2. Hausübung Diskrete Mathematik SS 2003

Größe: px
Ab Seite anzeigen:

Download "2. Hausübung Diskrete Mathematik SS 2003"

Transkript

1 2. Hausübung Diskrete Mathematik SS 2003 Lösungsvorschläge 6. Zunächst bestimmen wir die Anzahl der verschiedenen möglichen Ergebnisse für die Differenzen a i a j. Wegen 1 a 1 < < a gibt es 99 Möglichkeiten für diese Differenzen. Um nun den Schubfachschluss anwenden zu können, müssen wir uns überlegen, auf wieviele verschiedene Arten wir solche Differenzen a i a j bilden können. Offenbar ergibt jede Auswahl von zwei Folgengliedern eine solche Differenz. Da es ( n k) Möglichkeiten gibt, k Gegenstände aus einer Menge von n Elementen auszuwählen, erhalten wir für unser Beispiel: Wegen ( ) 21 = = 198 < 210 gibt es nun nach dem Schubfachschluss mindestens einen Wert, der mindestens drei Mal angenommen wird. 7. Auch dieses Beispiel führt auf einen Schubfachschluss. Es führeren mehrere Vorgangsweisen zum Ziel. Im Anschluß sind 2 vorgestellt: Variante 1: Da das Schachbrett 7 Spalten hat, enthält jede Zeile, daher auch die 1. (zumindest) 4 Felder derselben Farbe (Schubfachschluß). Ohne Einschränkung der Allgemeinheit können wir annehmen, daß die Mehrheitsfarbe blau sei. Auf diese Weise werden 4 Spalten ausgesucht, die ein 3 4 Schachbrett zusammengefasst werden. Wenn nun die 2. oder die 3. Zeile dieses 3 4 Bretts zwei blaue Felder enthält, so bilden diese mit den entsprechenden blauen Feldern aus der 1. Zeile ein Rechteck der gesuchten Art mit einheitlich gefärbten Eckfeldern. Andernfalls enthalten beide Zeilen (zumindest) drei rote Felder. Man sieht unmittelbar ein, daß es in diesem Fall zwei Spalten gibt, in denen rote Felder übereinanderliegen (Schubfachprinzip). Daher liegt auch in diesem Fall ein Rechteck der gewünschten Art vor. Variante 2: Wir betrachten zunächst die Spalten des Schachbretts und machen dabei folgende Beobachtung: Wir können ein Rechteck der geforderten Art finden, wenn es zwei Spalten gibt, die gleich eingefärbt sind. 1

2 Abbildung 1: Ein 4 3 Rechteck mit gleich gefärbten Eckfeldern Das allein genügt aber noch nicht, da es 2 3 = 8 Möglichkeiten gibt eine 3 1 Spalte zweifärbig einzufärben und unser Rechteck nur 7 Spalten hat. Folgende Fallunterscheidung bringt uns weiter: Fall 1: Im Schachbrett kommt eine Spalte vor, in der alle Felder rot gefärbt sind. Sofern nun noch eine Spalte vorkommt, in der zwei oder mehr Felder rot gefärbt sind, können wir mit diesen beiden Spalten ein Rechteck bilden. Abbildung 2: Ein 2 7 Rechteck mit einer Spalte mit drei Feldern gleicher Farbe Wenn aber keine weitere Spalte mehr vorkommt, in der mindestens zwei Felder rot gefärbt sind, bedeutet das, dass es für die restlichen 6 Spalten nur noch 4 verschiedene Spaltenfärbungen gibt. (3 verschiedene, wenn genau ein Feld rot gefärbt ist und die Spalte mit lauter blauen Feldern.) Nach dem Schubfachschluss gibt es unter diesen Spalten also zwei gleich gefärbte und wir können ein passendes Rechteck finden. Analog finden wir ein passendes Rechteck, wenn die Spalte mit lauter blauen Feldern vorkommt. Fall 2: In keiner Spalte haben alle Felder die gleiche Farbe. Dann gibt es aber nur noch 6 verschiedene Färbungen. Nach dem Schubfachschluss muss damit wieder zumindest eine Färbung zweimal auftreten und ein passendes Rechteck existiert. 8. (a) Die Zeichenfolge ist eindeutig damit bestimmt, dass wir die Stellen, an denen das Zeichen steht, auswählen. Wir wählen also 6 Stellen von 12 aus. Dafür gibt es = Möglichkeiten. 2

