p q} A, {p q} = p, {p q} {q} = p r schon! Dr. Uwe Scheffler 3

4 Vorsichtiges epistemisches Verhalten Core Identität β A α genau dann, wenn β A und es gibt kein A A so, daß α Cn(A ) und α Cn(A {β}). Full Meet ist eine Operation über einer (beliebigen) Menge genau dann, wenn sie Core Identität erfüllt. Meet Identität Wenn α, β A, dann (A α) (A β) = A (α β). Full Meet ist eine Operation über einer Überzeugungsmenge genau dann, wenn sie alle Gärdenfors-Postulate und Meet Identität erfüllt. Dr. Uwe Scheffler 4

5 Meet Identität ist nichts für Überzeugungsbasen: Sei A = {p, p q, p q} und eine Full-Meet-Kontraktion. A (p q) = (A (p q)) = {{p, p q}} = {p, p q} A (q p) = (A (q p)) = {{p q}} = {p q} A (q p) = (A (q p)) = {{p, p q}} = {p, p q} (A (p q)) (A (q p)) (A (p q)) Dr. Uwe Scheffler 5

6 Meet Identität ist nichts für Überzeugungskontraktionen: Beispiel 1: L: Was sind Eisbären und Orcas? S: Beides Säugetiere. L: [Wartet, schweigt, lächelt fies] S: Eisbären sind jedenfalls Säuger. Theorem: Sei A logisch abgeschlossen und Full Meet. Dann gilt: A α = A Cn({ α}) Beispiel 2: Anne glaubt, daß ihr Freund treu ist und daß Sydney die Hauptstadt von Australien ist. Nachdem sie erfuhr, daß Canberra die Hauptstadt Australiens ist, zweifelt sie an der Treue ihres Freundes. Dr. Uwe Scheffler 6

7 Nochmal Maxichoice Restemenge Sei A eine Satzmenge und α ein Satz. A α ist die Menge aller Mengen B so, daß: 1. B A 2. α Cn(B) 3. Es gibt kein B so, daß B B A und α Cn(B ). Maxichoice -Kontraktion heißt eine, für die gilt: K α K α. Konservativ: Erhalte so viel wie möglich! (1) Fullness: β A & β A α = α Cn(A α) & α Cn((A α) {β}) Dr. Uwe Scheffler 7

8 Fullness Fullness: β A & β A α = α Cn(A α) & α Cn((A α) {β}) Beispiel: Welche β gehören in A p für A = {p, q, p q, r}? p nicht, sonst wäre p Cn(A p) q nicht, falls p q drin ist p q nicht, falls q drin ist r gehört rein Relevance: Wenn β A und β A α dann existiert ein A : A α A A, α Cn(A ), α Cn(A {β}). Dr. Uwe Scheffler 8

9 Maxichoice Die Repräsentation Überzeugungsbasen: γ ist genau dann Maxichoice, wenn es Success, Inclusion, Fullness und Uniformity erfüllt. Überzeugungsmengen: Sei A eine Überzeugungsbasis und γ eine Maxichoice-Kontraktion. Dann gilt für alle α A und alle β: Entweder α β A γ α oder α β A γ α. Beispiel: Anna glaubte, Orcas sind Fische. Nachdem sie erfuhr, daß das nicht stimmt, glaubt sie deswegen nicht, daß wenn Orcas kene Fische sind, sie ihr Geld vertrunken hat, noch daß wenn Orcas keine Fische sind, sie ihr Geld nicht vertrunken hat. Dr. Uwe Scheffler 9

10 Konjunktionen kontrahieren (2) Conjunctive Inclusion: α Cn(A (α β)) = A (α β) A α (Verliert man beim Kontrahieren einer Konjunktion auch eines der Glieder, so verliert man dabei mehr als bei der Kontraktion um das Konjunktionsglied alleine.) (3) Conjunctive Overlap: (A α) (A β) A (α β) (Was man nicht bei der Kontraktion um beide Glieder verliert, verliert man auch nicht bei der Kontraktion um die Konjunktion.) Dr. Uwe Scheffler 10

11 Wie plausibel ist Conjunctive Overlap (3)? 1. Anna hat genug Geld. 2. Anna hat gestern nicht gespielt. 3. Anna hat gestern nicht getrunken. 4. Nicht 2., aber dennoch Nicht 3, aber dennoch Nicht 2. und nicht 3., und also? 1. Pinguine können nicht fliegen. 2. Strauße können nicht fliegen oder Kontraktion um 1. bleibt Kontraktion um 2. bleibt Kontraktion um 1. & 2. also? Dr. Uwe Scheffler 11

12 Zwei weitere Konjunktions-Kontraktions-Prinzipien (4) Concunctive Factoring: Es gilt A (α β) = A α oder A (α β) = A β oder A (α β) = (A α) (A β) (5) Concunctive Trisection: α A (α β) = α A (α β δ) Über die Konjunktions-Kontraktionen: Sei A eine Überzeugungsmenge und sei Partial Meet. Dann gilt: 1. Konjunktives Überlappen (3) genau dann, wenn Konjunktives Überschneiden (5). 2. Konjunktive Faktorierung (4) genau dann, wenn Konjunktives Überlappen (3) und Konjunktiver Einschluß (2). Dr. Uwe Scheffler 12

