Teillösung zum 7.Aufgabenblatt zur Vorlesung Informatik A

Größe: px
Ab Seite anzeigen:

Download "Teillösung zum 7.Aufgabenblatt zur Vorlesung Informatik A"

Transkript

1 1 Teillösung zum 7.Aufgabenblatt zur Vorlesung Informatik A (Autor: Florian Brinkmeyer) 1 Pascalsches Dreieck Implementieren Sie die Rekursion zur Berechnung der Binomialkoezienten. Geben Sie die ersten 12 Zeilen des Pascalschen Dreieckes auf dem Bildschirm aus. Die einzelnen Zeilen sollten linksbündig sein, danach jeweils eine Leerzeile, zwischen den Einträgen einer Zeile jeweils ein ( Leerzeichen. n Zur Erinnerung: Der Binomialkoezient k) ist für nichtnegative ganze Zahlen n und k rekursiv deniert als: n 0 : ( ( n 0) = 1, 0 n < k : n k) = 0 n k : ( ) ( n k = n 1 ) ( k 1 + n 1 ) k Programmierlösung: lines_count :: Int lines_count = verknüpft Berechnungvariante A mit der Ausgabevariante A var1 = showpascala createpascala -- verknüpft Berechnungsvariante A mit der Ausgabevariante B var2 = showpascala createpascalb -- verknüft Berechnungsvariante B mit der Ausgabevariante B var3 = showpascalb -- erste Berechnungsvariante für das Pascalsche Dreieck (A): -- auf die Erfordernisse der Aufgabe zugeschnittene Definition -- des Binomialkoeffizienten

2 binom:: Int -> Int -> Int binom n k k<0 = 0 n==k = 1 otherwise = binom (n-1) k + binom (n-1) (k-1) -- erzeugt die n-te Zeile createlinea:: Int -> [Int] createlinea n = map (binom n) (take (n+1) [0,1..]) -- erzeugt die Werte des Gesamtdreiecks createpascala:: [[Int]] createpascala = map createlinea (take lines_count [0,1..]) -- effizientere Berechnungsvariante (B): -- Es wird die aktuelle Zeile unter Rückgriff auf die vorige berechnet. createlineb :: [Int] -> [Int] createlineb oldline = reverse (1:createLineBHelp oldline [1]) createlinebhelp :: [Int] -> [Int] -> [Int] createlinebhelp (x:y:xs) newline = createlinebhelp (y:xs) ((x+y):newline) createlinebhelp _ newline = newline -- erzeugt das Gesamtdreieck createpascalb :: [[Int]] createpascalb = [1]:[createLineB xs xs<-take (lines_count-1) createpascalb] -- wandelt die Einzelwerte des Dreiecks in Zeichenketten um pascalstring :: [[Int]] -> [[String]] pascalstring pascal = map (map show) pascal

3 -- linksbündige Ausgabe des Ergebnisses (A): -- Die einzelnen Einträge einer Zeile werden durch ein Leerzeichen getrennt -- und dann zu einem Gesamtstring verbunden. showlinea:: [String] -> String showlinea = concat.(map (++" ")) -- Nach der Erzeugung des Dreiecks in Zeichenform werden die einzelnen -- Ausgabezeilen generiert, mit zwei Zeilenumbrüchen ("\n") versehen, -- zu einem Gesamtstring verknüpft und das Ergebnis wird mit putstrln -- ausgegeben. showpascala :: [[Int]] -> IO() showpascala pascal = putstrln (concat [(showlinea xs)++"\n\n" xs<-pascalstring pascal]) -- zentrierte Ausgabevariante (B) -- Als Breite eines Ausgabeblocks wird die maximale Länge -- eines Eintrags verwendet. blockwidth :: Int blockwidth = maximum (map length (concat (pascalstring createpascalb))) -- Übergeben wird die Spalte, in der die Ausgabe der Zeile beginnen soll -- und für den rekursiven Aufruf auch die gegenwärtige Position. -- Der Abstand zwischen zwei Einträgen ist ebenfalls blockwidth. -- Jeder Eintrag wird innerhalb seines Ausgabeblocks zentriert. showlineb:: Int -> Int -> [String] -> String showlineb start pos (x:xs) = take offset [' ',' '..] ++ x ++ showlineb (start+2*blockwidth) (pos+offset+length x) xs where offset = start-pos+center center = (blockwidth-length x) `div` 2 showlineb [] = "\n"

4 -- Erzeugt der Reihe nach die Ausgabezeilen showpascalbhelp:: Int -> [[String]] -> String showpascalbhelp i (xs:xss) = showlineb start 0 xs ++ showpascalbhelp (i+1) xss where start = (lines_count-i)*blockwidth showpascalbhelp _ [] = [] showpascalb :: IO() showpascalb = putstrln (showpascalbhelp 1 (pascalstring createpascalb)) 2 Vollständige Induktion I a) Beweisen Sie mittels vollständiger Induktion über die Listenlänge, dass für alle Listen xs gilt: length (reverse xs) = length xs, wobei reverse die Funktion ist, die eine Liste umdreht, definiert mittels: reverse [] = [] reverse (z:zs) = reverse zs ++ [z] --reverse.1 --reverse.2 length [] = 0 length (y:ys) = 1 + length ys --length.1 --length.2 Beweis Für den Beweis wird folgende Zusatzannahme verwendet: length (xs++ys) = length xs + length ys Diese lässt sich ebenfalls durch vollständige Induktion beweisen. Induktionsanfang (IA) (Länge xs = 0 => xs = []) length (reverse []) = length [] --reverse.1 Induktionsvoraussetzung (IV) length (reverse xs) = length xs