3 (b) Zunächst haben wir ( 12 5 ) = 792 Möglichkeiten, die 5 Stellen, an denen das Zeichen steht, auszuwählen. Die restlichen 7 Stellen können beliebig mit den beiden anderen Zeichen aufgefüllt werden. Dafür gibt es 2 7 = 128 Möglichkeiten. Insgesamt ergeben sich = Möglichkeiten. (c) Wegen 372 = 12 ergibt sich die gesuchte Anzahl als der Multinomialkoeffizient = 12! 3, 7, 2 3!7!2! = Wir hätten auch zuerst die 3 Stellen für und danach die 2 Stellen für festlegen können und wären über ( 12 3 )( 9 2) = = zum gleichen Ergebnis gelangt. (d) Wenn mindestens ein Zeichen von jedem Typ vorkommen muss, heißt das, dass alle Zeichenfolgen, bis auf diejenigen, die nur aus zwei oder einem der drei Zeichen bestehen, gültig sind. Wir berechnen das Ergebnis, indem wir die Anzahl dieser komplementären Zeichenfolgen von der Gesamtanzahl 3 12 = aller Zeichenfolgen subtrahieren. Wir haben zunächst 3 Möglichkeiten, 2 der 3 Zeichen auszuwählen. Für jede solche Auswahl haben wir 2 12 = Möglichkeiten. Da wir auf diese Weise aber die Zeichenfolgen die nur aus genau einem Zeichen zusammengesetzt sind, doppelt zählen, subtrahieren wir noch 3 von diesem Ergebnis und erhalten insgesamt als das gesuchte Ergebnis ( ) = (e) Wenn die Zeichenfolge, die nur aus den Zeichen und besteht, mehr Zeichen enthalten soll, heißt das, sie darf höchstens 5 Zeichen enthalten. Das gesuchte Ergebnis ist also die Summe der Möglichkeiten für Zeichenfolgen mit genau Null, einem, zwei, drei, vier oder fünf Zeichen. Damit erhalten wir: = = Dieselbe Zahl erhält man auch durch folgende Überlegung: Es gibt 2 12 Folgen, die nur die Zeichen und enthalten. ( ) 12 6 davon enthalten jedes dieser Zeichen genau 6 mal. Da es gleich viele Folgen gibt, die mehr als Zeichen enthalten als Folgen, die mehr als enthalten, ergibt sich die gesuchte Zahl auch als 2 12 ( ) 12 6 = = 3

4 9. (a) Wenn die Kommision genau 4 Männer und 4 Frauen enthalten soll, ergeben sich ( )( ) = Möglichkeiten. (b) Wenn die Kommision mindestens zwei Männer enthalten muss, heißt das, alle Kommisionen, bis auf diejenigen, die nur genau keinen, einen oder zwei Männer enthalten, sind zulässig. Wir berechnen zunächst, wie viele von diesen nicht zulässigen Kommisionen es gibt: Kommision enthält keinen Mann: ( ) 15 8 = Kommision enthält genau einen Mann: 12 ( ) 15 7 = Wenn wir uns für die Gesamtanzahl aller Kommisionen interessieren, können wir einfach aus den 27 Menschen 8 auswählen ohne irgendeine Unterscheidung nach dem Geschlecht vorzunehmen. ( ) 27 8 = Insgesamt erhalten wir damit als Ergebnis = (c) Gesucht ist die Anzahl der Kommisionen die mehr Frauen enthalten. In einer solchen Kommision können höchstens 3 Männer sein. Wir berechnen also die Anzahl der Kommisionen mit genau keinem, einem, zwei oder drei Männern und summieren auf: Kommision enthält genau zwei Männer: ( )( ) 2 6 = Kommision enthält genau drei Männer: ( )( ) 3 5 = Die beiden anderen Ergebnisse liegen uns bereits von oben vor. Als Summe ergibt sich = Satz (Inklusions - Exklusions Prinzip) Seien A 1,..., A n endliche Mengen. Dann gilt: n A i = ( 1) I 1 A i I {1,...,n} I 1 i I Beweis: Wir beweisen den Satz mit vollständiger Induktion nach n. Induktionsanfang: Wurde bereits in der Vorlesung erledigt, wo die Aussage u.a. für n = 2 gezeigt wurde. Induktionsannahme: Die Aussage gilt für 2, 3,..., n. 4

5 Induktionsschritt: Zu zeigen: Die Aussage gilt für n 1. n1 n A i = A i A n1 Auf diesen Ausdruck können wir nun die Induktionsannahme für n = 2 anwenden. n1 n n A i = A i A n1 ( A i ) A n1 }{{} (1) Zunächst formen wir jetzt den Ausdruck um. Aufgrund der Distributivität der Mengenoperationen erhalten wir: n ( n A i ) A n1 = (A i A n1 ) Auf diesen letzten Ausdruck können wir nun unsere Induktionsannahme für n anwenden: n (A i A n1 ) = = I {1,...,n} I 1 J {1,...,n1} J 2 n1 J ( 1) I 1 (A i A n1 ) = i I ( 1) J A j Dabei wird über alle Teilmengen von {1,..., n 1} summiert, die mindestens 2 Elemente haben und n 1 enthalten. Dieses Ergebnis setzen wir nun wieder in (1) ein, wobei wir auf n A i die Induktionsannahme anwenden können. Wir erhalten: n1 A i = I {1,...,n} I 1 J {1,...,n1} J 2 n1 J j J ( 1) I 1 A i A n1 i I ( 1) J A j Der Summand ist in beiden Summenausdrücken der gleiche, auch das Vorzeichen passt. Daher fassen wir die Summen zusammen. Die erste Summe summiert über alle Teilmengen von {1,..., n}. Zusammen mit allen Teilmengen von {1,..., n1}, die mindestens 5 j J