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Extremwertverteilungen

Extremwertverteilungen Seminar Statistik Institut für Stochastik 12. Februar 2009 Gliederung 1 Grenzwertwahrscheinlichkeiten 2 3 MDA Fréchet MDA Weibull MDA Gumbel 4 5 6 Darstellung von multivariaten, max-stabilen Verteilungsfunktionen

Mehr

3.Inferenzsysteme 3.4 Logische Programme und Antwortmengensemantik

3.Inferenzsysteme 3.4 Logische Programme und Antwortmengensemantik Darstellung, Verarbeitung und Erwerb von Wissen 3.Inferenzsysteme 3.4 Logische Programme und Antwortmengensemantik DVEW WS 2004/05 c Gabriele Kern-Isberner 1 Stratifizierte Programme (Whlg.) Sei P ein

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 4 26..25 INSTITUT FÜR THEORETISCHE INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Grundlagen der Informationverarbeitung

Grundlagen der Informationverarbeitung Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 27 29..24 FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Definition

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Einführung in. Logische Schaltungen

Einführung in. Logische Schaltungen Einführung in Logische Schaltungen 1/7 Inhaltsverzeichnis 1. Einführung 1. Was sind logische Schaltungen 2. Grundlegende Elemente 3. Weitere Elemente 4. Beispiel einer logischen Schaltung 2. Notation von

Mehr

Arbeitsblatt 1: Freiheit als Geschenk zum 2. Textabschnitt

Arbeitsblatt 1: Freiheit als Geschenk zum 2. Textabschnitt Kontakt: Anna Feuersänger 0711 1656-340 Feuersaenger.A@diakonie-wue.de 1. Freiheit als Geschenk Arbeitsblatt 1: Freiheit als Geschenk zum 2. Textabschnitt Foto: Wolfram Keppler Hier sind vier Bilder. Sie

Mehr

1. Richtig oder falsch? R F

1. Richtig oder falsch? R F FRANZ KAFKA: GIB S AUF! 1 Es war sehr früh am Morgen, die Straßen rein und leer, ich ging zum Bahnhof. Als ich eine Turmuhr mit meiner Uhr verglich 1, sah ich, dass es schon viel später war, als ich geglaubt

Mehr

Text a passt zu mir. Meine beste Freundin heißt. Freundschaft. Texte und Bilder Was passt zusammen? Lest und ordnet zu.

Text a passt zu mir. Meine beste Freundin heißt. Freundschaft. Texte und Bilder Was passt zusammen? Lest und ordnet zu. Freundschaft 1 a Die beste Freundin von Vera ist Nilgün. Leider gehen sie nicht in dieselbe Klasse, aber in der Freizeit sind sie immer zusammen. Am liebsten unterhalten sie sich über das Thema Jungen.

Mehr

Einfu hrung in Subversion mit TortoiseSVN

Einfu hrung in Subversion mit TortoiseSVN Einfu hrung in Subversion mit TortoiseSVN Inhalt Konzept... 1 Begriffe... 1 Werkzeuge... 2 Arbeiten mit TortoiseSVN... 2 Vorbereitung... 2 Erster Checkout... 2 Hinzufügen eines neuen Verzeichnisses...

Mehr

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik

Boole'sche Algebra. Inhaltsübersicht. Binäre Funktionen, Boole'sche Algebren, Schaltalgebra. Verknüpfungen der mathematischen Logik Boole'sche Algebr Binäre Funktionen, Boole'sche Algebren, Schltlgebr Inhltsübersicht Verknüpfungen der mthemtischen Logik Boole sche Algebren Grundelemente der Schltlgebr Regeln der Schltlgebr Normlformen

Mehr

Was ist Leichte Sprache?

Was ist Leichte Sprache? Was ist Leichte Sprache? Eine Presse-Information vom Verein Netzwerk Leichte Sprache in Leichter Sprache Leichte Sprache heißt: So schreiben oder sprechen, dass es alle gut verstehen. Leichte Sprache ist

Mehr

Das Spiel zum Film 1

Das Spiel zum Film 1 Das Spiel zum Film Unserem Ritter Rost stehen drei gefährliche Abenteuer bevor. Er muss ein Turnier erfolgreich bestehen, einen Drachen besiegen und seine Freundin, das Burgfräulein Bö, aus den Fängen

Mehr

Educational Exchange anvertraut. Die Berichte von

Educational Exchange anvertraut. Die Berichte von trotzdem hellwach. Sydneys Flughafen unterscheidet sich nicht großartig von anderen auf dieser Welt, aber dafür, dass er eben in Sydney ist, liebte ich ihn sofort. Im Ankunftsbereich tummelten sich etliche

Mehr

Arbeitsblatt 7: Verbindung nach oben zum 10. Textabschnitt

Arbeitsblatt 7: Verbindung nach oben zum 10. Textabschnitt Kontakt: Anna Feuersänger 0711 1656-340 Feuersaenger.A@diakonie-wue.de 1. Verbindung nach oben Arbeitsblatt 7: Verbindung nach oben zum 10. Textabschnitt Hier sind vier Bilder. Sie zeigen, was Christ sein

Mehr

HORIZONTE - Einstufungstest

HORIZONTE - Einstufungstest HORIZONTE - Einstufungstest Bitte füllen Sie diesen Test alleine und ohne Wörterbuch aus und schicken Sie ihn vor Kursbeginn zurück. Sie erleichtern uns dadurch die Planung und die Einteilung der Gruppen.