5 für alle xs der Länge n Induktionsbehauptung (IB) length (reverse (x:xs)) = length (x:xs) Induktionsschritt (IV => IB) length (reverse (x:xs)) --reverse.2 = length (reverse xs ++ [x]) --Zusatzannahme = length (reverse xs) + length [x] --Induktionsvoraussetzung = length xs + length [x] --Definition von [x] = length xs + length x:[] --length.2 = length xs length [] --length.1 und Termumformung = 1 + length xs --length.2 = length (x:xs) Es wurde also gezeigt, dass die Behauptung für xs = [] gilt. Ferner wurde gezeigt, dass, wenn sie für beliebige xs der Länge n gilt, daraus folgt, dass sie auch für beliebige xs der Länge n+1 gilt. Nach dem Prinzip der vollständigen Induktion ist damit die Behauptung bewiesen. Beweis der Zusatzannahme Es ist zu zeigen: length (xs++ys) = length xs + length ys Für den Nachweis muss noch der (++)-Operator definiert werden: [] ++ ys = ys --(++).1 (x:xs) ++ ys = x:(xs++ys) --(++).2 Vollständige Induktion über die Listenlänge von xs: Induktionsanfang (IA) length ([]++ys) --(++).1 = length ys = 0 + length ys --length.1 = length [] + length ys

6 6 Induktionsvoraussetzung (IV) length (xs++ys) = length xs + length ys für alle xs der Länge n Induktionsbehauptung (IB) length ((x:xs)++ys) = length (x:xs) + length ys Induktionsschritt (IV=>IB) length ((x:xs)++ys) --(++).2 = length x:(xs++ys) --length.2 = length (xs++ys) Induktionsvoraussetzung und Termumformung = length xs length ys --length.2 = length (x:xs) + length ys Vollständige Induktion I b) Beweisen Sie auÿerdem, dass für HaskellListen die folgende Gleichheit auf Funktionenebene gilt, wobei id die Identitätsfunktion ist und der (.)-Operator für Funktionskomposition steht. reverse. reverse = id Beweis reverse. reverse = id <=> (reverse. reverse) xs = xs für alle xs <=> reverse (reverse xs) = xs für alle xs Der Beweis erfolgt durch Induktion über die Listenlänge von xs. Es wird folgende Zusatzannahme verwendet: reverse (xs++ys) = reverse ys ++ reverse xs Diese beweist man ebenfalls durch Induktion. Induktionsanfang (IA) reverse (reverse []) --reverse.1 = reverse [] --reverse.1 = []

7 Induktionsvoraussetzung (IV) reverse (reverse xs) = xs für alle xs der Länge n Induktionsbehauptung (IB) reverse (reverse (x:xs)) = x:xs Induktionsschritt (IV=>IB) reverse (reverse (x:xs)) --reverse.2 = reverse (reverse xs ++ [x]) --Zusatzannahme = reverse [x] ++ reverse (reverse xs) --Induktionsvoraussetzung = reverse [x] ++ xs --Definition von [x] = reverse (x:[]) ++ xs --reverse.2 = reverse [] ++ [x] ++ xs --reverse.1, Definition von [x] = [] ++ x:[] ++ xs --(++).1, (++).2 = x:([]++xs) --(++).1 = x:xs Beweis der Zusatzannahme Es ist zu zeigen: reverse (xs++ys) = reverse ys ++ reverse xs Beweis durch Induktion über die Listenlänge von xs Hierbei wird folgende Zusatzannahme verwendet: xs ++ [] = xs Diese ist anders als [] ++ xs = xs nicht Teil unserer Definition von (++) und muss eigentlich ebenfalls durch Induktion bewiesen werden. Induktionsanfang (IA) reverse ([]++ys) --(++).1 = reverse ys --Zusatzannahme = reverse ys ++ [] --reverse.1 = reverse ys ++ reverse []

8 Induktionsvoraussetzung (IV) reverse (xs ++ ys) = reverse ys ++ reverse xs für alle xs der Länge n Induktionsbehauptung (IB) reverse ((x:xs) ++ ys) = reverse ys ++ reverse (x:xs) Induktionsschritt reverse ((x:xs) ++ ys) --(++).2 = reverse (x:(xs++ys)) --reverse.2 = reverse (xs++ys) ++ [x] --Induktionsvoraussetzung = reverse ys ++ reverse xs ++ [x] --reverse.2 = reverse ys ++ reverse (x:xs) Links- und Rechtsfaltung a) Beschreiben und begründen Sie verbal, was folgende Linksfaltung tut. wastuich xs1 xs2 = foldl func xs1 xs2 func [] _ = [] func (x:xs) y x==y = func xs y otherwise = x: (func xs y) Die Hilfsfunktion 'func' löscht alle Vorkommnisse des Elements, das sie als zweiten Parameter erhält, aus der Liste, die sie als ersten Parameter erhält und liefert die Restliste zurück. Dies wird durch eine Rekursion realisiert. Die Elemente der Liste werden der Reihe nach mit dem zweiten Parameter verglichen und nur im Falle einer Ungleichheit in die Ergebnisliste übernommen. Die Funktion 'wastuich' löscht auch bei mehrfachem Auftreten alle Elemente aus xs1, die ebenfalls in xs2 vorkommen. Hierbei wird auf eine Linksfaltung der Funktion 'func' über der Liste xs2 zurückgegrien. Die anfangs noch vollständige Liste xs1 fungiert hierbei als Startwert für die Faltungsoperation. Es werden sukzessive die Elemente von xs2 durchlaufen und jeweils alle Vorkommnisse des aktuellen Elements aus der jeweiligen Restliste von xs1 gelöscht.