6 2 Elemente haben und n 1 enthalten, und der einzigen einelementigen Menge, die n 1 enthält, ergeben sich alle Teilmengen von {1,..., n 1}. n1 A i = I {1,...,n1} I 1 ( 1) I 1 A i i I 11. Sei im folgenden M die Menge aller Studierenden, die eine Mütze tragen und M C die komplementäre Menge der Studierenden, die keine Mütze tragen. (Analog P für extradicken Pullover und S für Schal) Aus der Angabe entnehmen wir folgende Kardinalitäten: M = 60, S = 51, M S = 30, P = 54, M P = 26, P S = 21, M P S = 12. (a) Gesucht ist die Anzahl der Studierenden, die weder Schal noch Mütze tragen. In unserer Notation heißt das M C S C. Durch Umformen erhalten wir: M C S C = (M S) C = 130 M S M S können wir nun mit Hilfe des Inklusions-Exklusions Prinzips bestimmen. M S = M S M S = = 81 Als Gesamtergebnis ergibt sich damit = 49 (b) Gefragt ist nach unserer Notation M P C S C. Umgeformt erhalten wir M P C S C = (M C P S) C = 130 M C P S Wir formen unter Verwendung des Inklusions-Exklusions Prinzips weiter um: M C P S = M C P S M C P P S M S M C P S Offenbar gilt X Y X Y C = X. Damit erhalten wir: M C P = P M P = = 28 M C S = S M S = = 21 M C P S = P S M P S = = 9 6

7 Rückeingesetzt erhalten wir damit insgesamt: M P C S C = 130 ( ) = = = 16 Auf alternative Weise erhält man dieses Ergebnis auch wie folgt: M P C S C = M M P M S M P S = = 16 (c) Gesucht ist M C P C S C. Wir formen wieder um und verwenden das Inklusions- Exklusions Prinzip: M C P C S C = (M P S) C = 130 M P S = = 130 ( M P S M P M S P S M P S ) = = 130 ( ) = = Sei a n die Anzahl der verschiedenen Wege, die ein König von der linken unteren in die rechte obere Ecke eines n n Schachbretts nehmen kann, wenn er sich nur nach rechts, oben oder diagonal nach rechts oben bewegt. Wir können einen Weg, den der König von der linken unteren in die rechte obere Ecke nimmt, eindeutig durch eine Zeichenfolge über dem Alphabet {r, o, d} beschreiben. Dabei steht r für einen Zug des Königs nach rechts, o für oben und d für diagonal. Natürlich ergeben aber nicht alle solche Zeichenfolgen einen zulässigen Weg des Königs. Ein zulässiger Weg auf einem n n Schachbrett verwendet zwischen 0 und n 1 Mal den Diagonalzug d. Ferner müssen in unserer Zeichenfolge gleich viele Zeichen o wie r vorkommen. Wenn wir uns entlang des Gitters bewegen, müssen wir insgesamt eine Strecke von 2(n 1) Längeneinheiten zurücklegen. Ein o oder r bringen uns dabei um eine Längeneinheit näher zum Ziel, ein d um zwei. Es gilt also #o #r 2 #d = 2n 2. Daraus ergibt sich, dass wir für einen gültigen Weg unsere Zeichenfolge aus k Zeichen d, n 1 k Zeichen r und n 1 k Zeichen o zusammensetzen müssen, wobei k die Werte von 0 bis n 1 annehmen kann. Für ein gegebenes k ist die Länge unserer Zeichenfolge 2n 2 k. Jede dieser Zeichenfolgen, die sich genau an unsere Zusammensetzung hält, steht eindeutig für einen Weg des Königs. Die Anzahl dieser verschiedenen Zeichenfolgen können wir nun über z.b. über einen Multinomialkoeffizienten bestimmen (man kann sich das Ergebnis auch direkt üeberlegen): = ( ) 2n 2 k = k, n 1 k, n 1 k (n 1)! k!(n 1 k)! (2n 2 k)! (n 1)!(2n 1 k n)! = 7 (2n 2 k)! k!(n 1 k)!(n 1 k)! = ( )( ) n 1 2n 2 k k n 1

8 Insgesamt bekommen wir die Anzahl der möglichen Wege für einen König auf einem n n Schachbrett indem wir über k summieren: n 1 ( )( ) n 1 2n 2 k a n = k n 1 k=0 Speziell für n = 8 ergibt sich: a 8 = 7 ( )( ) 7 14 k = k 7 k=0 8

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 12. November 2015 Satz 3.16 (Binomischer Lehrsatz) Seien a, b R. Dann gilt für alle

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 6 Grundlagen der Mathematik Präsenzaufgaben (P9) Die Ordnung der natürlichen Zahlen I Wir hatten in der Vorlesung

Mehr

Univ.-Prof. Dr. Goulnara ARZHANTSEVA

Univ.-Prof. Dr. Goulnara ARZHANTSEVA Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 04: Inklusion Exklusion 1 / 13 Beispiel aus der Zahlentheorie Wir wollen in der Menge [60]

Mehr

Induktionsbeweis. Satz Primfaktorzerlegung. Jede natürliche Zahl n 2 lässt sich als Produkt von Primzahlen darstellen.

