Vorlesung. Vollständige Induktion 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Vorlesung. Vollständige Induktion 1"

Transkript

1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen Zahlen n N gelten sollen, beweisen kann. Induktion ist der abstrahierende Schluss von einem Einzelfall auf ein allgemeines Phänomen. In den Naturwissenschaften versucht man genau mit dieser Vorgehensweise von Beobachtungen auf zum Beispiel Naturgesetze zu schließen. In der Mathematik jedoch kann man damit nicht viel anfangen, denn in der Mathematik wird nur als richtig anerkannt, was logisch bewiesen wurde. Das Beweisverfahren der vollständigen Induktion ist die mathematische Variante dieses Prinzips zu schlussfolgern. Um zu verstehen, wie die vollständige Induktion funktioniert, muss man sich zunächst klarmachen, wie die natürlichen Zahlen mathematisch sauber aufgebaut sind. Die natürlichen Zahlen gehen zurück auf die Peano-Axiome. Diese lauten: 1. 0 ist eine natürliche Zahl.. Jede natürliche Zahl n hat eine natürliche Zahl n als Nachfolger ist kein Nachfolger einer natürlichen Zahl. 4. Natürliche Zahlen mit gleichem Nachfolger sind gleich. 5. Enthält X die 0 und mit jeder natürlichen Zahl n auch deren Nachfolger n, so bilden die natürlichen Zahlen eine Teilmenge von X. Aus dem letzten Axiom folgt die Induktionseigenschaft der natürlichen Zahlen, welche folgendes besagt: Ist M N eine Teilmenge der natürlichen Zahlen, die folgende beiden Eigenschaften erfüllt: 1 erstellt aus dem Vorlesungsskript von Anna Posingies 1

2 WS 015/16 1. n 0 M. Ist n M für eine Zahl n n 0, so ist auch (n + 1) M Dann gilt für diese Menge {n N n n 0 } M. Als Umformung dieser Eigenschaft erhalten wir das Beweisprinzip der vollständigen Induktion. Beweisprinzip der vollständigen Induktion Sei n 0 N eine fixierte natürliche Zahl. Für jede Zahl n N sei eine Aussage A(n) gegeben. Wir setzen voraus, dass die folgenden beiden Bedingungen erfüllt sind: 1. A(n 0 ) ist richtig. (Induktionsanfang). Falls A(n) richtig ist für eine Zahl n n 0, so ist auch A(n + 1) richtig. (Induktionsschritt) Dann ist die Aussage A(n) für alle Zahlen n N mit n n 0 richtig. Um einzusehen, dass das Beweisprinzip der vollständigen Induktion aus der Induktionseigenschaft der natürlichen Zahlen folgt, setzen wir Dann gilt n 0 M (nach Induktionsanfang) M := {n N Aussage A(n) ist richtig} Ist n M für eine Zahl n n 0, so ist (n + 1) M (nach Induktionsschritt) Aus der Induktionseigenschaft der natürlichen Zahlen folgt nun, dass A(n) für alle n n 0 richtig ist. Doch wie funktioniert nun die vollständige Induktion? Wir gehen davon aus, dass wir eine Behauptung haben, die für alle natürlichen Zahlen gelten soll. Diese Behauptung wollen wir mit vollständiger Induktion beweisen. Dieser Beweis durch vollständige Induktion besteht immer aus zwei Schritten: Induktionsanfang Die Behauptung wird für ein n 0 gezeigt (normalerweise Null oder Eins).

3 WS 015/16 Induktionsschritt Es wird gezeigt, dass aus der Gültigkeit der Behauptung für beliebiges n n 0 auch die Behauptung für n + 1 folgt. Wenn das getan ist, ist die Behauptung für alle n n 0 bewiesen. Man kann sich das wie eine Reihe von Dominosteinen vorstellen. Der Induktionsanfang sorgt dafür, dass der erste Stein fällt. Der Induktionsschritt stellt sicher, dass alle anderen Steine auch fallen. In der Praxis stellt sich das allerdings als häufig nicht ganz so einfach heraus. Um das und die Vorgehensweise besser zu verstehen, schauen wir uns zunächst ein Beispiel an. Beispiel (Summe der ersten n natürlichen Zahlen) Wir versuchen eine Formel aufzustellen, um die Summe der ersten n natürlichen Zahlen zu berechnen: Vermutung 1 = = = = n = n i = i=1 n(n + 1). Diese Vermutung wollen wir mittels unseres neuen Beweisverfahrens nun beweisen. Also 1 Induktionsanfang Für n = 1 gilt: = 1. Das wirkt vielleicht am Anfang überflüssig, ist jedoch in der Tat elementarer Bestandteil des Verfahrens. Denn selbst, wenn ich beweisen kann, dass, wenn ein Stein fiele, auch alle anderen fielen: Solange keiner fällt, stehen alle still. Induktionsschritt Dieser unterteilt sich in der Regel in zwei Teile: die Induktionsvoraussetzung und die Induktionsbehauptung inklusive deren Beweis. Zur Erinnerung: Wir wollen zeigen, dass aus der Gültigkeit für beliebiges n n 0 die Güligkeit für n + 1 folgt. Also Induktionsvoraussetzung Sei die Formel für beliebiges n 1 schon gezeigt. Dann gilt: n i = i=1 n(n + 1). 3