Mehr

4. Relationen. Beschreibung einer binären Relation

4. Relationen. Beschreibung einer binären Relation 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B

Mehr

Poveste. Brummi, der Braunbär

Poveste. Brummi, der Braunbär Brummi, der Braunbär Brummi ist ein freundlicher Braunbär. Er sucht Freunde. Eines Tages kommt er am Nordpol an. Hier leben viele Pinguine und Seehunde. Sie glauben, Brummi ist schmutzig. Alle lachen.

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

Was wäre, wenn es Legasthenie oder LRS gar nicht gibt?

Was wäre, wenn es Legasthenie oder LRS gar nicht gibt? Was wäre, wenn es Legasthenie oder LRS gar nicht gibt? Wenn Du heute ins Lexikon schaust, dann findest du etliche Definitionen zu Legasthenie. Und alle sind anders. Je nachdem, in welches Lexikon du schaust.

Mehr

Ländervergleich: Sachsen Afghanistan

Ländervergleich: Sachsen Afghanistan Ländervergleich: Sachsen Afghanistan 1 zu B1a Aufgabe 1 a Seht euch die Deutschlandkarte im Textbuch an. Wo liegt Sachsen? Bayern? Berlin? Hamburg? b Sucht auf einer Europakarte: Wo liegt Österreich? Wo

Mehr

Ein wesentliches, charakteristisches Merkmal aller Datenbankmanagement

Ein wesentliches, charakteristisches Merkmal aller Datenbankmanagement Anfrageformulierung: Allgemeines Ein wesentliches, charakteristisches Merkmal aller Datenbankmanagement nkmanagement- systeme ist die Unterstützung einer (oder mehrerer) Anfragesprachen. Eine Anfrage ist

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

1.4.12 Sin-Funktion vgl. Cos-Funktion

1.4.12 Sin-Funktion vgl. Cos-Funktion .4. Sgn-Funktion Informatik. Semester 36 36.4.2 Sin-Funktion vgl. Cos-Funktion Informatik. Semester 37 37 .4.3 Sqr-Funktion Informatik. Semester 38 38.4.4 Tan-Funktion Informatik. Semester 39 39 .5 Konstanten

Mehr

3. Erkennungsmerkmale für exzessives Computerspielverhalten

3. Erkennungsmerkmale für exzessives Computerspielverhalten Kopiervorlage 1 zur Verhaltensbeobachtung (Eltern) en und Hobbys Beobachtung: Nennen Sie bitte die Lieblingsaktivitäten Ihres Kindes, abgesehen von Computerspielen (z. B. Sportarten, Gesellschaftsspiele,

Mehr

Vgl. Oestereich Kap 2.7 Seiten 134-147

Vgl. Oestereich Kap 2.7 Seiten 134-147 Vgl. Oestereich Kap 2.7 Seiten 134-147 1 Sequenzdiagramme beschreiben die Kommunikation/Interaktion zwischen den Objekten (bzw. verschiedenen Rollen) eines Szenarios. Es wird beschrieben, welche Objekte

Mehr

Kennen Sie unsere Tiere der Welt?

Kennen Sie unsere Tiere der Welt? Kennen Sie unsere Tiere der Welt? Wir Drittklässlerinnen und Drittklässler haben ein grosses Tierrätsel für Sie hergestellt. Wir gehen im Schulhaus Lättenwiesen bei Frau Fuhrer zur Schule. Viel Spass beim

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mathematische Sprache und naive Mengenlehre Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johann-von-Neumann-Haus Fachschaft Menge aller Studenten eines Institutes

Mehr

Inhalt. Kapitel 1 Der Wunsch... 5 Was Gott über Geld sagt. Kapitel 2 Wem gehört der Ball? Alles gehört Gott

Inhalt. Kapitel 1 Der Wunsch... 5 Was Gott über Geld sagt. Kapitel 2 Wem gehört der Ball? Alles gehört Gott Ein Hund für Anna Eine geniale Gott-und-Geld-Geschichte für Kinder von 5 bis 7 Jahren Finanzielle Freiheit leben von Anfang an Kinder-Studienmaterial mit 12 Kapiteln plus Aktivitäten zur Vertiefung Howard

Mehr

Logik, Mengen und Abbildungen

Logik, Mengen und Abbildungen Kapitel 1 Logik, Mengen und bbildungen Josef Leydold Mathematik für VW WS 2016/17 1 Logik, Mengen und bbildungen 1 / 26 ussage Um Mathematik betreiben zu können, sind ein paar Grundkenntnisse der mathematischen

Mehr

Übungsaufgaben zur Vorlesung Modellbasierte Softwareentwicklung Wintersemester 2014/2015 Übungsblatt 8

Übungsaufgaben zur Vorlesung Modellbasierte Softwareentwicklung Wintersemester 2014/2015 Übungsblatt 8 Prof. Dr. Wilhelm Schäfer Paderborn, 8. Dezember 2014 Christian Brenner Tristan Wittgen Besprechung der Aufgaben: 15. - 18. Dezember 2014 Übungsaufgaben zur Vorlesung Modellbasierte Softwareentwicklung