Induktionsbeweis. Satz Primfaktorzerlegung. Jede natürliche Zahl n 2 lässt sich als Produkt von Primzahlen darstellen. Induktionsbeweis Satz Primfaktorzerlegung Jede natürliche Zahl n 2 lässt sich als Produkt von Primzahlen darstellen. Beweis: Induktion über n (IV) Induktionsverankerung: n=2 prim. (IA) Induktionsannahme:

Mehr

Lösungen zur Vorrundenprüfung 2004

Lösungen zur Vorrundenprüfung 2004 Lösungen zur Vorrundenprüfung 2004 Zuerst einige Bemerkungen zum Punkteschema. Eine vollständige und korrekte Lösung einer Aufgabe ist jeweils 7 Punkte wert. Für komplette Lösungen mit kleineren Fehlern

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 2008/09 Blatt

Mehr

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4

Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4 Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 08.11.2018 Dr. Markus Lange Analysis 1 Aufgabenzettel 4 Abgabe bis 14. November 2018, 19:00 Uhr Erinnerung: Die Anmeldung für den Übungsschein

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 26. Oktober 2017 1/35 Abbildungen Boolesche Algebra Summen- und Produktzeichen Definition

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 8 Grundlagen der Mathematik Präsenzaufgaben (P13) Primfaktorzerlegungen Die Primfaktorzerlegungen lauten: a) 66 =

Mehr

Vollständige Induktion

Vollständige Induktion Schweizer Mathematik-Olympiade smo osm Vollständige Induktion Aktualisiert: 1 Dezember 01 vers 100 Eine der wichtigsten Beweistechniken der Mathematik überhaupt ist die (vollständige) Induktion Wir nehmen

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

A = A A

A = A A Musterlösung - Aufgabenblatt 8 Aufgabe 1 Gegeben ist das Polytop P = conv {±e i ± e j : 1 i, j 3, i j} = conv {e 1 + e 2, e 1 e 2, e 1 + e 2, e 1 e 2, e 1 + e 3, e 1 e 3, e 1 + e 3, e 1 e 3, e 2 + e 3,

Mehr

KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14

KARL-FRANZENS-UNIVERSITÄT GRAZ. Seminar aus Reiner Mathematik. Die Museumswächter. Krupic Mustafa Wintersemester 2013/14 KARL-FRANZENS-UNIVERSITÄT GRAZ Seminar aus Reiner Mathematik Die Museumswächter Krupic Mustafa Wintersemester 2013/14 Inhaltsverzeichnis 2 Inhaltsverzeichnis 1 Einleitung 3 2 Museumswächter-Satz 6 2.1

Mehr

Prinzip der Inklusion- Exklusion

Prinzip der Inklusion- Exklusion Prinzip der Inklusion- Exklusion Ziel: Zählen von Elementen in nicht-disjunkten Mengen. 2 Mengen A 1, A 2 : Zählen zunächst die Elemente in A 1. Addieren dazu die Anzahl der Elemente in A 2. Zählen damit

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Färbungsbeweise. 1 Aufgaben

Färbungsbeweise. 1 Aufgaben Schweizer Mathematik-Olympiade smo osm Färbungsbeweise Aktualisiert: 1. Dezember 2015 vers. 1.0.0 1 Aufgaben Einstieg 1.1 Kann man überlappungsfrei und ohne Löcher die Figuren auf den Bildern unten mit

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Ausleuchtung/Überwachung von polygonalen Flächen

Ausleuchtung/Überwachung von polygonalen Flächen 1 Ausleuchtung/Überwachung von polygonalen Flächen 2 1. Beschreibung der Aufgabenstellung 3 Gegeben ist der Grundriss eines Raumes. 4 In den Ecken des Raumes sollen Geräte platziert werden, die zusammen

Mehr

Zahlentheorie. Stefan Takacs Linz, am 2. Juni 2004

Zahlentheorie. Stefan Takacs Linz, am 2. Juni 2004 Zahlentheorie Anna Rieger 0355556 Stefan Takacs 0356104 Daniela Weberndorfer 0355362 Linz, am 2. Juni 2004 Zusammenfassung Die vorliegende Arbeit über die grundlegenden Sätze der Zahlentheorie beschäftigt

Mehr

Einführung in die Diskrete Mathematik

Einführung in die Diskrete Mathematik Einführung in die Diskrete Mathematik Sommersemester 2014 PD Dr. Nils Rosehr Inhaltsverzeichnis I Einleitung 5 II Kombinatorik 5 1 Grundlagen der Kombinatorik 6 1.1 Standardbezeichnungen......................

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 16. November 2017 1/35 Modulare Arithmetik Modulare Arithmetik Definition 3.33 Es sei

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 9. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 9. Vorlesung 1 / 17 Themen

Mehr

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0

Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0 Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem

Mehr

Am Anfang wird auf ein Spielfeld ein regelmäßiges 2012-Eck gezeichnet.