4 WS 015/16 Induktionsbehauptung Wenn die Induktionsvoraussetzung (für beliebiges n) gilt, dann muss sie auch für n + 1 gelten, also n+1 i = i=1 (n + 1)(n + ) Beweis. ( n+1 n ) i = i + (n + 1) = i=1 i=1 = = n(n + 1) + (n + 1) (nach Voraussetzung) n(n + 1) (n + 1) + n(n + 1) + (n + 1) = (n + 1)(n + ) Wir haben also nun für unser Problem eine Vermutung aufgestellt und diese Vermutung für ein Anfangsglied n 0 geprüft. Da dann im Induktionsschritt aus der Gültigkeit für ein beliebiges n (also beispielsweise unser Anfangsglied) folgt, dass die Vermutung auch für seinen Nachfolger gilt, haben wir die Vermutung für alle n n 0 gezeigt. Anwendung Man kann mittels vollständiger Induktion nicht nur Aussagen über die natürlichen Zahlen beweisen, sondern auch Behauptungen über andere Objekte (Zahlen, Mengen, Strukturen und so weiter). Man muss aber diese Objekte oder eine Eigenschaft dieser Objekte mit den natürlichen Zahlen abzählen können. Beispiel einer Eigenschaftsbeschreibung: Die natürlichen ungeraden Zahlen {1, 3, 5, 7,... } kann man auch so darstellen: {n N m N mit n = m 1} Das heißt natürlich nicht, dass es sinnvoll ist alle solche Aussagen mit vollständiger Induktion zu beweisen. 4

5 WS 015/16.1 Unvollständige Induktionen Wir wollen noch einmal verdeutlichen, warum das Beweisverfahren der vollständigen Induktion immer nach dem vorgegebenen Schema ablaufen muss. Betrachten wir zuerst Induktionen ohne Schritt Es ist klar, dass eine Induktion ohne Schritt keine Aussage trifft. Beispielsweise zeigt die Aussage ist eine gerade Zahl nicht, dass alle Zahlen oder auch nur alle natürlichen Zahlen gerade sind. Induktionen ohne Anfang Auch diese Möglichkeit zeigt nichts, beziehungsweise kann man mit Induktionen ohne Anfang ziemlich viel, wenn nicht gar alles, zeigen. Beispiel: Alle ungeraden Zahlen n 1 lassen sich durch teilen. Sei die Aussage bereits für n bewiesen. Nun zeigen wir, dass sie dann auch für n + 1 gilt. Induktionsvoraussetzung Es existiert m 0 N, sodass gilt: m 0 = n 1. Induktionsbehauptung Dann existiert auch ein m 1 N, sodass gilt: m 1 = n+1 Beweis. n+1 = (n 1)+ = m 0 + = (m 0 +1). Setze also m 1 := m Dann folgt: n + 1 = m 1 und damit die Behauptung. falsche Schlüsse Die Aussage In einen Koffer passen unendlich viele Taschentücher. wird begründet mit Eins passt immer noch. Fehler: Diese Begründung ist nicht konstruktiv. Auch zu sagen Ich öffne den Koffer, packe das Taschentuch in die Ecke oben links und schließe den Koffer. vernachlässigt die Tatsache, dass dies nicht immer möglich ist. Man muss also darauf achten, alle gegebenen Probleme der Aufgabe zu berücksichtigen. Nachfolgend werden wir uns nun direkten Problemen aus verschiedenen Gebieten anschauen, um zu sehen, wie nützlich dieses Beweisverfahren ist.. Ungleichungen Genau wie für viele Gleichungen kann man auch die Gültigkeit vieler Ungleichungen mittels vollständiger Induktion zeigen. 5

6 WS 015/16 Beispiel Wir versuchen nun zu zeigen, dass n > n + 1 für alle n gilt. Induktionsanfang = 4 > + 1 Induktionsvoraussetzung Sei die Vermutung für beliebiges n bereits bewiesen. Induktionsbehauptung Dann gilt die Vermutung auch für n + 1. Beweis. n+1 = n IS > (n + 1) = n + = (n + ) + n > n.3 rekursive Folgen Bei rekursiven Folgen, also Folgen, bei denen sich das Folgenglied aus den vorhergehenden berechnet, kann es mitunter sehr aufwendig sein, spätere Folgenglieder zu bestimmen. Daher kann es von Vorteil sein, für rekursiv definierte Folgen eine explizite Formel zur Berechnung der Folgenglieder anzugeben. Beispiel Suche eine explizite Formel für die Folge a 0 := 1 a n := 3a n Über die ersten Folgenglieder a 0 = 1 a 1 = 4 a = 13 a 3 = 40 a 4 = 11 entwickelt man die Vermutung a n = 3n+1 1. Induktionsanfang a 0 = 31 1 = 1 Induktionsvoraussetzung Sei die Vermutung für beliebiges n 0 bereits bewiesen. Induktionsbehauptung Dann gilt die Vermutung auch für n + 1. Beweis. a n+1 def = 3a n + 1 = 3 ( 3 n+1 1 ) + 1 = 3(3n+1 1) + = 3n+ 1 6