Mehr

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge Lehrstuhl für Softwaretechnik und Programmiersprachen Professor Dr. Michael Leuschel Grundlagen der Theoretischen Informatik - Sommersemester 2012 Übungsblatt 1: Lösungsvorschläge Disclaimer: Bei Folgendem

Mehr

Kapitel 2. Boolesche Algebra. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 2. Boolesche Algebra. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kapitel 2 oolesche lgebra Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of pplied Sciences w Fakultät für Informatik Schaltalgebra, und sind Operatoren über der Menge {0,1} a b a b 0 0 0

Mehr

INFOS FÜR MENSCHEN AUS DEM AUSLAND WENN SIE FÜR EINEN FREIWILLIGEN-DIENST NACH DEUTSCHLAND KOMMEN WOLLEN: IN DIESEM TEXT SIND ALLE WICHTIGEN INFOS.

INFOS FÜR MENSCHEN AUS DEM AUSLAND WENN SIE FÜR EINEN FREIWILLIGEN-DIENST NACH DEUTSCHLAND KOMMEN WOLLEN: IN DIESEM TEXT SIND ALLE WICHTIGEN INFOS. INFOS FÜR MENSCHEN AUS DEM AUSLAND WENN SIE FÜR EINEN FREIWILLIGEN-DIENST NACH DEUTSCHLAND KOMMEN WOLLEN: IN DIESEM TEXT SIND ALLE WICHTIGEN INFOS. Stand: 29. Mai 2015 Genaue Infos zu den Freiwilligen-Diensten

Mehr

Themen neu 2/Lektion 3 Unterhaltung & Fernsehen Sprechübung KT sprechen mit Hilfe dieser Strukturen über Ihre Interessen und Desinteressen.

Themen neu 2/Lektion 3 Unterhaltung & Fernsehen Sprechübung KT sprechen mit Hilfe dieser Strukturen über Ihre Interessen und Desinteressen. Sprechübung KT sprechen mit Hilfe dieser Strukturen über Ihre Interessen und Desinteressen. Strukturen Ich mag (nicht). Am liebsten sehe ich Ich finde gut / schlecht. gefällt mir (nicht). Ich interessiere

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Wahlaufgabe Literarischer Text. Name: Den hat es erwischt. Beate Günther

Wahlaufgabe Literarischer Text. Name: Den hat es erwischt. Beate Günther Name: Den hat es erwischt Beate Günther 5 10 15 20 25 30 Was ist denn das? fragte ich Thorsten und zeigte auf seine ausgebeulte Schultasche. Was soll es schon sein? sagte er, doch er wurde puterrot im

Mehr

p Texte der Hörszenen: S.141

p Texte der Hörszenen: S.141 19 RadioD. berblick Information Paula und Philipp haben mit Eulalias Hilfe herausgefunden, dass die mysteriösen Kreise in einem Kornfeld von Bauern gemacht sind. Die beiden gehen in das Dorf und interviewen

Mehr

Sudoku. Warum 6? Warum 6?

Sudoku. Warum 6? Warum 6? . / Sudoku Füllen Sie die leeren Felder so aus, dass in jeder Zeile, in jeder Spalte und in jedem x Kästchen alle Zahlen von bis stehen.. / Warum?. / Warum?. / Geschichte der Logik Syllogismen (I) Beginn

Mehr

Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004

Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004 Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004 In der letzten Vorlesung haben wir gesehen, wie man die einzelnen Zahlenbereiche aufbaut. Uns fehlen nur noch die reellen Zahlen (siehe

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V

Mehr

2250 Deutsche Internetadressen, für kostenlose Kleinanzeigen"

2250 Deutsche Internetadressen, für kostenlose Kleinanzeigen 2250 Deutsche Internetadressen, für kostenlose Kleinanzeigen" Um Ihr Ziel des sicheren und wachsenden Einkommens bzw. einen höheren Bekanntheitsgrad zu erreichen, benötigen Sie ausreichend Adressen, die

Mehr

2. Vorlesung. Slide 40

2. Vorlesung. Slide 40 2. Vorlesung Slide 40 Knobelaufgabe Was tut dieses Programm? Informell Formal Wie stellt man dies sicher? knobel(a,b) { Wenn a = 0 dann return b sonst { solange b 0 wenn a > b dann { a := a - b sonst b

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

Zusammenfassung und Wiederholung zu Geraden im IR ²

Zusammenfassung und Wiederholung zu Geraden im IR ² Seite 1 von 5 Definition einer Geraden Wir zeichnen mithilfe einer Wertetabelle den Graphen der linearen Funktion f mit f 0,5 1. Fülle hierzu die Wertetabelle fertig aus: 4 3 1 0 1 3 4 f f4 0,54 1 3...,5...