Am Anfang wird auf ein Spielfeld ein regelmäßiges 2012-Eck gezeichnet. Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Spiele Mit Strategie gewinnen rmblkans opopopop 6 POPOPOPO SNAQJBMR a b c d e f g h Aufgaben und Lösungen Aufgabe. Alice und Bob

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008

Diskrete Strukturen. Hausaufgabe 1 (5 Punkte) Hausaufgabe 2 (5 Punkte) Wintersemester 2007/08 Lösungsblatt Januar 2008 Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 2007/08 Lösungsblatt 9

Mehr

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg

Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen

Mehr

WS 2014/15 Diskrete Strukturen Kapitel 3: Kombinatorik (2)

WS 2014/15 Diskrete Strukturen Kapitel 3: Kombinatorik (2) WS 2014/15 Diskrete Strukturen Kapitel 3: Kombinatorik (2) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

8. Übungsblatt zur Mathematik I für Chemiker

8. Übungsblatt zur Mathematik I für Chemiker Fachbereich Mathematik PD Dr. P. Ne WS 007/008 6.1.007 8. Übungsblatt zur Mathematik I für Chemiker Zur Erinnerung, die Formel für die Taylorreihe um die Stelle x 0 lautet f(x) n0 f (n) (x 0 ) (x x 0 )

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik - WS 11/12. Klausurvorbereitung

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik - WS 11/12. Klausurvorbereitung Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik - WS 11/12 Prof. Dr. A. Taraz, Dr. O. Cooley, Klausurvorbereitung Die Klausur zum Propädeutikum Diskrete Mathematik findet

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/.. Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Einführung, III: Verschiedenes

Einführung, III: Verschiedenes Einführung, III: Verschiedenes.1 Summennotation... 22.2 Regeln für Summen, Newtons Binomische Formeln... 22. Doppelsummen... 2.4 Einige Aspekte der Logik... 2.5 Mathematische Beweise.... 24.6 Wesentliches

Mehr

Hinweis: Aus Definition 1 und 2 folgt, dass die Zahl 0 zu den geraden Zahlen zählt.

Hinweis: Aus Definition 1 und 2 folgt, dass die Zahl 0 zu den geraden Zahlen zählt. Der Satz vom ausgeschlossenen Dritten. Der Satz vom ausgeschlossenen Dritten besagt, dass für jeden (wahrheitsfähigen) Satz gilt: Entweder der Satz oder seine Negation ist wahr. Wenn m. a. W. gezeigt werden

Mehr

Zur Zykelschreibweise von Permutationen

Zur Zykelschreibweise von Permutationen Zur Zykelschreibweise von Permutationen Olivier Sète 16. Juni 2010 1 Grundlagen Definition 1.1. Eine Permutation von {1, 2,..., n} ist eine bijektive Abbildung σ : {1, 2,..., n} {1, 2,..., n}, i σ(i).

Mehr

Wiederholung Vorlesungen 1 bis 8

Wiederholung Vorlesungen 1 bis 8 Wiederholung Vorlesungen 1 bis 8 Aufgabe 1 a) Sind die im Folgenden gegebenen Ausdrücke als Folge interpretierbar? Wenn ja, wie? i) 1,,4,8,16,3,64,..., ii)... 5, 3, 1,1,3,5,..., iii) 3,10,π,4, 1 7,10,1,14,16,18,...

Mehr

Univ.-Prof. Dr. Goulnara ARZHANTSEVA

Univ.-Prof. Dr. Goulnara ARZHANTSEVA Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 08: Menger, König und Hall / Planare Graphen 1 / 30 Der Satz von Menger: s t trennende Kantenmenge

Mehr

= =

= = 9. Januar 2007 Arbeitsblatt 9 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen I. Gasser, H. Strade, B. Werner WiSe 06/07 19.12.06 Präsenzaufgaben: 1. Zu Beginn

Mehr

Elemente der Stochastik (SoSe 2016) 4. Übungsblatt

Elemente der Stochastik (SoSe 2016) 4. Übungsblatt Dr. M. Weimar 26.04.2016 Elemente der Stochastik (SoSe 2016) 4. Übungsblatt Aufgabe 1 (1+1+2=4 Punkte) Eine Autofahrerin verursacht einen Unfall und begeht Fahrerflucht. Ein Zeuge will sich die Nummer

Mehr

Orientierungshilfe zum 7. Hausaufgabenblatt

Orientierungshilfe zum 7. Hausaufgabenblatt Orientierungshilfe zum 7. Hausaufgabenblatt 25. Januar 2013 Aufgabe 38 a Urnenmodell: Ziehen mit Zurücklegen. Man stelle sich eine Urne mit zwei Kugeln, die eine weiÿ, die andere schwarz, vor. Für jedes

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 1. Semester ARBEITSBLATT 7 ADDIEREN UND SUBTRAHIEREN VON TERMEN UND DIE POTENZSCHREIBWEISE

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7 1. Semester ARBEITSBLATT 7 ADDIEREN UND SUBTRAHIEREN VON TERMEN UND DIE POTENZSCHREIBWEISE Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 7. Semester ARBEITSBLATT 7 ADDIEREN UND SUBTRAHIEREN VON TERMEN UND DIE POTENZSCHREIBWEISE ) VARIABLE Beispiel: Ein Rechteck habe einen Umfang von 0 cm. Gib