7 WS 015/16.4 geometrisches Beispiel Problem: Wir wollen beweisen, dass jede Teilung der euklidischen Ebene mit endlich vielen Geraden mit zwei Farben eingefärbt werden kann, sodass je zwei Teile mit einer gemeinsamen Kante nie von der gleichen Farbe sind. Wir führen den Beweis über die Anzahl der Geraden. Induktionsanfang Die Ebene kann man mit einer Gerade in zwei Flächen und diese problemlos mit zwei Farben füllen. Induktionsvoraussetzung Eine durch n Geraden geteilte Ebene kann man in zwei Farben einfärben. Induktionsbehauptung Eine durch n + 1 Geraden geteilte Ebene kann man in zwei Farben einfärben. Beweis. Wenn wir n + 1 Geraden haben, können wir diese durchnummerieren. Dann betrachten wir nur die ersten n Geraden. Die Flächen, die durch diese n Geraden entstehen, färben wir mit zwei Farben (Voraussetzung). Die n + 1. Gerade teilt die Ebene in zwei Hälften, beispielsweise in eine Linke und eine Rechte. Auf der einen Seite, der linken, fäben wir jetzt alle Flächen um. Dadurch entsteht eine Färbung der durch n + 1 Geraden geteilten Ebene mit zwei Farben..5 Potenzmenge Größe der Potenzmenge Ist M eine endliche Menge mit n Elementen. Dann enthält die Potenzmenge von M n Elemente. Induktionsanfang Enthält M keine Elemente, so enthält die Potenzmenge von M nur die leere Menge, also 0 = 1 Element. Induktionsvoraussetzung Die Potenzmenge einer Menge mit n Elementen enthält n Elemente. Induktionsbehauptung Die Potenzmenge einer Menge M mit n + 1 Elementen enthält n+1 Elemente. Beweis. Sei m M und sei U eine Teilmenge von M. Es gibt genau zwei Möglichkeiten Fall 1: m / U Dann ist U eine Teilmenge von M \ {m} und nach Induktionsvoraussetzung gibt es n Teilmengen von M \ {m}. 7

8 WS 015/16 Fall : m M Dann ist U von der Form U = U {m} und U ist eine Teilmenge von M \{m} Nach Voraussetzung gibt es n Möglichkeiten für U und damit gibt es n Teilmengen von M, die m enthalten. Damit folgt, dass die Potenzmenge von M n = n+1 Elemente enthält..6 Permutationen Anzahl der Permutationen von n: Wir wollen beweisen, dass man n verschiedene Objekte einer Menge auf = n i=1 i = n (n 1) 1 Arten anordnen kann. Induktionsanfang Ein Objekt kann man nur auf eine Art anordnen. Da 1! = 1 stimmt die Vermutung. Induktionsvoraussetzung n verschiedene Objekte kann man auf verschiedene Arten anordnen. Induktionsbehauptung n + 1 verschiedene Objekte kann man auf (n + 1)! verschiedene Arten anordnen. Beweis. Das (n + 1). Objekt kann an n + 1 verschiedenen Stellen stehen. Die Anzahl der Anordnungen ergibt sich also als Summe der Anordnungen, bei denen das (n + 1). Objekt jeweils an der ersten, zweiten,..., (n + 1). Stelle steht. Wieviele Anordnungen gibt es nun, bei denen das (n + 1). Objekt an der Stelle j steht? Offensichtlich nach Voraussetzung. Da es n+1 verschiedene Stellen j gibt, gilt also, dass man (n+1) = (n+1)! Möglichkeiten habe, n+1 verschiedene Objekte anzuordnen..7 Kugeln ziehen Man kann auch Aussagen durch Induktion beweisen, die von mehr als einer Variablen abhängen. Dabei ist es allerdings sehr wichtig, sich klar zu machen, über welche Variable man die Induktion führen will. Aus der Schul-Stochastik ist vielleicht noch bekannt, dass es verschiedene Möglichkeiten gibt k Objekte aus n zu ziehen mit 1 k k!(n k!) n. 8

9 WS 015/16 Induktionsanfang Für n = 1 kann k ebenfalls nur 1 sein. Es gibt nur eine Möglichkeit 1 1! Element aus einer einelementigen Menge auszuwählen. Da 1!(1 1)! = 1, weil 0! := 1, folgt die Behauptung. Induktionsvoraussetzung Es gibt k!(n k)! verschiedene Möglichkeiten k Objekte aus n zu ziehen, 1 k n. Induktionsbehauptung Es gibt ziehen, 1 k n + 1. (n+1)! k!((n+1) k)! verschiedene Möglichkeiten k Objekte aus n + 1 zu Beweis. Wir nummerieren die Objekte durch und teilen die Möglichkeiten aus allen n + 1 Objekten k zu ziehen in diejenigen, bei denen das (n + 1). Objekt gezogen wird, und in diejenigen, bei denen es nicht gezogen wird. Fall 1 Wenn das (n + 1). Objekt nicht gezogen wird, werden ja die k Objekte gerade aus den anderen n gezogen. Nach Voraussetzungen gibt es dafür genau k!(n k)! Möglichkeiten mit 1 k n. Fall Wenn wir das (n + 1). Objekt ziehen, ist es etwas komplizierter. Wir wollen insgesamt immer noch k Objekte ziehen. Da eines davon das (n + 1). ist, bleiben also k 1 Objekte aus n zu ziehen. Fall a Wenn k = 1, wir also 1 Element aus n + 1 ziehen wollen und von den gezogenen sei eines das (n + 1)., dann ist die Sache klar. Es gibt dafür genau eine Möglichkeit. Fall b Wenn wir nun k n + 1 verschiedene Objekte aus n + 1 ziehen wollen und eines davon ist das (n + 1)., dann müssen wir aus den restlichen n noch k 1 Objekte ziehen, also 1 k 1 n. Laut Voraussetzung gilt, dass es dafür (k 1)!(n (k 1))! verschiedene Möglichkeiten gibt. Insgesamt ergeben sich also um ein Objekt zu ziehen (k = 1): +1 = n + 1 verschiedene Möglichkeiten 1!(n 1)! }{{} Fall 1 um n + 1 Objekte zu ziehen: (Fall 1 tritt nicht ein) 0 + (n + 1 1)!(n (n + 1 1))! = (n n)! = 1 Möglichkeit 9