9 Links- und Rechtsfaltung b) Was tut die Funktion mystery xs = foldr (++) [] (map sing xs), wobei sing x = [x] für alle x ist? Die Funktion 'sing' bildet aus dem Parameter x eine Liste, die x als einziges Element enthält. 'map sing xs' liefert demnach eine Liste, deren Elemente einelementige Listen sind, die aus den Elementen von xs gebildet wurden. Die abschlieÿende Faltungsoperation entspricht einer Konkatenation und damit einer erneuten Zusammenführung dieser einelementigen Listen, so dass man wieder xs erhält. 'mystery' realisiert demnach für Listen die Identitätsfunktion.

Lösung: InfA - Übungsblatt 07

Lösung: InfA - Übungsblatt 07 Lösung: InfA - Übungsblatt 07 Michele Ritschel & Marcel Schilling 23. Dezember 2008 Verwendete Abkürzungen: Beweis, vollständige Induktion, IA: Induktionsanfang/Induktionsanker, IS: Induktionsschritt/Induktionssprung,

Mehr

Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 4 -

Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 4 - Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 4 - Dozent: Prof. Dr. G. Rote Tutoren: J. Fleischer, T. Haimberger, N. Lehmann, C. Pockrandt, A. Steen 11.11.011 Ziele

Mehr

Funktionale Programmierung mit Haskell

Funktionale Programmierung mit Haskell Funktionale Programmierung mit Haskell Dr. Michael Savorić Hohenstaufen-Gymnasium (HSG) Kaiserslautern Version 20120622 Überblick Wichtige Eigenschaften Einführungsbeispiele Listenerzeugung und Beispiel

Mehr

Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 9 -

Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 9 - Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 9 - Dozent: Prof. Dr. G. Rote Tutoren: J. Fleischer, T. Haimberger, N. Lehmann, C. Pockrandt, A. Steen 10.01.2012 Ziele

Mehr

Paradigmen der Programmierung

Paradigmen der Programmierung SS 11 Prüfungsklausur 25.07.2011 Aufgabe 5 (6+9 = 15 Punkte) a) Bestimmen Sie jeweils den Typ der folgenden Haskell-Ausdrücke: ( 1, 2 :"3", 4 < 5) :: (Char, String, Bool) [(last, tail), (head, take 5)]

Mehr

Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zur Übungsklausur -

Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zur Übungsklausur - Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zur Übungsklausur - Punkte: A1: 30, A2: 20, A3: 20, A4: 20, A5: 10, A6: 20 Punkte: /120 12.02.2012 Hinweis: Geben Sie bei allen

Mehr

ProInformatik: Funktionale Programmierung. Punkte

ProInformatik: Funktionale Programmierung. Punkte ProInformatik: Funktionale Programmierung 27.7-22.8.2008, M. Knobelsdorf Probeklausur Ihre persönliche Klausurnummer: Vorname, Nachname: Aufgabe 1 2 3 4 5 6 7 8 Punkte 12 4 4 4 4 2 4 6 40 Erz. Punkte Zum

Mehr

Die Korrektheit von Mergesort

Die Korrektheit von Mergesort Die Korrektheit von Mergesort Christoph Lüth 11. November 2002 Definition von Mergesort Die Funktion Mergesort ist wie folgt definiert: msort :: [Int]-> [Int] msort xs length xs

Mehr

Induktion und Rekursion

Induktion und Rekursion Induktion und Rekursion Induktion und Rekursion Vorkurs Informatik Theoretischer Teil WS 013/14. Oktober 013 Vorkurs Informatik WS 013/14 1/1 Vollständige Induktion Vorkurs Informatik WS 013/14 /1 Ziel

Mehr

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)!

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)! WS 015/1 Hausaufgaben zur Vorlesung Vollständige Induktion 1. Beweist folgende Formeln zu beweisen ist nur die Gleichheit mit dem! -Zeichen : a 5 + + 7 + 8 + + 4 + n n 4 + i! nn+9 b 1 + + 9 + + n 1 n 1

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Manuel Eberl, Lars Hupel, Lars Noschinski Wintersemester 2014/15 Lösungsblatt Endklausur 13. Februar 2015 Einführung in

Mehr

ALP I Induktion und Rekursion

ALP I Induktion und Rekursion ALP I Induktion und Rekursion WS 2012/2013 Vollständige Induktion (Mafi I) Die Vollständige Induktion ist eine mathematische Beweistechnik, die auf die Menge der natürlichen Zahlen spezialisiert ist. Vorgehensweise:

Mehr

INFORMATIK FÜR BIOLOGEN

INFORMATIK FÜR BIOLOGEN Technische Universität Dresden 15012015 Institut für Theoretische Informatik Professur für Automatentheorie INFORMATIK FÜR BIOLOGEN Musterklausur WS 2014/15 Studiengang Biologie und Molekulare Biotechnologie

Mehr

Musterlösung zur 2. Aufgabe der 4. Übung

Musterlösung zur 2. Aufgabe der 4. Übung Musterlösung zur 2. Aufgabe der 4. Übung Da viele von Euch anscheinend noch Probleme mit dem Entfalten haben, gibt es für diese Aufgabe eine Beispiellösung von uns. Als erstes wollen wir uns noch einmal

Mehr

WS 2011/2012. RobertGiegerich. November 12, 2013

WS 2011/2012. RobertGiegerich. November 12, 2013 WS 2011/2012 Robert AG Praktische Informatik November 12, 2013 Haskell-Syntax: Ergänzungen Es gibt noch etwas bequeme Notation für Fallunterscheidungen, die wir bisher nicht benutzt haben. Bisher kennen

Mehr

WS 2011/2012. RobertGiegerich. November 12, 2013

WS 2011/2012. RobertGiegerich. November 12, 2013 WS 2011/2012 Robert AG Praktische Informatik November 12, 2013 Haskell-Syntax: Ergänzungen Es gibt noch etwas bequeme Notation für Fallunterscheidungen, die wir bisher nicht benutzt haben. Bisher kennen

Mehr

Tag 8. Beispiel: Tabellen formatieren

Tag 8. Beispiel: Tabellen formatieren Tag 8 Beispiel: Tabellen formatieren Am heutigen Tag geht es nicht in erster Linie darum, neue Konzepte einzuführen, sondern wir wollen sehen, was wir mit dem bereits Erlernten schon erreichen können.