Mehr

OKTOBERFEST Leichte Lektüre - Stufe 1

OKTOBERFEST Leichte Lektüre - Stufe 1 OKTOBERFEST Leichte Lektüre - Stufe 1 DIE HAUPTPERSONEN Stelle die vier Hauptpersonen vor! (Siehe Seite 5) Helmut Müller:..... Bea Braun:..... Felix Neumann:..... Bruno:..... OKTOBERFEST - GLOSSAR Schreibe

Mehr

Gruppentheorie und Symmetrie in der Chemie

Gruppentheorie und Symmetrie in der Chemie Gruppentheorie und Symmetrie in der Chemie Martin Schütz Institut für theoretische Chemie, Universität Stuttgart Pfaffenwaldring 55, D-70569 Stuttgart Stuttgart, 26. April 2002 Mathematische Definition

Mehr

Kannst du die Zeitformen schon gut?

Kannst du die Zeitformen schon gut? Kannst du Zeitformen schon gut? Spielregel für 2 bis 4 Spieler Man...... braucht Spielkarten einer Zeitform, z.b. der Mitvergangenheit.... teilt Karten nach der Farbe aus jeder erhält 12 Karten.... mischt

Mehr

AUFGABE 2: DER ERSTE KONTAKT

AUFGABE 2: DER ERSTE KONTAKT Seite 1 von 9 Materialien für den Unterricht zum Kurzfilm Amoklove von Julia C. Kaiser Deutschland 2009, 10 Minuten, Spielfilm AUFGABE 1: FILMTITEL Der Film heißt Amoklove, zusammengesetzt aus den beiden

Mehr

Erinnerung 1. Erinnerung 2

Erinnerung 1. Erinnerung 2 Erinnerung 1 Ein Argument ist eine Folge von Aussagesätzen, mit der der Anspruch verbunden ist, dass ein Teil dieser Sätze (die Prämissen) einen Satz der Folge (die Konklusion) in dem Sinne stützen, dass

Mehr

Signalverarbeitung 1

Signalverarbeitung 1 TiEl-F000 Sommersemester 2008 Signalverarbeitung 1 (Vorlesungsnummer 260215) 2003-10-10-0000 TiEl-F035 Digitaltechnik 2.1 Logikpegel in der Digitaltechnik In binären Schaltungen repräsentieren zwei definierte

Mehr

DEUTSCHE ABTEILUNG PSYCHICO COLLEGE LATSIO GRUNDSCHULE

DEUTSCHE ABTEILUNG PSYCHICO COLLEGE LATSIO GRUNDSCHULE DEUTSCHE ABTEILUNG PSYCHICO COLLEGE LATSIO GRUNDSCHULE Die deutschsprachigen Länder Informationen Die deutschsprachigen Länder sind drei: Deutschland, Österreich und die Schweiz. Sie sind die größten

Mehr

AN DER ARCHE UM ACHT

AN DER ARCHE UM ACHT ULRICH HUB AN DER ARCHE UM ACHT KINDERSTÜCK VERLAG DER AUTOREN Verlag der Autoren Frankfurt am Main, 2006 Alle Rechte vorbehalten, insbesondere das der Aufführung durch Berufs- und Laienbühnen, des öffentlichen

Mehr

Erfrischt in jeder Zelle

Erfrischt in jeder Zelle Monnica Hackl Erfrischt in jeder Zelle Das Verjüngungsbuch nymphenburger Die Ratschläge in diesem Buch sind von Autor und Verlag sorgfältig geprüft, dennoch kann keine Garantie übernommen werden. Jegliche

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 18. April 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen Was bisher geschah Lernen: überwachtes Lernen korrigierendes Lernen bestärkendes Lernen unüberwachtes Lernen biologisches Vorbild neuronaler Netze: Neuron (Zellkörper, Synapsen, Axon) und Funktionsweise

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Teil III Boolesche Algebra, Signalarten, Elektronische Bauteile Seite 1 Boolesche Algebra George Boole => englischer Mathematiker Mitte 19. Jahrhundert Formale Sicht digitaler

Mehr

Literatur zu geometrischen Konstruktionen

Literatur zu geometrischen Konstruktionen Literatur zu geometrischen Konstruktionen Hadlock, Charles Robert, Field theory and its classical problems. Carus Mathematical Monographs, 19. Mathematical Association of America, Washington, D.C., 1978.

Mehr

"Vom Eise befreit sind Strom und Bäche..." So auch das Tal der Roten Weißeritz.

Vom Eise befreit sind Strom und Bäche... So auch das Tal der Roten Weißeritz. "Vom Eise befreit sind Strom und Bäche..." So auch das Tal der Roten Weißeritz. Warum Goethe in einem Spielbericht? Vor 180 Jahren, am 22. März, starb der große Dichterfürst. Und da man in Schmiedeberg

Mehr

Zur Verteidigung gegen Fressfeinde Zur Verständigung mit seinen Artgenossen Um gutes Wetter anzuzeigen

Zur Verteidigung gegen Fressfeinde Zur Verständigung mit seinen Artgenossen Um gutes Wetter anzuzeigen www.vogelpark-herborn.de VOGELPARK DETEKTIV Name:... 1. Warum klappert der Storch? Zur Verteidigung gegen Fressfeinde Zur Verständigung mit seinen Artgenossen Um gutes Wetter anzuzeigen 2. Schau dir mal

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform

Vorlesung: Nicht-kooperative Spieltheorie. Teil 2: Spiele in Normalform Vorlesung: Nicht-kooperative Spieltheorie Teil 2: Spiele in Normalform Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Inhaltliche Motivation Es gibt