Mehr

Die Sprache der Mathematik

Die Sprache der Mathematik Die Sprache der Mathematik Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Diese Lehrveranstaltung...... ist Pflicht für alle Studenten der Informatik und

Mehr

Vervollständigung Lateinischer Quadrate

Vervollständigung Lateinischer Quadrate Vervollständigung Lateinischer Quadrate Elisabeth Schmidhofer 01.12.2013 Inhaltsverzeichnis 1 Vorwort 3 2 Einleitung 4 2.1 Beispele.............................................. 4 3 Lateinische Quadrate

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung

Mehr

Wiederholung. Operationen auf Mengen. Relationen, Abbildungen/Funktionen. Beweistechniken: Landau-Notation A B, A Å B, A B, A \ B, P(A)

Wiederholung. Operationen auf Mengen. Relationen, Abbildungen/Funktionen. Beweistechniken: Landau-Notation A B, A Å B, A B, A \ B, P(A) Wiederholung Operationen auf Mengen A B, A Å B, A B, A \ B, P(A) Relationen, Abbildungen/Funktionen Reflexiv, symmetrisch, antisymmetrisch, transitiv Injektiv, surjektiv, bijektiv Beweistechniken: Indirekter

Mehr

Univ.-Prof. Dr. Goulnara ARZHANTSEVA

Univ.-Prof. Dr. Goulnara ARZHANTSEVA Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 02: Funktionen, Multimengen, Kompositionen 1 / 18 Funktionen zwischen endlichen Mengen [n]

Mehr

Korrespondenzzirkel Klassenstufe 5 Leipziger Schülergesellschaft für Mathematik Serie 2

Korrespondenzzirkel Klassenstufe 5 Leipziger Schülergesellschaft für Mathematik Serie 2 Korrespondenzzirkel Klassenstufe 5 Leipziger Schülergesellschaft für Mathematik Serie Liebe Schülerinnen, Schüler (und Eltern), hiermit übersende ich euch die zweite Serie. Dieses mal beschäftigen wir

Mehr

Prof. S. Krauter Kombinatorik. WS Blatt06_Lsg.doc

Prof. S. Krauter Kombinatorik. WS Blatt06_Lsg.doc Prof. S. Krauter Kombinatorik. WS-05-06. Blatt06_Lsg.doc Aufgaben zur Siebformel: 1. Formulieren Sie die Siebformel ausführlich und explizit für die Vereinigung von 2, 3 bzw. 4 Mengen A, B, C und D. Machen

Mehr

Das Schubfachprinzip

Das Schubfachprinzip Das Schubfachprinzip Norbert Koksch, Dresden Literatur: Beutelspacher/Zschiegner: Diskrete Mathematik für Einsteiger. Vieweg-Verlag. 1. Was ist das Schubfachprinzip? Die folgenden Aussagen sind offenbar

Mehr

Diskrete Strukturen I

Diskrete Strukturen I Universität Kassel Fachbereich 10/1 PD Dr. Sebastian Petersen 14.09.2017 Klausur zur Vorlesung Diskrete Strukturen I Es können maximal 40 Punkte erreicht werden. Version mit Lösungsskizze Zur Notation:

Mehr

(Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.)

(Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.) Fachbereich Mathematik Tag der Mathematik 12. November 2011 Klassenstufen 9, 10 (Beispiel eines gleichschenkligen Dreiecks aus Gitterpunkten.) Aufgabe 1 (5+5+10 Punkte). Wir betrachten sechzehn Punkte

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

Städtewettbewerb Frühjahr 2008

Städtewettbewerb Frühjahr 2008 Städtewettbewerb Frühjahr 2008 Lösungsvorschläge Hamburg 5. März 2008 [Version 7. April 2008] M Mittelstufe Aufgabe M.1 (3 P.). Die gegenüberliegenden Seiten eines konvexen Sechsecks ABCDEF seien jeweils

Mehr

2. Symmetrische Gruppen

2. Symmetrische Gruppen 14 Andreas Gathmann 2 Symmetrische Gruppen Im letzten Kapitel haben wir Gruppen eingeführt und ihre elementaren Eigenschaften untersucht Wir wollen nun eine neue wichtige Klasse von Beispielen von Gruppen

Mehr

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Zeigen Sie mit vollständiger Induktion:

Mehr

Primzahlen und Primfaktorzerlegung

Primzahlen und Primfaktorzerlegung Primzahlen und Primfaktorzerlegung Yasin Hamdan Inhaltsverzeichnis 1 Das Sieb des Eratosthenes 1 2 Primfaktorzerlegung 4 2.1 Existenz und Eindeutigkeit.......................... 4 2.2 Hasse-Diagramme...............................

Mehr

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?

Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter WS 2009/10 Isomorphie Zwei Graphen (V 1, E 1 ) und (V 2, E 2 ) heißen isomorph, wenn es eine bijektive, Kanten erhaltende und Kanten

Mehr

Natürliche, ganze und rationale Zahlen

Natürliche, ganze und rationale Zahlen Natürliche, ganze und rationale Zahlen Zunächst haben die zum Zählen verwendeten natürlichen Zahlen 0, 1, 2, 3,... nichts mit dem reellen Zahlen zu tun. Durch die ausgezeichnete reelle Zahl 1 (Maßeinheit!)