Mehr

Funktionen höherer Ordnung

Funktionen höherer Ordnung Eine Funktion wird als Funktion höherer Ordnung bezeichnet, wenn Funktionen als Argumente verwendet werden, oder wenn eine Funktion als Ergebnis zurück gegeben wird. Beispiel: twotimes :: ( a -> a ) ->

Mehr

Tutoraufgabe 1 (Auswertungsstrategie):

Tutoraufgabe 1 (Auswertungsstrategie): Prof. aa Dr. J. Giesl Programmierung WS12/13 M. Brockschmidt, F. Emmes, C. Otto, T. Ströder Tutoraufgabe 1 (Auswertungsstrategie): Gegeben sei das folgende Haskell-Programm: absteigend :: Int - > [ Int

Mehr

Beweis durch vollständige Induktion

Beweis durch vollständige Induktion Skriptteil zur Vorlesung: Proinformatik - Funktionale Programmierung Dr. Marco Block-Berlitz 4.Juli 009 Beweis durch vollständige Induktion Die fünf Peano-Axiome Grundlage für die vollständige Induktion

Mehr

Informatik B von Adrian Neumann

Informatik B von Adrian Neumann Musterlösung zum 7. Aufgabenblatt vom Montag, den 25. Mai 2009 zur Vorlesung Informatik B von Adrian Neumann 1. Java I Schreiben Sie ein Java Programm, das alle positiven ganzen Zahlen 0 < a < b < 1000

Mehr

Einführung in die funktionale Programmierung

Einführung in die funktionale Programmierung Einführung in die funktionale Programmierung Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 26. Oktober 2006 Haskell - Einführung Syntax Typen Auswertung Programmierung

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Lars Hupel, Lars Noschinski, Dr. Jasmin Blanchette Wintersemester 2013/14 Abschlussklausur 21. Februar 2014 Einführung

Mehr

Grundlagen der Programmierung 2 B

Grundlagen der Programmierung 2 B Grundlagen der Programmierung 2 B Haskell: Listen-Komprehensionen Prof. Dr. Manfred Schmidt-Schauß Sommersemester 2017 Listenausdrücke, Listen-Komprehensionen Analog zu Mengenausdrücken, aber Reihenfolge

Mehr

Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 8 -

Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 8 - Algorithmen und Programmieren 1 Funktionale Programmierung - Musterlösung zu Übung 8 - Dozent: Prof. Dr. G. Rote Tutoren: J. Fleischer, T. Haimberger, N. Lehmann, C. Pockrandt, A. Steen 03.01.2012 Ziele

Mehr

Programmieren in Haskell Einstieg in Haskell

Programmieren in Haskell Einstieg in Haskell Programmieren in Haskell Einstieg in Haskell Peter Steffen Universität Bielefeld Technische Fakultät 24.10.2008 1 Programmieren in Haskell Was wir heute machen Umfrage: Wer hat den Hugs ausprobiert? Ausdrücke

Mehr

Programmieren in Haskell

Programmieren in Haskell Programmieren in Haskell Wir steigen ein... Programmieren in Haskell 1 Was wir heute machen Umfrage: Wer hat den Hugs ausprobiert? Ausdrücke und Werte Datentypen Funktionen Aufgabe für diese Woche Programmieren

Mehr

Funktionale Programmierung ALP I. Funktionen höherer Ordnung. Teil 2 SS 2013. Prof. Dr. Margarita Esponda. Prof. Dr.

Funktionale Programmierung ALP I. Funktionen höherer Ordnung. Teil 2 SS 2013. Prof. Dr. Margarita Esponda. Prof. Dr. ALP I Funktionen höherer Ordnung Teil 2 SS 2013 Funktionen höherer Ordnung Nehmen wir an, wir möchten alle Zahlen innerhalb einer Liste miteinander addieren addall:: (Num a) => [a -> a addall [ = 0 addall

Mehr

1 Übersicht Induktion

1 Übersicht Induktion Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans Dipl.-Inform. Markus Bender 0.11.01 (v1.3) 1 Übersicht Induktion 1.1 Allgemeines Unter einem induktiven Vorgehen versteht

Mehr

Funktionale Programmierung ALP I. Die Natur rekursiver Funktionen SS Prof. Dr. Margarita Esponda. Prof. Dr.

Funktionale Programmierung ALP I. Die Natur rekursiver Funktionen SS Prof. Dr. Margarita Esponda. Prof. Dr. ALP I Die Natur rekursiver Funktionen SS 2011 Die Natur rekursiver Funktionen Rekursive Funktionen haben oft folgende allgemeine Form: f :: a -> a f 0 = c f (n+1) = h (f n ) Diese Art der Definitionen

Mehr

Induktion nach der Länge n von x

Induktion nach der Länge n von x Allgemeiner: app (rev x) y = rev1 x y füralle Listenx, y. Beweis: n = 0 : Induktion nach der Länge n von x Dann gilt: x = []. Wirschließen: app (rev x) y = app (rev []) y = app (match [] with [] -> []...)