Mehr

Ein süsses Experiment

Ein süsses Experiment Ein süsses Experiment Zuckerkristalle am Stiel Das brauchst du: 250 Milliliter Wasser (entspricht etwa einer Tasse). Das reicht für 4-5 kleine Marmeladengläser und 4-5 Zuckerstäbchen 650 Gramm Zucker (den

Mehr

Klausur für Studiengänge INF und IST

Klausur für Studiengänge INF und IST Familienname: Matrikelnummer: Studiengang: (bitte ankreuzen) INF IST MED Vorname: Email-Adresse: Immatrikulationsjahr: Klausur für Studiengänge INF und IST sowie Leistungsschein für Studiengang Medieninformatik

Mehr

das usa team Ziegenberger Weg 9 61239 Ober-Mörlen Tel. 06002 1559 Fax: 06002 460 mail: lohoff@dasusateam.de web: www.dasusateam.de

das usa team Ziegenberger Weg 9 61239 Ober-Mörlen Tel. 06002 1559 Fax: 06002 460 mail: lohoff@dasusateam.de web: www.dasusateam.de Vertrauenswürdigkeit das usa team Ziegenberger Weg 9 61239 Ober-Mörlen Tel. 06002 1559 Fax: 06002 460 mail: lohoff@dasusateam.de web: www.dasusateam.de 1 Vertrauenswürdigkeit In der Führungskräfte-Forschung

Mehr

Klausur WS 2006/07 Programmiersprache Java Objektorientierte Programmierung II 15. März 2007

Klausur WS 2006/07 Programmiersprache Java Objektorientierte Programmierung II 15. März 2007 Fachhochschule Bonn-Rhein-Sieg University of Applied Sciences Fachbereich Informatik Prof. Dr. Peter Becker Klausur WS 2006/07 Programmiersprache Java Objektorientierte Programmierung II 15. März 2007

Mehr

194 Beweis eines Satzes von Tschebyschef. Von P. E RDŐS in Budapest. Für den zuerst von T SCHEBYSCHEF bewiesenen Satz, laut dessen es zwischen einer natürlichen Zahl und ihrer zweifachen stets wenigstens

Mehr

Programmiertechnik Operatoren, Kommentare, Ein-/Ausgabe

Programmiertechnik Operatoren, Kommentare, Ein-/Ausgabe Programmiertechnik Operatoren, Kommentare, Ein-/Ausgabe Prof. Dr. Oliver Haase Oliver Haase Hochschule Konstanz 1 Was sind Operatoren? Ein Operator ist eine in die Programmiersprache eingebaute Funktion,

Mehr

B1, Kap. 33, Einstieg zu Ü 1a. Kopiervorlage 33a: Fotosprache

B1, Kap. 33, Einstieg zu Ü 1a. Kopiervorlage 33a: Fotosprache Kopiervorlage 33a: Fotosprache B1, Kap. 33, Einstieg zu Ü 1a Mithilfe der Fotos können die verschiedenen Facetten des Themas Energiesparen angesprochen werden: die Arten der Energiegewinnung, der Energieverbrauch,

Mehr

1 Teilbarkeit natürlicher Zahlen

1 Teilbarkeit natürlicher Zahlen 1 Eine Primzahl kann niemals eine gerade Zahl sein, denn dann ist sie ohnehin schon mal durch 2 teilbar und somit keine Primzahl mehr, behauptet Konrad. Das klingt logisch, ist aber falsch, entgegnet Simon.

Mehr

6 Conways Chequerboard-Armee

6 Conways Chequerboard-Armee 6 Conways Chequerboard-Armee Spiele gehören zu den interessantesten Schöpfungen des menschlichen Geistes und die Analyse ihrer Struktur ist voller Abenteuer und Überraschungen. James R. Newman Es ist sehr

Mehr

Jeder Mensch ist anders. Und alle gehören dazu!

Jeder Mensch ist anders. Und alle gehören dazu! Jeder Mensch ist anders. Und alle gehören dazu! Beschluss der 33. Bundes-Delegierten-Konferenz von Bündnis 90 / DIE GRÜNEN Leichte Sprache 1 Warum Leichte Sprache? Vom 25. bis 27. November 2011 war in

Mehr

Das Falten-und-Schneiden Problem

Das Falten-und-Schneiden Problem Das Falten-und-Schneiden Problem Kristian Bredies Uttendorf, 14. Februar 2005 Inhalt Einleitung Origami Das Falten-und-Schneiden Problem Mathematische Analyse Flaches Origami Lokale Eigenschaften Faltbarkeit

Mehr

OPEL-ZOO / Georg von Opel- Freigehege für Tierforschung 1 ZOO-RALLYE. Name:...