Mehr

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26

Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26 Kombinatorik Dr. Lucia Draque Penso Universität Ulm Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26 Erste Vorlesung Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 2 / 26 Formales Vorlesung:

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Resolution (Motivation) Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Resolution (Idee) Resolution (Idee)

Resolution (Motivation) Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Resolution (Idee) Resolution (Idee) (Motivation) Vorlesung Logik Sommersemester 0 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Wir benötigen Algorithmen für Erfüllbarkeitstests, die zumindest in vielen Fällen gutartiges

Mehr

Mengen und Relationen

Mengen und Relationen KAPITEL 1 Mengen und Relationen 1.1. Mengenlehre Georg Cantor (3.3.1845 6.1.1918: Cantor ist der Vater der modernen Mengenlehre, er definierte 1895: DEFINITION 1.1.1. Unter einer Menge verstehen wir jede

Mehr

2 Kombinatorik. 56 W.Kössler, Humboldt-Universität zu Berlin

2 Kombinatorik. 56 W.Kössler, Humboldt-Universität zu Berlin 2 Kombinatorik Aufgabenstellung: Anzahl der verschiedenen Zusammenstellungen von Objekten. Je nach Art der zusätzlichen Forderungen, ist zu unterscheiden, welche Zusammenstellungen als gleich, und welche

Mehr

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg 1 Mathematisches Institut II 06.07.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 5: Elementare Zahlentheorie: Teilbarkeit Primfaktorzerlegung

Mehr

Die Lösungen der Gleichung b x = log b (x)

Die Lösungen der Gleichung b x = log b (x) Die Lösungen der Gleichung b = log b () wgnedin@math.uni-koeln.de 17. Januar 2014 In der ersten Vorlesung des Wintersemesters wurde folgende Frage gestellt: Wieviele Lösungen hat die Gleichung ( ) 1 =

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente Universität Basel Wirtschaftswissenschaftliches Zentrum Kombinatorik Dr. Thomas Zehrt Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente 2 Teil 1 Endliche Mengen Eine endliche Menge M ist eine Menge,

Mehr

Mengenlehre: Mengen und Zahlen

Mengenlehre: Mengen und Zahlen TH Mittelhessen, Sommersemester 2016 Lösungen zu Übungsblatt 3 Fachbereich MNI, Diskrete Mathematik 2./9./12. Mai 2016 Prof. Dr. Hans-Rudolf Metz Mengenlehre: Mengen und Zahlen Aufgabe 1. Gegeben seien

Mehr

Beispiellösungen zu Blatt 77

Beispiellösungen zu Blatt 77 µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 77 Die Zahl 9 ist sowohl als Summe der drei aufeinanderfolgenden Quadratzahlen,

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 4: Wörter (und vollständige Induktion) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/29 Überblick Wörter Wörter Das leere Wort Mehr zu

Mehr

8 Summen von Quadraten

8 Summen von Quadraten 8 Summen von Quadraten A. Summen von zwei Quadraten. Sei p eine Primzahl. Beispiele. = 1 + 1, 5 = 1 +, 13 = + 3 Aber 3 und 7 sind nicht Summen von zwei Quadraten. 8.1 Satz. Genau dann ist p Summe von zwei

Mehr

Lineare Algebra I. Voraussetzung: Sei A ein kommutativer Ring und eine Kongruenzrelation auf A. a b a n b n.

Lineare Algebra I. Voraussetzung: Sei A ein kommutativer Ring und eine Kongruenzrelation auf A. a b a n b n. Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 5 Prof Dr Markus Schweighofer 02122009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 51: Voraussetzung:

Mehr

Mengenlehre und vollständige Induktion

Mengenlehre und vollständige Induktion Fachschaft MathPhys Heidelberg Mengenlehre und vollständige Induktion Vladislav Olkhovskiy Vorkurs 018 Inhaltsverzeichnis 1 Motivation 1 Mengen.1 Grundbegriffe.................................. Kostruktionen

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Klausurvorbereitung

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Klausurvorbereitung Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl.-Math. S. König, Dipl.-Math. A. Würfl, Klausurvorbereitung Die Klausur zum Propädeutikum Diskrete

Mehr

Übung zu Grundbegriffe der Informatik. Simon Wacker. 15. November 2013

Übung zu Grundbegriffe der Informatik. Simon Wacker. 15. November 2013 Übung zu Grundbegriffe der Informatik Simon Wacker 15. November 2013 Vollständige Induktion über die Wortlänge Es sei B ein Alphabet. Dann ist B = n N 0 B n. Für jedes Wort w B sei A w eine Aussage, die

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 23. November 2017 1/40 Satz 4.27 (Multinomialsatz) Seien r, n N 0. Dann gilt für

Mehr

Diskrete Mathematik 1

Diskrete Mathematik 1 Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 2008/09 Blatt

Mehr

Zahlenmengen. Bemerkung. R Menge aller Dezimalbrüche: reelle Zahlen, C = {a + i b : a, b R} mit i 2 = 1 komplexe Zahlen.