10 WS 015/16 um k n Objekte zu ziehen k!(n k)! }{{} Fall 1 + (k 1)!(n (k 1))! }{{} Fall = (n + 1)! k!(n + 1 k)! (n + 1)! Weil n + 1 = 1!(n + 1 1)! und 1 = (n + 1)!, ergibt sich die vermutete (n + 1)!(n + 1 (n + 1))! Formel für alle auftretenden Fälle und die Gültigkeit ist gezeigt. 10

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Induktion und Rekursion

Induktion und Rekursion Induktion und Rekursion Induktion und Rekursion Vorkurs Informatik Theoretischer Teil WS 013/14. Oktober 013 Vorkurs Informatik WS 013/14 1/1 Vollständige Induktion Vorkurs Informatik WS 013/14 /1 Ziel

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Kapitel 1. Grundlegendes

Kapitel 1. Grundlegendes Kapitel 1 Grundlegendes Abschnitt 1.4 Vollständige Induktion Charakterisierung der natürlichen Zahlen Die Menge N 0 = {0, 1, 2, 3,...} der natürlichen Zahlen läßt sich wie folgt charakterisieren: 1. 0

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2013/14 Inhalt Übungserklärung* Beweis durch Vollständige Induktion 2

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche Zahl hat genau einen Nachfolger d.h. n : (n N! n

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche

Mehr

Induktion und Rekursion

Induktion und Rekursion Mathematische Beweistechniken Vorkurs Informatik SoSe13 10. April 013 Mathematische Beweistechniken Ziel Mathematische Beweistechniken Ziel beweise, dass eine Aussage A(n) für alle n N gilt. Beispiel Für

Mehr

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Zeigen Sie mit vollständiger Induktion:

Mehr

mathe plus Aussagenlogik Seite 1

mathe plus Aussagenlogik Seite 1 mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet

Mehr

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente Universität Basel Wirtschaftswissenschaftliches Zentrum Kombinatorik Dr. Thomas Zehrt Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente 2 Teil 1 Endliche Mengen Eine endliche Menge M ist eine Menge,

Mehr

Kapitel 1. Kapitel 1 Vollständige Induktion

Kapitel 1. Kapitel 1 Vollständige Induktion Vollständige Induktion Inhalt 1.1 1.1 Das Das Prinzip A(n) A(n) A(n+1) 1.2 1.2 Anwendungen 1 + 2 + 3 +...... + n =? 1.3 1.3 Landkarten schwarz-weiß 1.4 1.4 Fibonacci-Zahlen 1, 1, 1, 1, 2, 2, 3, 3, 5, 5,

Mehr

Folgen und endliche Summen

Folgen und endliche Summen Kapitel 2 Folgen und endliche Summen Folgen und ihre Eigenschaften Endliche arithmetische und geometrische Folgen und Reihen Vollständige Induktion Anwendungen Folgen/endliche Summen Eigenschaften Folgen

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 6 Grundlagen der Mathematik Präsenzaufgaben (P9) Die Ordnung der natürlichen Zahlen I Wir hatten in der Vorlesung

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

Hilfsmittel aus der Kombinatorik, Vollständige Induktion, Reelle Zahlenfolgen

Hilfsmittel aus der Kombinatorik, Vollständige Induktion, Reelle Zahlenfolgen 7. Vorlesung im Brückenkurs Mathematik 2017 Hilfsmittel aus der Kombinatorik, Vollständige Induktion, Reelle Zahlenfolgen Dr. Markus Herrich Markus Herrich Kombinatorik, Vollständige Induktion, Zahlenfolgen

Mehr

Das Beweisverfahren der vollständigen Induktion

Das Beweisverfahren der vollständigen Induktion c 2004 by Rainer Müller - http://www.emath.de 1 Das Beweisverfahren der vollständigen Induktion Einleitung In der Mathematik gibt es im Prinzip drei grundlegende Beweismethoden, mit denen man versucht,

Mehr

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann Reihen/Partialsummenfolgen und vollständige Induktion Robert Klinzmann 3. Mai 00 Reihen / Partialsummen 1 Inhaltsverzeichnis 1 Vorwort Das Prinzip der vollständigen Induktion 3 3 Herleitung der Gauß schen

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

1 Das Prinzip der vollständigen Induktion

1 Das Prinzip der vollständigen Induktion 1 1 Das Prinzip der vollständigen Induktion 1.1 Etwas Logik Wir nennen eine Formel oder einen Satz der Alltagssprache eine Aussage, wenn sie wahr oder falsch sein kann. Die Formeln 2 = 3, 2 4, 5 5 sind