Mehr

Programmieren in Haskell Programmiermethodik

Programmieren in Haskell Programmiermethodik Programmieren in Haskell Programmiermethodik Peter Steffen Universität Bielefeld Technische Fakultät 12.01.2011 1 Programmieren in Haskell Bisherige Themen Was soll wiederholt werden? Bedienung von hugs

Mehr

Einführung in die Informatik 2 3. Übung

Einführung in die Informatik 2 3. Übung Technische Universität München WS 2014/15 Institut für Informatik 24.10.2014 Prof. Tobias Nipkow, Ph.D. Abgabe: 31.10.2014 L. Noschinski, L. Hupel, Dr. J. Blanchette, M. Eberl Einführung in die Informatik

Mehr

Wir wollen nun die Behauptung beweisen, dass die Laufzeit von SELECT linear ist, also dass T (n) = O(n) gilt.

Wir wollen nun die Behauptung beweisen, dass die Laufzeit von SELECT linear ist, also dass T (n) = O(n) gilt. Abschätzung für die Rekursion von SELECT Wir wollen nun die Behauptung beweisen, dass die Laufzeit von SELECT linear ist, also dass T (n) = O(n) gilt. Wir nehmen erst einmal an, dass eine Konstante d existiert,

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Marc Bux, Humboldt-Universität zu Berlin Agenda 1. (Sortierte) Listen 2. Stacks & Queues 3. Datenstrukturen 4. Rekursion und vollständige Induktion

Mehr

HASKELL KAPITEL 2.1. Notationen: Currying und das Lambda-Kalkül

HASKELL KAPITEL 2.1. Notationen: Currying und das Lambda-Kalkül HASKELL KAPITEL 2.1 Notationen: Currying und das Lambda-Kalkül Bisheriges (Ende VL-Teil 1) weite :: (Float,Float) ->Float weite (v0, phi) = (square(v0)/9.81) * sin(2 * phi) (10, 30 ) smaller ::(Integer,

Mehr

Praktische Informatik 3

Praktische Informatik 3 Praktische Informatik 3 Christian Maeder WS 03/04 Vorlesung vom 12.1.2004: Ein/Ausgabe in funktionalen Sprachen Vorlesung vom 12.1.2004: Ein/Ausgabe in funktionalen Sprachen 3 Inhalt Wo ist das Problem?

Mehr

Methoden. Gerd Bohlender. Einstieg in die Informatik mit Java, Vorlesung vom

Methoden. Gerd Bohlender. Einstieg in die Informatik mit Java, Vorlesung vom Einstieg in die Informatik mit Java, Vorlesung vom 2.5.07 Übersicht 1 2 definition 3 Parameterübergabe, aufruf 4 Referenztypen bei 5 Überladen von 6 Hauptprogrammparameter 7 Rekursion bilden das Analogon

Mehr

Vollständige Induktion

Vollständige Induktion Seite 1 Klaus Messner, klaus_messner@web.de Seite 2 Problem: Problem Man hat eine Aussage (z.b. eine Formel) und soll zeigen, dass diese Aussage für alle natürlichen Zahlen gilt. Beispiel: Es soll gezeigt

Mehr

Grundlagen der Programmierung 2 (2.B)

Grundlagen der Programmierung 2 (2.B) Grundlagen der Programmierung 2 (2.B) Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 11. Juni 2008 Reduktionsregel zum case case-reduktion (case (c t 1... t n ) of... (c

Mehr

Induktion und Rekursion

Induktion und Rekursion Mathematische Beweistechniken Vorkurs Informatik SoSe13 10. April 013 Mathematische Beweistechniken Ziel Mathematische Beweistechniken Ziel beweise, dass eine Aussage A(n) für alle n N gilt. Beispiel Für

Mehr

Praktische Informatik 3: Funktionale Programmierung Vorlesung 5 vom : Funktionen Höherer Ordnung I

Praktische Informatik 3: Funktionale Programmierung Vorlesung 5 vom : Funktionen Höherer Ordnung I Rev. 2766 1 [33] Praktische Informatik 3: Funktionale Programmierung Vorlesung 5 vom 11.11.2014: Funktionen Höherer Ordnung I Christoph Lüth Universität Bremen Wintersemester 2014/15 2 [33] Fahrplan Teil

Mehr

Felder. November 5, 2014

Felder. November 5, 2014 Felder Universität Bielefeld AG Praktische Informatik November 5, 2014 Felder: Datenstrukturen mit konstantem Zugriff Felder nennt man auch, Vektoren, Matrizen,... Konstanter Zugriff heisst: Zugriff auf

Mehr

Haskell Seminar Abstrakte Datentypen. Nils Bardenhagen ms2725

Haskell Seminar Abstrakte Datentypen. Nils Bardenhagen ms2725 Haskell Seminar Abstrakte Datentypen Nils Bardenhagen ms2725 Gliederung Konzept Queue Module Sets Bags Flexible Arrays Fazit Abstrakte Datentypen (ADT) Definition: Eine Zusammenfassung von Operationen,

Mehr

Klausur Programmierung WS 2002/03

Klausur Programmierung WS 2002/03 Klausur Programmierung WS 2002/03 Prof. Dr. Gert Smolka, Dipl. Inf. Thorsten Brunklaus 14. Dezember 2002 Leo Schlau 45 Vor- und Nachname Sitz-Nr. 4711 007 Matrikelnummer Code Bitte öffnen Sie das Klausurheft

Mehr

Lösungshinweise/-vorschläge zum Übungsblatt 4: Grundlagen der Programmierung (WS 2018/19)

Lösungshinweise/-vorschläge zum Übungsblatt 4: Grundlagen der Programmierung (WS 2018/19) Prof. Dr. Ralf Hinze Sebastian Schweizer, M.Sc. Peter Zeller, M. Sc. TU Kaiserslautern Fachbereich Informatik AG Programmiersprachen Lösungshinweise/-vorschläge zum Übungsblatt 4: Grundlagen der Programmierung

Mehr

Prof. Dr. Margarita Esponda

Prof. Dr. Margarita Esponda Analyse von Algorithmen Die O-Notation WS 2012/2013 Prof. Dr. Margarita Esponda Freie Universität Berlin 1 Korrekte und effiziente Lösung von Problemen Problem Wesentlicher Teil der Lösung eines Problems.