Zahlenmengen. Bemerkung. R Menge aller Dezimalbrüche: reelle Zahlen, C = {a + i b : a, b R} mit i 2 = 1 komplexe Zahlen. Zahlenmengen N = {0, 1,, 3,...} natürliche Zahlen, Z = {...,, 1, 0, 1,,...} ganze Zahlen, Q = {p/q : p Z, q N \ {0}} rationale Zahlen, R Menge aller Dezimalbrüche: reelle Zahlen, C = {a + i b : a, b R}

Mehr

Aufgaben Fibonacci-Folgen 7. April 2006 B. Werner SoSe 06

Aufgaben Fibonacci-Folgen 7. April 2006 B. Werner SoSe 06 19. April 2006 Aufgaben Fibonacci-Folgen 7. April 2006 B. Werner SoSe 06 Präsenzaufgaben: Aufgabe P1: Eine spezielle Lucasfolge (L n ) ist durch L n = L n 1 + L n 2, L 0 = 2, L 1 = 1 definiert. Berechnen

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Univ.-Prof. Dr. Goulnara ARZHANTSEVA

Univ.-Prof. Dr. Goulnara ARZHANTSEVA Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 06: Rekursionen 1 / 30 Rekursionen Definition: Rekursion Sei c n eine Zahlenfolge. Eine Rekursion

Mehr

WS 20013/14. Diskrete Strukturen

WS 20013/14. Diskrete Strukturen WS 20013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Derjenige, der die letzte Diagonale einzeichnet, gewinnt.

Derjenige, der die letzte Diagonale einzeichnet, gewinnt. Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Spiele Mit Strategie gewinnen rmblkans opopopop POPOPOPO SNAQJBMR a b c d e f g h Versuche zum Einstieg folgende Knobelaufgabe zu

Mehr

Maturaarbeit. Färbungsbeweise

Maturaarbeit. Färbungsbeweise Maturaarbeit von Markus Sprecher (Jahrgang 86) Klasse 4T Färbungsbeweise Mathematik Betreuende Lehrkraft: Dr. Philipp Schöbi Inhaltsverzeichnis 1 Vorwort 3 2 Was ist ein Färbungsbeweis 4 3 Hauptteil 7

Mehr

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)!

Hausaufgaben. zur Vorlesung. Vollständige Induktion. 1. Beweist folgende Formeln (zu beweisen ist nur die Gleichheit mit dem. i=1 (4 + i)! WS 015/1 Hausaufgaben zur Vorlesung Vollständige Induktion 1. Beweist folgende Formeln zu beweisen ist nur die Gleichheit mit dem! -Zeichen : a 5 + + 7 + 8 + + 4 + n n 4 + i! nn+9 b 1 + + 9 + + n 1 n 1

Mehr

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume & Dr. Sander Bruggink Barbara König Logik 1 (Motivation) Wir benötigen Algorithmen für Erfüllbarkeitstests,

Mehr

Mathematik für Informatiker I, WS 2007/08 Musterlösung zur freiwilligen Zwischenklausur vom 4. Dezember 2007

Mathematik für Informatiker I, WS 2007/08 Musterlösung zur freiwilligen Zwischenklausur vom 4. Dezember 2007 1 Mathematik für Informatiker I, WS 007/08 Musterlösung zur freiwilligen Zwischenklausur vom 4. Dezember 007 1. Ist die Permutation f ( 1 3 4 5 6 7 8 ) 9 7 3 1 6 5 4 9 8 gerade oder ungerade? Wie lautet

Mehr

Mathematische Grundlagen der Computerlinguistik

Mathematische Grundlagen der Computerlinguistik Mengen und Mengenoperationen (Teil II) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents 1 2 3 Definition Mengenfamilie Eine Menge, deren sämtliche Elemente selbst wiederum

Mehr

Kapitel 2. Kapitel 2 Zählen (Kombinatorik)

Kapitel 2. Kapitel 2 Zählen (Kombinatorik) Zählen (Kombinatorik) Inhalt 2.1 2.1 Einfache Zählformeln A A B B = A A + B. B. 2.2 2.2 Binomialzahlen 2.3 2.3 Die Die Siebformel 2.4 2.4 Permutationen Seite 2 2.1 Einfache Zählformeln Erinnerung: Für

Mehr

Kapitel 1: Fallstudie Bipartite Graphen Gliederung der Vorlesung

Kapitel 1: Fallstudie Bipartite Graphen Gliederung der Vorlesung Kapitel : Fallstudie Bipartite Graphen Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und. Minimal spannende Bäume. Kürzeste Wege 6. Traveling Salesman

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 7

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 7 Prof. Dr. Bernhard Steffen Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker Wintersemester 203/4 Übungsblatt 7 Die

Mehr

3 Die Strukturtheorie der Vektorräume

3 Die Strukturtheorie der Vektorräume Vorlesung WS 08 09 Lineare Algebra 1 Prof. Dr. Peter Schneider 3 Die Strukturtheorie der Vektorräume Sei V ein K-Vektorraum Sei v 1,...v r V endlich viele vorgegebene Vektoren. Definition: 1. Jeder Vektor

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16

Mehr