Mehr

Vollständige Induktion

Vollständige Induktion Kantonsschule Olten Hardwald 4600 Olten Vollständige Induktion Andreas Stoll Andreas Pulfer Erfänzungsfach Anwendungen der Mathematik (2017/18) 1 Beweisen 1.1 Axiome und Prämissen Bei einem Beweis wird

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

Kapitel 1 Die natürlichen und die ganze Zahlen

Kapitel 1 Die natürlichen und die ganze Zahlen Kapitel 1 Die natürlichen und die ganze Zahlen Inhalt 1.1 1.1 Vollständige Induktion z.b. z.b. 1+ 1+ 2 + 3 +...... + n = n(n+1)/2 1.2 1.2 Die Die Peano-Axiome Ein Ein Axiomensystem für für die die natürlichen

Mehr

Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung

Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Mathematisches Institut II.06.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 3: Elementare Beweismethoden: Direkter Beweis,

Mehr

: das Bild von ) unter der Funktion ist gegeben durch

: das Bild von ) unter der Funktion ist gegeben durch % 1.3 Funktionen Seien und Mengen nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. Bezeichnungen: : Definitionsbereich : Bildbereich (Zielmenge) von Der Graph einer Funktion: graph!

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 0/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 8. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 8. Vorlesung 1 / 25 Themen

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Vollständige Induktion

Vollständige Induktion Seite 1 Klaus Messner, klaus_messner@web.de Seite 2 Problem: Problem Man hat eine Aussage (z.b. eine Formel) und soll zeigen, dass diese Aussage für alle natürlichen Zahlen gilt. Beispiel: Es soll gezeigt

Mehr

8. Übungsblatt zur Mathematik I für Chemiker

8. Übungsblatt zur Mathematik I für Chemiker Fachbereich Mathematik PD Dr. P. Ne WS 007/008 6.1.007 8. Übungsblatt zur Mathematik I für Chemiker Zur Erinnerung, die Formel für die Taylorreihe um die Stelle x 0 lautet f(x) n0 f (n) (x 0 ) (x x 0 )

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

Analysis I: Übungsblatt 1 Lösungen

Analysis I: Übungsblatt 1 Lösungen Analysis I: Übungsblatt 1 Lösungen Verständnisfragen 1. Was ist Mathematik? Mathematik ist eine Wissenschaft, die selbstgeschaffene, abstrakte Strukturen auf ihre Eigenschaften und Muster hin untersucht.

Mehr

1 Übersicht Induktion

1 Übersicht Induktion Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans Dipl.-Inform. Markus Bender 0.11.01 (v1.3) 1 Übersicht Induktion 1.1 Allgemeines Unter einem induktiven Vorgehen versteht

Mehr

Lösungen. 1. Klausur zur MIA: Analysis I für Mathematiker

Lösungen. 1. Klausur zur MIA: Analysis I für Mathematiker MATHEMATISCHES INSTITUT WS 006/07 DER UNIVERSITÄT MÜNCHEN Prof. Dr. M. Schottenloher Dr. S. Tappe Version 5.. Lösungen zur. Klausur zur MIA: Analysis I für Mathematiker vom 6..06 Aufgabe. ( + Punkte) a)

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 2

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 2 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 2013/14 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie svorschläge

Mehr

Alternativ kann man auch die Differenz a n+1 a n betrachten:

Alternativ kann man auch die Differenz a n+1 a n betrachten: Aufgabe 1 Folgen auf Monotonie und Beschränktheit prüfen. a) Beschränktheit? Die Folge ( ) n N mit = n + ( 1) n ist nach unten beschränkt, denn es gilt n + ( 1) n n 1 1 für alle n N. Allerdings ist die

Mehr

Vollständige Induktion

Vollständige Induktion Angenommen, wir wollen zeigen, dass eine Aussage P(n) für alle n N wahr ist. Anders ausgedrückt: Es gilt n N : P(n) Hierzu können wir die Technik der vollständigen Induktion verwenden. Wir zeigen, dass

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 9. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 9. Vorlesung 1 / 17 Themen

Mehr

= =

= = 9. Januar 2007 Arbeitsblatt 9 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen I. Gasser, H. Strade, B. Werner WiSe 06/07 19.12.06 Präsenzaufgaben: 1. Zu Beginn

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

Kapitel 2. Kapitel 2 Zählen (Kombinatorik)

Kapitel 2. Kapitel 2 Zählen (Kombinatorik) Zählen (Kombinatorik) Inhalt 2.1 2.1 Einfache Zählformeln A A B B = A A + B. B. 2.2 2.2 Binomialzahlen 2.3 2.3 Die Die Siebformel 2.4 2.4 Permutationen Seite 2 2.1 Einfache Zählformeln Erinnerung: Für

Mehr

Hinweise zur Logik. Ergänzung zu den Übungen Mathematische Grundlagen der Ökonomie am 22. Oktober 2009

Hinweise zur Logik. Ergänzung zu den Übungen Mathematische Grundlagen der Ökonomie am 22. Oktober 2009 Hinweise zur Logik Ergänzung zu den Übungen Mathematische Grundlagen der Ökonomie am 22. Oktober 2009 Im folgenden soll an einige Grundsätze logisch korrekter Argumentation erinnert werden. Ihre Bedeutung