Mehr

VL06: Haskell (Funktionen höherer Ordnung, Currying)

VL06: Haskell (Funktionen höherer Ordnung, Currying) VL06: Haskell (Funktionen höherer Ordnung, Currying) IFM 5.3 Spezielle Methoden der Programmierung Carsten Gips, FH Bielefeld 18.05.2015 Wiederholung Wiederholung Wie können Sie die ersten n Elemente einer

Mehr

Fahrplan. Inhalt. Ähnliche Funktionen der letzten Vorlesung. Muster der primitiven Rekursion. Ähnliche Funktionen der letzten Vorlesung

Fahrplan. Inhalt. Ähnliche Funktionen der letzten Vorlesung. Muster der primitiven Rekursion. Ähnliche Funktionen der letzten Vorlesung Fahrplan Teil I: Funktionale Programmierung im Kleinen Praktische Informatik 3: Funktionale Programmierung Vorlesung 5 vom 11.11.2014: Funktionen Höherer Ordnung I Christoph Lüth Universität Bremen Wintersemester

Mehr

IV Beweise in der Mathematik

IV Beweise in der Mathematik Propädeutikum 018 0. September 018 Mathematische Texte enthalten verschiedene Bezeichnungen der Sinneinheiten. Bezeichnungen in mathematischen Texten Axiome elementare Grundaussagen; werden nicht bewiesen

Mehr

expr :: Expr expr = Mul (Add (Const 3) (Const 4)) (Div (Sub (Const 73) (Const 37)) (Const 6))

expr :: Expr expr = Mul (Add (Const 3) (Const 4)) (Div (Sub (Const 73) (Const 37)) (Const 6)) 1 - Korrektur 2 - Abstrakte Datentypen für arithmetische Ausdrücke Der Datentyp Wir beginnen zunächst mit dem algebraischen Datentyp für Ausdrücke. Hierfür definieren wir einen Konstruktor Number für Zahlen,

Mehr

Theorembeweiserpraktikum SS 2016

Theorembeweiserpraktikum SS 2016 Institut für Programmstrukturen und Datenorganisation Lehrstuhl Programmierparadigmen Am Fasanengarten 5 76131 Karlsruhe http://pp.ipd.kit.edu/ Theorembeweiserpraktikum SS 2016 http://pp.ipd.kit.edu/lehre/ss2016/tba

Mehr

Was bisher geschah Funktionale Programmierung in Haskell: Algebraische Datentypen Pattern Matching Polymorphie Typklassen Rekursive Datentypen:

Was bisher geschah Funktionale Programmierung in Haskell: Algebraische Datentypen Pattern Matching Polymorphie Typklassen Rekursive Datentypen: Was bisher geschah Funktionale Programmierung in Haskell: Algebraische Datentypen Pattern Matching Polymorphie Typklassen Rekursive Datentypen: Peano-Zahlen, Listen, Bäume Rekursive Funktionen strukturelle

Mehr

Einführung in die Informatik 2 3. Übung

Einführung in die Informatik 2 3. Übung Technische Universität München WS 2012/13 Institut für Informatik 30. 10. 2012 Prof. Tobias Nipkow, Ph.D. Abgabe: 6. 11. 2012, 15:30 Lars Noschinski, Dr. Jasmin Blanchette, Dmitriy Traytel Einführung in

Mehr

Seminar Fun of Haskell Programming. Universalität und Ausdrucksstärke von Fold. René Frank Matr.-Nr

Seminar Fun of Haskell Programming. Universalität und Ausdrucksstärke von Fold. René Frank Matr.-Nr Fachbereich Mathematik & Informatik AG Programmiersprachen und Parallelität Prof. Dr. R. Loogen Seminar Fun of Haskell Programming Ausarbeitung zum Thema Universalität und Ausdrucksstärke von Fold von

Mehr

Funktionale Programmierung ALP I. λ Kalkül. Teil 2 WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda

Funktionale Programmierung ALP I. λ Kalkül. Teil 2 WS 2012/2013. Prof. Dr. Margarita Esponda. Prof. Dr. Margarita Esponda ALP I λ Kalkül Teil 2 WS 2012/2013 Lokale Variablennamen Haskell: let x = exp1 in exp2 Lambda: λ exp1. exp2 Einfache Regel: Der Geltungsbereich eines Lambda-Ausdrucks erstreckt sich soweit wie möglich

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

WS 2013/2014. Robert Giegerich. 11. Dezember 2013

WS 2013/2014. Robert Giegerich. 11. Dezember 2013 WS 2013/2014 Robert AG Praktische Informatik 11. Dezember 2013 höherer Ordnung Worum geht es heute? In Haskell gibt es, die als Argument haben oder als Ergebnis liefern. Diese nennt man höherer Ordnung.