OPEL-ZOO / Georg von Opel- Freigehege für Tierforschung 1 ZOO-RALLYE. Name:... OPEL-ZOO / Georg von Opel- Freigehege für Tierforschung 1 OPEL-ZOO ZOO-RALLYE Name:... GIRAFFE Schau mir in die Augen Kleines. Giraffen sind außergewöhnliche Tiere. Es sind die höchsten Säugetiere, die

Mehr

PokerBörse. Einblicke eines Experten. Von Wieland Staud

PokerBörse. Einblicke eines Experten. Von Wieland Staud PokerBörse Einblicke eines Experten Von Wieland Staud 2.1 Börse und Poker? Haben Sie schon mal Poker gespielt? Ich meine, so richtig Poker gespielt. Nicht Zuhause, sondern im Kasino. Nicht um Gummibärchen

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Geld in der Sprache Lehrerinformation

Geld in der Sprache Lehrerinformation Lehrerinformation 1/6 Arbeitsauftrag Die SuS lösen als Auflockerung ein Rätsel mit Synonymen und Redewendungen und eine Zuordnungsübung mit Sprichwörtern und Zitaten rund ums Thema Geld. Ziel Die SuS kennen

Mehr

Topologische Räume und stetige Abbildungen Teil 2

Topologische Räume und stetige Abbildungen Teil 2 TU Dortmund Mathematik Fakultät Proseminar zur Linearen Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Teil 2 Anna Kwasniok Dozent: Prof. Dr. L. Schwachhöfer Vorstellung des

Mehr

5. Aussagenlogik und Schaltalgebra

5. Aussagenlogik und Schaltalgebra 5. Aussagenlogik und Schaltalgebra Aussageformen und Aussagenlogik Boolesche Terme und Boolesche Funktionen Boolesche Algebra Schaltalgebra Schaltnetze und Schaltwerke R. Der 1 Aussagen Information oft

Mehr

ΤΠΟΤΡΓΔΙΟ ΠΑΙΓΔΙΑ ΚΑΙ ΠΟΛΙΣΙΜΟΤ ΓΙΔΤΘΤΝΗ ΜΔΗ ΔΚΠΑΙΓΔΤΗ ΚΡΑΣΙΚΑ ΙΝΣΙΣΟΤΣΑ ΔΠΙΜΟΡΦΩΗ ΣΕΛΙΚΕ ΕΝΙΑΙΕ ΓΡΑΠΣΕ ΕΞΕΣΑΕΙ ΥΟΛΙΚΗ ΥΡΟΝΙΑ 2010-2011

ΤΠΟΤΡΓΔΙΟ ΠΑΙΓΔΙΑ ΚΑΙ ΠΟΛΙΣΙΜΟΤ ΓΙΔΤΘΤΝΗ ΜΔΗ ΔΚΠΑΙΓΔΤΗ ΚΡΑΣΙΚΑ ΙΝΣΙΣΟΤΣΑ ΔΠΙΜΟΡΦΩΗ ΣΕΛΙΚΕ ΕΝΙΑΙΕ ΓΡΑΠΣΕ ΕΞΕΣΑΕΙ ΥΟΛΙΚΗ ΥΡΟΝΙΑ 2010-2011 ΤΠΟΤΡΓΔΙΟ ΠΑΙΓΔΙΑ ΚΑΙ ΠΟΛΙΣΙΜΟΤ ΓΙΔΤΘΤΝΗ ΜΔΗ ΔΚΠΑΙΓΔΤΗ ΚΡΑΣΙΚΑ ΙΝΣΙΣΟΤΣΑ ΔΠΙΜΟΡΦΩΗ ΣΕΛΙΚΕ ΕΝΙΑΙΕ ΓΡΑΠΣΕ ΕΞΕΣΑΕΙ ΥΟΛΙΚΗ ΥΡΟΝΙΑ 2010-2011 Μάθημα: Γερμανικά Δπίπεδο: 3 Γιάρκεια: 2 ώρες Ημερομηνία: 23 Mαΐοσ

Mehr

Einführung in die Informatik für Hörer aller Fakultäten II. Andreas Podelski Stephan Diehl Uwe Waldmann

Einführung in die Informatik für Hörer aller Fakultäten II. Andreas Podelski Stephan Diehl Uwe Waldmann Einführung in die Informatik für Hörer aller Fakultäten II Andreas Podelski Stephan Diehl Uwe Waldmann 1 Einführung in die Informatik für Hörer aller Fakultäten II Andreas Podelski Stephan Diehl Uwe Waldmann

Mehr

Cayuga. A General Purpose Event Monotoring System. David Pfeiffer. 19. Juli 2007

Cayuga. A General Purpose Event Monotoring System. David Pfeiffer. 19. Juli 2007 Cayuga A General Purpose Event Monotoring System David Pfeiffer 19. Juli 2007 1 / 24 Themen 1 2 Aufbau Operatoren 3 Das Modell der Zustandsübergang Zustandstypen 4 Beispiel Kritik & Fragen 2 / 24 Was ist

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 15: Reguläre Ausdrücke und rechtslineare Grammatiken Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009 1/25 Was kann man mit endlichen

Mehr

Logik-Programme. Eine Tatsachenklausel ist eine einelementige positive Klausel, d.h. sie hat

Logik-Programme. Eine Tatsachenklausel ist eine einelementige positive Klausel, d.h. sie hat Logik-Programme Definition: Eine Tatsachenklausel ist eine einelementige positive Klausel, d.h. sie hat die Form {P }. Eine Prozedurklausel ist eine Klausel der Form {P, Q 1, Q 2,..., Q k } mit k 1. P

Mehr

wie in statischen Bayesianischen Spielen... doch dann ziehen die Spieler sequentiell

wie in statischen Bayesianischen Spielen... doch dann ziehen die Spieler sequentiell KAP 18. Dynamische Spiele unter unvollständiger Information Betrachten nun folgende Situation: wie in statischen Bayesianischen Spielen...... wählt zunächst Natur die Typen der Spieler doch dann ziehen