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

Grundlegendes der Mathematik

Grundlegendes der Mathematik Kapitel 2 Grundlegendes der Mathematik (Prof. Udo Hebisch) 2.1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig

Mehr

Vollständige Induktion

Vollständige Induktion Schweizer Mathematik-Olympiade smo osm Vollständige Induktion Aktualisiert: 1 Dezember 01 vers 100 Eine der wichtigsten Beweistechniken der Mathematik überhaupt ist die (vollständige) Induktion Wir nehmen

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen (Teil II) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents 1 2 3 Definition Mengenfamilie Eine Menge, deren sämtliche Elemente selbst wiederum

Mehr

Themen: Kubische Gleichungen, Ungleichungen, Induktion

Themen: Kubische Gleichungen, Ungleichungen, Induktion Lo sungen zu U bungsblatt Mathematik fu r Ingenieure Maschinenbauer und Sicherheitstechniker), 1. Semester, bei Prof. Dr. G. Herbort im WiSe1/14 Dipl.-Math. T. Pawlaschyk, 05.11.1 Themen: Kubische Gleichungen,

Mehr

6 Reelle und komplexe Zahlenfolgen

6 Reelle und komplexe Zahlenfolgen Mathematik für Physiker I, WS 200/20 Freitag 0.2 $Id: folgen.tex,v. 200/2/06 :2:5 hk Exp $ $Id: reihen.tex,v. 200/2/0 4:4:40 hk Exp hk $ 6 Reelle und komplexe Zahlenfolgen 6. Cauchyfolgen Wir kommen nun

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =

Mehr

Analysis I. Vorlesung 1. Mengen

Analysis I. Vorlesung 1. Mengen Prof. Dr. H. Brenner Osnabrück WS 013/014 Analysis I Vorlesung 1 Mengen Georg Cantor (1845-1918) ist der Schöpfer der Mengentheorie. David Hilbert (186-1943) nannte sie ein Paradies, aus dem die Mathematiker

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0) 09.0.0. Kommissar K hat 3 Tatverdächtige P, Q und R. Er weiß: (a) Wenn sich Q oder R als Täter herausstellen, dann ist P unschuldig.

Mehr

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine Teilmenge des nichttrivialen

Mehr

Kapitel 3. Natürliche Zahlen und vollständige Induktion

Kapitel 3. Natürliche Zahlen und vollständige Induktion Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine

Mehr

Elementare Beweistechniken

Elementare Beweistechniken Elementare Beweistechniken Beispiel: Satzform (Pythagoras) Voraussetzung: Gegeben sei ein beliebiges rechtwinkeliges Dreieck, die Länge der Hypothenuse sei c und die Längen der anderen Seiten seien a und

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung ) Institut für Analysis und Scientific Computing TU Wien W. Auzinger WS 05/6 A N A L Y S I S I F Ü R T P H, U E (03.088). Übungstest (FR, 6..05) (mit Lösung ) Aufgabe. a ) Wandeln Sie die periodische Dezimalzahl

Mehr

Kombinatorik von Zahlenfolgen

Kombinatorik von Zahlenfolgen 6. April 2006 Vorlesung in der Orientierungswoche 1 Kombinatorik von Zahlenfolgen Einige Beispiele Jeder kennt die Fragen aus Intelligenztests, in denen man Zahlenfolgen fortsetzen soll. Zum Beispiel könnten

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler wi Wirtschaft Pearson Studium Mathematik für Wirtschaftswissenschaftler Das Übungsbuch von Nils Heidenreich, Fred Böker, Britta Schnoor 1. Auflage Mathematik für Wirtschaftswissenschaftler Heidenreich

Mehr

Lösung zur Übung für Analysis einer Variablen WS 2016/17

Lösung zur Übung für Analysis einer Variablen WS 2016/17 Blatt Nr. 3 Prof. F. Merkl Lösung zur Übung für Analysis einer Variablen WS 206/7 Aufgabe Das Guthaben G setzt sich zusammen aus der Summe aller bisherigen Einzahlungen multipliziert mit ( + p) k, wobei

Mehr

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 11 Saison 1961/1962 Aufgaben und Lösungen

1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 11 Saison 1961/1962 Aufgaben und Lösungen 1. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 11 Saison 1961/1962 Aufgaben und Lösungen 1 OJM 1. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 11 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Vorlesung Diskrete Strukturen Die natürlichen Zahlen

Vorlesung Diskrete Strukturen Die natürlichen Zahlen Vorlesung Diskrete Strukturen Die natürlichen Zahlen Bernhard Ganter WS 2009/10 Alles ist Zahl? Wenn in der modernen Mathematik alles auf Mengen aufgebaut ist, woher kommen dann die Zahlen? Sind Zahlen

Mehr

ALP I Induktion und Rekursion

ALP I Induktion und Rekursion ALP I Induktion und Rekursion WS 2012/2013 Vollständige Induktion (Mafi I) Die Vollständige Induktion ist eine mathematische Beweistechnik, die auf die Menge der natürlichen Zahlen spezialisiert ist. Vorgehensweise:

Mehr

VORKURS MATHEMATIK. 0 a + 1 b = ( 4/7)c. und addiere die zweite Gleichung zur Ersten: 1 a + 0 b = (3/7)c