Mehr

Binomischer Lehrsatz. Gymnasium Immensee Vertiefungskurs Mathematik. Bettina Bieri

Binomischer Lehrsatz. Gymnasium Immensee Vertiefungskurs Mathematik. Bettina Bieri Binomischer Lehrsatz Gymnasium Immensee Vertiefungskurs Mathematik Bettina Bieri 24. Juli 20 Inhaltsverzeichnis Nötiges Vorwissen. Fakultät................................ Definition...........................2

Mehr

Programmieren in Haskell

Programmieren in Haskell Programmieren in Haskell Wir steigen ein... Programmieren in Haskell 1 Was wir heute machen Umfrage: Wer hat den Hugs ausprobiert? Ausdrücke und Werte Datentypen Funktionen Aufgabe für s Wochenende Programmieren

Mehr

Informatik I. 9. Nachweis von Programmeigenschaften. Jan-Georg Smaus. Albert-Ludwigs-Universität Freiburg. 2. Dezember 2010

Informatik I. 9. Nachweis von Programmeigenschaften. Jan-Georg Smaus. Albert-Ludwigs-Universität Freiburg. 2. Dezember 2010 Informatik I 9. Nachweis von Programmeigenschaften Jan-Georg Smaus Albert-Ludwigs-Universität Freiburg 2. Dezember 2010 Jan-Georg Smaus (Universität Freiburg) Informatik I 2. Dezember 2010 1 / 30 Informatik

Mehr

Listen und Listenfunktionen. Grundlagen der Programmierung 2 A (Listen) Listen und Listenfunktionen. Listen? Haskell: Listen

Listen und Listenfunktionen. Grundlagen der Programmierung 2 A (Listen) Listen und Listenfunktionen. Listen? Haskell: Listen Listen und Listenfunktionen Grundlagen der Programmierung 2 A (Listen) Haskell: Listen Prof. Dr. Manfred Schmidt-Schauß Listen modellieren Folgen von gleichartigen, gleichgetypten Objekten. Ausdruck im

Mehr

Vorkurs Beweisführung

Vorkurs Beweisführung Vorkurs Beweisführung Fachschaft Mathematik und Informatik 30.08.2013 Agenda 1 Einleitung 2 Direkter Beweis 3 Widerspruchsbeweis 4 Vollständige Induktion 5 Aussagen widerlegen 6 Gleichheit von Mengen 7

Mehr

Grundbegriffe der Informatik Tutorium 2

Grundbegriffe der Informatik Tutorium 2 Grundbegriffe der Informatik Tutorium 2 Tutorium Nr. 32 Philipp Oppermann 13. November 2013 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

ALP I. Funktionale Programmierung

ALP I. Funktionale Programmierung ALP I Funktionale Programmierung Zusammengesetzte Datentypen in Haskell WS 2012/2013 Zusammengesetzte Datentypen Tupel List String Zusammengesetzte Datentypen Tupel-Datentyp Ein Tupel ist eine Ansammlung

Mehr

Vorlesung Künstliche Intelligenz Alexander Manecke Oliver Schneider Andreas Stoffel 9. Mai 2006

Vorlesung Künstliche Intelligenz Alexander Manecke Oliver Schneider Andreas Stoffel 9. Mai 2006 Vorlesung Künstliche Intelligenz 9. Mai 2006 Aufgabe 1: Listen in Prolog a) Den Fall der leeren Liste müssen wir hier nicht betrachten, denn eine leere Liste besitzt kein Maximum. Also ist Standardantwort

Mehr

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften Ziel: Methoden kennen

Mehr

Algorithmen und Datenstrukturen I

Algorithmen und Datenstrukturen I Algorithmen und Datenstrukturen I Sortierverfahren D. Rösner Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Winter 2009/10, 18. Januar 2010,

Mehr

Funktionale Programmierung Mehr funktionale Muster

Funktionale Programmierung Mehr funktionale Muster Mehr funktionale Muster Prof. Dr. Oliver Braun Fakultät für Informatik und Mathematik Hochschule München Letzte Änderung: 07.12.2017 06:56 Inhaltsverzeichnis Pattern Matching..................................

Mehr

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)

Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Technische Universität München Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften

Mehr

Einführung in die Informatik 2 6. Übung

Einführung in die Informatik 2 6. Übung Technische Universität München WS 2012/13 Institut für Informatik 20.11.2012 Prof. Tobias Nipkow, Ph.D. Abgabe: 27.11.2012, 15:30 Lars Noschinski, Dr. Jasmin Blanchette, Dmitriy Traytel Einführung in die

Mehr

Algorithmen & Programmierung. Rekursive Funktionen (2)

Algorithmen & Programmierung. Rekursive Funktionen (2) Algorithmen & Programmierung Rekursive Funktionen (2) Arten von Rekursion Direkte Rekursion Den Aufruf einer Funktion direkt aus ihrem Funktionskörper heraus bezeichnet man als direkte Rekursion (so haben

Mehr

Praktikum Ingenieurinformatik. Termin 2a. Schleifen und Verzweigungen in C und mit MATLAB

Praktikum Ingenieurinformatik. Termin 2a. Schleifen und Verzweigungen in C und mit MATLAB Praktikum Ingenieurinformatik Termin 2a Schleifen und Verzweigungen in C und mit MATLAB 1 1. Fibonacci-Zahlen in C 2. Fibonacci-Zahlen mit MATLAB 3. Zahlendreieck in C 4. Zahlendreieck mit MATLAB 5. Klausuraufgabe

Mehr

Grundprinzipien der funktionalen Programmierung

Grundprinzipien der funktionalen Programmierung Grundprinzipien der funktionalen Programmierung Funktionen haben keine Seiteneffekte Eine Funktion berechnet einen Ausgabewert der nur von den Eingabewerten abhängt: 12 inputs + output 46 34 2 Nicht nur

Mehr

Tutorium - Haskell in der Schule. Ralf Dorn - Dennis Buchmann - Felix Last - Carl Ambroselli

Tutorium - Haskell in der Schule. Ralf Dorn - Dennis Buchmann - Felix Last - Carl Ambroselli Tutorium - Haskell in der Schule Wer sind wir? Otto-Nagel-Gymnasium in Berlin-Biesdorf Hochbegabtenförderung und MacBook-Schule Leistungskurse seit 2005 Einführung Was ist funktionale Programmierung? Einführung

Mehr

: das Bild von ) unter der Funktion ist gegeben durch

: das Bild von ) unter der Funktion ist gegeben durch % 1.3 Funktionen Seien und Mengen nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. Bezeichnungen: : Definitionsbereich : Bildbereich (Zielmenge) von Der Graph einer Funktion: graph!