Mehr

2010 HIGHER SCHOOL CERTIFICATE EXAMINATION. German Beginners. (Section I Listening) Transcript

2010 HIGHER SCHOOL CERTIFICATE EXAMINATION. German Beginners. (Section I Listening) Transcript 2010 HIGHER SCHOOL CERTIFICATE EXAMINATION German Beginners (Section I Listening) Transcript Familiarisation Text Peter, du weißt doch, dass Onkel Hans am Wochenende kommt. Er muss in deinem Zimmer schlafen

Mehr

LESEPROBE. 1. Einführung 6 1.1. Warum muss ich Noten lernen? 6 1.2. Zu diesem Kurs 7

LESEPROBE. 1. Einführung 6 1.1. Warum muss ich Noten lernen? 6 1.2. Zu diesem Kurs 7 Inhalt LESEPROBE Kapitel Titel Seite Karstjen Schüffler-Rohde Notenkenntnisse erwünscht Daniel Kunert Dienstleistungen Bestellen unter www-buch-und-note.de 1. Einführung 6 1.1. Warum muss ich Noten lernen?

Mehr

5 Logische Programmierung

5 Logische Programmierung 5 Logische Programmierung Logik wird als Programmiersprache benutzt Der logische Ansatz zu Programmierung ist (sowie der funktionale) deklarativ; Programme können mit Hilfe zweier abstrakten, maschinen-unabhängigen

Mehr

Als meine Tochter sehr klein war, hatte ich ein ganz interessantes Erlebnis mit ihr.

Als meine Tochter sehr klein war, hatte ich ein ganz interessantes Erlebnis mit ihr. 1 Predigt Du bist gut (4. und letzter Gottesdienst in der Predigtreihe Aufatmen ) am 28. April 2013 nur im AGD Als meine Tochter sehr klein war, hatte ich ein ganz interessantes Erlebnis mit ihr. Ich war

Mehr

1. Tag. Wie oft machen Sie das? Ich mache das jeden Tag. einmal/zweimal/dreimal die/in der Woche. (= pro Woche)

1. Tag. Wie oft machen Sie das? Ich mache das jeden Tag. einmal/zweimal/dreimal die/in der Woche. (= pro Woche) Deutsch 1002 (Tim Jansa) 1. Tag Wie waren Ihre/deine Ferien? Meine/die Ferien waren toll/langweilig/.... Wo waren Sie?/Wo warst du? Ich war / wir waren in... / zu Hause. Wie war es/das? Das/es war schön/ruhig/heiß/....

Mehr

Briefe und E-Mails gut und richtig schreiben

Briefe und E-Mails gut und richtig schreiben Briefe und E-Mails gut und richtig schreiben Geschäfts-, Behörden- und Privatkorrespondenz Formen und DIN-Normen Über 500 Mustertexte und Textbausteine Die wichtigsten Formulierungen auch in Englisch,

Mehr

Einstufungstest. Bitte antworten Sie kurz auf die Fragen: Wie heißen Sie? Wo wohnen Sie? Wie ist Ihre Telefonnummer?

Einstufungstest. Bitte antworten Sie kurz auf die Fragen: Wie heißen Sie? Wo wohnen Sie? Wie ist Ihre Telefonnummer? Bitte antworten Sie kurz auf die Fragen: Wie heißen Sie? Wo wohnen Sie? Wie ist Ihre Telefonnummer? Wie lange lernen Sie schon Deutsch? Wo haben Sie Deutsch gelernt? Mit welchen Büchern haben Sie Deutsch

Mehr

Ich bin das Licht. Eine kleine Seele spricht mit Gott. Einmal vor zeitloser Zeit, da war eine kleine Seele, die sagte zu Gott: "ich weiß wer ich bin!

Ich bin das Licht. Eine kleine Seele spricht mit Gott. Einmal vor zeitloser Zeit, da war eine kleine Seele, die sagte zu Gott: ich weiß wer ich bin! Ich bin das Licht Eine kleine Seele spricht mit Gott Einmal vor zeitloser Zeit, da war eine kleine Seele, die sagte zu Gott: "ich weiß wer ich bin!" Und Gott antwortete: "Oh, das ist ja wunderbar! Wer

Mehr

Ich im Netz soziale Netzwerke Facebook

Ich im Netz soziale Netzwerke Facebook Freunde meiner Freunde meiner Freunde... Dieses Bild wird später dich darstellen. Schneide es aus und gib dem Umriss eine Frisur, die dir gefällt. Schneide für alle deine Freunde und «Kumpels» ein Bild

Mehr

Schüler können sich an das Sujet des Buches anhand einzelner Notizen erinnern, indem sie die Notizen lesen und nummerieren.

Schüler können sich an das Sujet des Buches anhand einzelner Notizen erinnern, indem sie die Notizen lesen und nummerieren. Aufgabe 1: Notizblätter nummerieren Ziel: Zielgruppe: Vorbereitung: Zeit: Schüler können sich an das Sujet des Buches anhand einzelner Notizen erinnern, indem sie die Notizen lesen und nummerieren. Lerner

Mehr