VORKURS MATHEMATIK. 0 a + 1 b = ( 4/7)c. und addiere die zweite Gleichung zur Ersten: 1 a + 0 b = (3/7)c VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Freitag: Lineare Gleichungssysteme, Mengen, Logik, Induktion Nachdem wir gestern eine kurze Einführung in die Vektorgeometrie

Mehr

HEUTE. Regeln für Programmabnahmen! Wiederholung: Regeln für Übungs- und Programmieraufgaben! Beweistechniken: vollständige Induktion, Widerspruch

HEUTE. Regeln für Programmabnahmen! Wiederholung: Regeln für Übungs- und Programmieraufgaben! Beweistechniken: vollständige Induktion, Widerspruch 04.11.05 1 HEUTE 04.11.05 3 Regeln für Programmabnahmen! Wiederholung: Regeln für Übungs- und Programmieraufgaben! Beweistechniken: vollständige Induktion, Widerspruch die Rundungsfunktionen und modulo

Mehr

Surjektive, injektive und bijektive Funktionen.

Surjektive, injektive und bijektive Funktionen. Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens

Mehr

Das Volumen und die Oberfläche einer n-dimensionalen Kugel

Das Volumen und die Oberfläche einer n-dimensionalen Kugel Das Volumen und die Oberfläche einer n-dimensionalen Kugel Alois Temmel 6. Februar 14 c 14, A. Temmel Inhaltsverzeichnis 1 Die Volumenformel 3 1.1 Die n-dimensionale Kugel.................... 3 1.1.1 Die

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

Kapitel III. Aufbau des Zahlensystems

Kapitel III. Aufbau des Zahlensystems Kapitel III. Aufbau des Zahlensystems 1 Addition und Multiplikation natürlicher Zahlen Wir wollen erklären, wie man natürliche Zahlen addiert und multipliziert und dabei nur den Begriff das Zählens verwenden.

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

Mathematik 1 für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler) Musterprüfung mit Lösungen

Mathematik 1 für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler) Musterprüfung mit Lösungen Mathematik für Informatiker und Wirtschaftsinformatiker Wintersemester 07/08 (Winkler Musterprüfung mit Lösungen. Sei T N. (a Unter welchen beiden Voraussetzungen an T garantiert das Induktionsaxiom (nach

Mehr

2 - Konvergenz und Limes

2 - Konvergenz und Limes Kapitel 2 - Folgen Reihen Seite 1 2 - Konvergenz Limes Definition 2.1 (Folgenkonvergenz) Eine Folge komplexer Zahlen heißt konvergent gegen, wenn es zu jeder positiven Zahl ein gibt, so dass gilt: Die

Mehr

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0 Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem

Mehr

Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1

Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1 Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1 Aufgabe 1.1 ( Punkte) Schreiben Sie die Definitionen von Injektivität und Surjektivität einer Funktion als prädikatenlogische Formeln auf. Lösung

Mehr

Vollständige Induktion

Vollständige Induktion Vollständige Induktion F. Lemmermeyer. Januar 04 Aussagen, die für alle natürlichen Zahlen gelten, kann man oft mit vollständiger Induktion beweisen. Das Vorgehen ist dabei folgendes:. Man zeigt, dass

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 6

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 6 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 6 Die Lösungshinweise dienen

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Beweise und Beweisstrategien andreas.kucher@uni-graz.at Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, September 5, 2015 Hinweis zu den Folien Diese Folien sind

Mehr

Aufgabenblatt 1: Abgabe am vor der Vorlesung

Aufgabenblatt 1: Abgabe am vor der Vorlesung Aufgabenblatt 1: Abgabe am 17.09.09 vor der Vorlesung Aufgabe 1. a.) (1P) Geben Sie die Lösungsmenge der folgenden Gleichung an: 6x + y = 10. Zeichnen Sie die Lösungsmenge in ein Koordinatensystem. b.)

Mehr

Natürliche, ganze und rationale Zahlen

Natürliche, ganze und rationale Zahlen Natürliche, ganze und rationale Zahlen Zunächst haben die zum Zählen verwendeten natürlichen Zahlen 0, 1, 2, 3,... nichts mit dem reellen Zahlen zu tun. Durch die ausgezeichnete reelle Zahl 1 (Maßeinheit!)

Mehr

Kapitel 11 Beweisführung. Mathematischer Vorkurs TU Dortmund Seite 125 / 254

Kapitel 11 Beweisführung. Mathematischer Vorkurs TU Dortmund Seite 125 / 254 Kapitel 11 Beweisführung Kapitel 11 Beweisführung Mathematischer Vorkurs TU Dortmund Seite 125 / 254 Kapitel 11 Beweisführung Grundsätzlich: ein mathematischer Satz ist eine Aussage der Form wenn... gilt,

Mehr

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1 Kapitel 1.1 Aussagenlogik: Syntax Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1 Übersicht 1.1.1 Die Sprache der Aussagenlogik 1.1.2 Explizite vs. implizite Definitionen 1.1.3

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Lennéstraße 43, 1. OG pinger@uni-bonn.de September/Oktober 2017 JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Vorkurs Mathematik September/Oktober

Mehr

Zahlenmengen. Bemerkung. R Menge aller Dezimalbrüche: reelle Zahlen, C = {a + i b : a, b R} mit i 2 = 1 komplexe Zahlen.