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

WS 2011/2012. Robert Giegerich Dezember 2013

WS 2011/2012. Robert Giegerich Dezember 2013 WS 2011/2012 Robert 1 AG Praktische Informatik 11. Dezember 2013 1 robert@techfak.uni-bielefeld.de Vorschau Themen heute: Funktionen höherer Ordnung (Fortsetzung) künstliche Striktheit mehr zu fold für

Mehr

Definieren Sie eine Funktion circlearea zur Berechnung der Fläche eines Kreises mit gegebenen Radius (Float).

Definieren Sie eine Funktion circlearea zur Berechnung der Fläche eines Kreises mit gegebenen Radius (Float). Haskell Funktionen Definieren Sie eine Funktion circlearea zur Berechnung der Fläche eines Kreises mit gegebenen Radius (Float). circlearea :: Float -> Float circlearea radius = 2 * pi * radius^2 Definieren

Mehr

Grundbegriffe der Informatik Tutorium 2

Grundbegriffe der Informatik Tutorium 2 Grundbegriffe der Informatik Tutorium 2 Tutorium Nr. 16 Philipp Oppermann 9. November 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 0/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Programmieren in Haskell

Programmieren in Haskell Programmieren in Haskell Programmiermethodik Programmieren in Haskell 1 Was wir heute machen Spezifikation Strukturelle Rekursion Strukturelle Induktion Programmieren in Haskell 2 Spezifikation sort [8,

Mehr

4.1 Bäume, Datenstrukturen und Algorithmen. Zunächst führen wir Graphen ein. Die einfachste Vorstellung ist, dass ein Graph gegeben ist als

4.1 Bäume, Datenstrukturen und Algorithmen. Zunächst führen wir Graphen ein. Die einfachste Vorstellung ist, dass ein Graph gegeben ist als Kapitel 4 Bäume 4.1 Bäume, Datenstrukturen und Algorithmen Zunächst führen wir Graphen ein. Die einfachste Vorstellung ist, dass ein Graph gegeben ist als eine Menge von Knoten und eine Menge von zugehörigen

Mehr

Unendliche Listen und Bäume

Unendliche Listen und Bäume Funktionale Programmierung Unendliche Listen und Bäume Helga Karafiat, Steffen Rüther Übersicht Grundlage: Lazy Evaluation Konstruktion von unendlichen Strukturen Verwendung von unendlichen Listen Unendliche

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 6

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 6 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 6 Die Lösungshinweise dienen

Mehr

Übersicht. Datenstrukturen und Algorithmen. Die Teile-und-Beherrsche-Methode. Übersicht. Vorlesung 3: Rekursionsgleichungen (K4)

Übersicht. Datenstrukturen und Algorithmen. Die Teile-und-Beherrsche-Methode. Übersicht. Vorlesung 3: Rekursionsgleichungen (K4) Datenstrukturen und Algorithmen Vorlesung 3: (K4) 1 e für rekursive Algorithmen Prof. Dr. Erika Ábrahám 2 Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-14/ datenstrukturen-und-algorithmen/

Mehr

Teil 4: Rekursion und Listen

Teil 4: Rekursion und Listen Einführung in das Programmieren Prolog Sommersemester 2006 Teil 4: Rekursion und Listen Version 1.0 Gliederung der LV Teil 1: Ein motivierendes Beispiel Teil 2: Einführung und Grundkonzepte Syntax, Regeln,

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 4. Kellerautomaten und kontextfreie Sprachen (II) 11.06.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Übersicht 1. Motivation 2. Terminologie

Mehr

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen

Mehr

Vollständige Induktion

Vollständige Induktion Angenommen, wir wollen zeigen, dass eine Aussage P(n) für alle n N wahr ist. Anders ausgedrückt: Es gilt n N : P(n) Hierzu können wir die Technik der vollständigen Induktion verwenden. Wir zeigen, dass

Mehr

Programmierung 1 - Repetitorium

Programmierung 1 - Repetitorium WS 2002/2003 Programmierung 1 - Repetitorium Andreas Augustin und Marc Wagner Homepage: http://info1.marcwagner.info Dienstag, den 08.04.03 Kapitel 4 Laufzeit 4.1 Vorbemerkungen Im folgenden betrachten

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 2. Beweistechniken Malte Helmert Gabriele Röger Universität Basel 18. Februar 2015 Beweis Beweis Ein Beweis leitet die Korrektheit einer mathematischen Aussage aus einer Menge von

Mehr

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0 Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Theoretische Informatik. Alphabete, Worte, Sprachen

Theoretische Informatik. Alphabete, Worte, Sprachen Theoretische Informatik Alphabete, Worte, Sprachen Alphabete, Worte, Sprachen 1. Alphabete und Worte Definitionen, Beispiele Operationen mit Worten Induktionsbeweise 2. Sprachen Definition und Beispiele

Mehr

Parallele und funktionale Programmierung Wintersemester 2015/ Übung Abgabe bis , 10:00 Uhr

Parallele und funktionale Programmierung Wintersemester 2015/ Übung Abgabe bis , 10:00 Uhr 11. Übung Abgabe bis 26.01.2016, 10:00 Uhr Hinweise: Verwenden Sie zur Lösung der Aufgaben nur die aus der Vorlesung bekannten, sowie die in den Übungen bekannt gegebenen Methoden und Funktionen der Scala-Standardbibliothek.

Mehr