Zahlenmengen. Bemerkung. R Menge aller Dezimalbrüche: reelle Zahlen, C = {a + i b : a, b R} mit i 2 = 1 komplexe Zahlen. Zahlenmengen N = {0, 1,, 3,...} natürliche Zahlen, Z = {...,, 1, 0, 1,,...} ganze Zahlen, Q = {p/q : p Z, q N \ {0}} rationale Zahlen, R Menge aller Dezimalbrüche: reelle Zahlen, C = {a + i b : a, b R}

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 9 In theory, theory and praxis are the same, in praxis they aren t Die Multiplikation auf den natürlichen Zahlen Zur Definition

Mehr

Vorkurs Beweisführung

Vorkurs Beweisführung Vorkurs Beweisführung Fachschaft Mathematik und Informatik 30.08.2013 Agenda 1 Einleitung 2 Direkter Beweis 3 Widerspruchsbeweis 4 Vollständige Induktion 5 Aussagen widerlegen 6 Gleichheit von Mengen 7

Mehr

Weitere Beweistechniken und aussagenlogische Modellierung

Weitere Beweistechniken und aussagenlogische Modellierung Weitere Beweistechniken und aussagenlogische Modellierung Vorlesung Logik in der Informatik, HU Berlin 2. Übungsstunde Aussagenlogische Modellierung Die Mensa versucht ständig, ihr Angebot an die Wünsche

Mehr

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen.

Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Kapitel 1 - Mathematische Grundlagen Seite 1 1 - Mengen Im allerersten Unterabschnitt wollen wir uns mit einer elementaren Struktur innerhalb der Mathematik beschäftigen: Mengen. Definition 1.1 (G. Cantor.

Mehr

ANALYSIS I FÜR TPH WS 2016/17 1. Übung Übersicht

ANALYSIS I FÜR TPH WS 2016/17 1. Übung Übersicht . Übung Übersicht Aufgaben zu Kapitel und 2 Aufgabe : Drei klassische Ungleichungen Aufgabe 2: ) Beweis einer Summenformel Induktion) Aufgabe : ) Teleskopsummen Aufgabe 4: Noch etwas Formelmanipulation

Mehr

typische Beweismuster Allgemeine Hilfe Beweistechniken WS2014/ Januar 2015 R. Düffel Beweistechniken

typische Beweismuster Allgemeine Hilfe Beweistechniken WS2014/ Januar 2015 R. Düffel Beweistechniken Beweistechniken Ronja Düffel WS2014/15 13. Januar 2015 Warum ist Beweisen so schwierig? unsere natürliche Sprache ist oft mehrdeutig wir sind in unserem Alltag von logischen Fehlschlüssen umgeben Logik

Mehr

3 Die natürlichen Zahlen. Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen

3 Die natürlichen Zahlen. Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen 3 Die natürlichen Zahlen Themen: Vollständige Induktion Varianten des Induktionsprinzips Induktion über den rekursiven Aufbau Die ganzen Zahlen Die natürlichen Zahlen Æ = {1, 2, 3,...}. sind die natürlichen

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 8

Mathematische Grundlagen der Ökonomie Übungsblatt 8 Mathematische Grundlagen der Ökonomie Übungsblatt 8 Abgabe Donnerstag 7. Dezember, 0:5 in H 5+7+8 = 20 Punkte Mit Lösungshinweisen zu einigen Aufgaben 29. Das Bisektionsverfahren sucht eine Nullstelle

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 3: Beweisverfahren

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 3: Beweisverfahren FH Wedel Prof. Dr. Sebastian Iwanowski DM3 Folie 1 Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kapitel 3: Beweisverfahren Meinel 3, 6, 7 Lang 4.1 (nur bis S. 43), 2.2

Mehr

Ferienkurs Analysis 1: Übungsblatt 1

Ferienkurs Analysis 1: Übungsblatt 1 Ferienkurs Analysis : Übungsblatt Marta Krawczyk, Andreas Schindewolf, Simon Filser 5.3.00 Aufgaben zur vollständigen Induktion. Verallgemeinerte geometrische Summenformel. Zeigen Sie mittels vollständiger

Mehr

Wie beweise ich etwas? 9. Juli 2012

Wie beweise ich etwas? 9. Juli 2012 Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Wie beweise ich etwas? 9. Juli 2012 1 Was ist ein Beweis? 1.1 Ein Beispiel Nimm einen Stift und ein Blatt Papier und zeichne fünf

Mehr

Universität Innsbruck WS 2013/2014. Brückenkurs. Formale Konzepte. 3. Auflage. Harald Zankl. 15. Januar 2014

Universität Innsbruck WS 2013/2014. Brückenkurs. Formale Konzepte. 3. Auflage. Harald Zankl. 15. Januar 2014 Universität Innsbruck WS 013/014 Brückenkurs Formale Konzepte 3. Auflage Harald Zankl 15. Januar 014 Institut für Informatik Innsbruck, Österreich Inhaltsverzeichnis 1 Definition, Satz, Beweis 1.1 Aufgaben................................

Mehr

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: Lösung 1. Übung Elemente der Algebra WS017/18 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 3x+4y 1}.

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2016 Einführung in die mathematische Logik Vorlesung 12 Wir haben bisher nur von Axiomensystemen im Sinne einer beliebigen Ausdrucksmenge Γ L S gesprochen, die im Allgemeinen

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr