Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1

Größe: px
Ab Seite anzeigen:

Download "Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1"

Transkript

1 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Zeigen Sie mit vollständiger Induktion: Für alle n N gilt n = 2 i = 2 n+1 1. Lösung zu Aufgabe 1.1 Wir führen eine klassische Induktion über n. Induktionsanfang (n = 1): Den Induktionsanfang erhalten wir einfach durch Einsetzen von n = 1: Für die linke Seite ergibt sich für die rechte Seite erhalten wir 1 2 i = = = 3, = = 4 1 = 3. Beide Ergebnisse sind gleich, also stimmt die Behauptung für n = 1. Induktionsvoraussetzung Wir nehmen jetzt an, dass die Behauptung für ein n gilt, also 2 i = 2 n+1 1. Induktionsschritt (n n + 1) Die Behauptung für n + 1 lautet 2 i = 2 (n+1)+1 1, das müssen wir also zeigen. Wir beginnen damit, die linke Seite zu vereinfachen, indem wir den letzten Summanden abspalten und die Induktionsvoraussetzung einsetzen: 2 i = 2 i n+1 (IV ) + 2 = 2 n n+1 1

2 Das können wir noch etwas weiter vereinfachen: Und damit ist die Behauptung bewiesen. Aufgabe 1.2 Zeigen Sie: Für alle n N mit n > 4 gilt 2 n n+1 = 2 2 n+1 1 = 2 (n+1) n > n 2. Lösung zu Aufgabe 1.2 Zunächst sollten wir uns kurz klarmachen, dass die Bedingung n > 4 tatsächlich notwendig ist. Dazu setzen wir einfach ein: 2 1 = 2 > 1 2 = = = = = = = 16 Obwohl die Behauptung also für n = 1 noch stimmt, wäre sie für n {2, 3, 4} falsch. Wir beginnen deshalb unsere Induktion bei n = 5. (Zugegeben, der Induktionsanfang würde auch für n = 1 klappen. Im Induktionsschritt brauchen wir aber dann die Tatsache, dass wir nur Zahlen 3 betrachten, uns würde also der Anschluss an den Induktionsanfang fehlen. Für n = 3 wiederum bekommen wir den Induktionsanfang nicht hin, also müssen wir die kleinste Zahl nehmen, für die beides klappt das ist eben n = 5. Das ganze Problem ähnelt ein bisschen der Katzenaufgabe unten.) Induktionsanfang (n = 5) für n = 5. Einsetzen ergibt 2 5 = 32 > 5 2 = 25, also stimmt die Behauptung Induktionsvoraussetzung: Wir setzen jetzt voraus, dass die Behauptung für ein n N mit n 5 gilt, unsere Induktionsvoraussetzung ist also 2 n > n 2. (IV) Induktionsschritt (n n+1) Zu zeigen ist, dass die Behauptung unter dieser Voraussetzung auch für n+1 gilt, wir müssen also beweisen, dass 2 n+1 > (n+1) 2. Dazu formen wir ein bisschen um: 2 n+1 = 2 2 n (IV) > 2 n 2. Im letzten Schritt haben wir die Induktionsvoraussetzung für den Term 2 n eingesetzt. Werfen wir mal einen Blick auf die rechte Seite (n + 1) 2 = n 2 + 2n + 1. Wir haben noch zu zeigen, dass n 2 2n + 1 gilt (hier genügt, das > haben wir ja beim Einsetzen der Induktionsvoraussetzung bereits sichergestellt). Wenn das bewiesen wäre, könnten wir oben einfach weitermachen: 2 n+1 = > 2 n 2 = n 2 + n 2 n 2 + (2n + 1) = (n + 1) 2, 2

3 damit wäre die Behauptung gezeigt. Es bleibt allerdings noch die kleine Lücke n 2 2n + 1 zu schließen. Und weil s so schön war, machen wir das gleich nochmal mit einer vollständigen Induktion. Wo fangen wir diesmal an? Setzen wir doch mal ein: n = 1 :n 2 = = 3n = 2 : n 2 = = 5n = 3 :n 2 = = 7 Für n = 3 klappt das zum ersten Mal, also versuchen wir mal, folgende Aussage zu zeigen: Für alle n 3 gilt n 2 2n + 1. Induktionsanfang n = 3: Das haben wir oben schon nachgerechnet. Induktionsvoraussetzung: Für ein n 3 gilt n 2 2n + 1. Induktionsschritt n n + 1: Zu zeigen ist, dass (n + 1) 2 2(n + 1) + 1. (n + 1) 2 2(n + 1) + 1 n 2 + 2n + 1 2n + 3 n 2 2 Letzteres gilt aber für alle n 3, damit ist die Aussage bewiesen. Kleine Anmerkung: Dass n 2 2n + 1 für n 3 gilt, hätte man natürlich auch einfacher zeigen können, z. B.: n 2 2n + 1 n 2 2n (n 1) 2 2 n 1 2, und für natürliche Zahlen ist das äquivalent zu n 3. Aufgabe 1.3 Die Fibonacci-Zahlen F 0, F 1, F 2,... sind rekursiv definiert durch die folgende Vorschrift Zeigen Sie: Für alle n N gilt F 0 := 0 F 1 := 1 F n := F n 1 + F n 2 für n 2 (F i ) 2 = F n F n+1. Lösung zu Aufgabe 1.3 Wir beweisen die Aussage mit Induktion über n. Induktionsanfang (n = 1): Einsetzen von n = 1 ergibt: 1 (F i ) 2 = (F i ) 2 = (F 1 ) 2 = 1 2 = 1 F n F n+1 = F 1 F 2 = F 1 (F 1 + F 0 ) = 1 (1 + 0) = 1 1 = 1 Damit stimmt die Aussage für n = 1. 3

4 Induktionsvoraussetzung ein n gilt Wir setzen voraus, dass die Aussage für ein n richtig ist, d. h. für (F i ) 2 = F n F n+1. Induktionsschritt (n n+1): auch richtig ist. Es gilt: Wir müssen zeigen, dass mit obiger Induktionsvoraussetzung (F i ) 2 = F n+1 F n+2 (F i ) 2 = (F i ) 2 + (F n+1 ) 2 IV = F n F n+1 + (F n+1 ) 2 = F n+1 (F n + F n+1 ) = F n+1 F n+2 Dabei haben wir im letzten Schritt die Rekursionsvorschrift für die Fibonacci-Zahlen benutzt. Achtung: Diese Rekursionsvorschrift gilt nur für n 2, der Beweis funktioniert also genau genommen nur für n 2 (vergleiche auch die folgende Aufgabe). Da wir den Induktionsanfang für n = 1 gemacht hatten, fehlt uns aber noch der Schritt von n = 1 auf n = 2. Dafür rechnen wir die Behauptung für n = 2 einfach nochmal extra nach: 2 (F i ) 2 = = 2 und F 2 F 3 = 1 2 = 2 Damit haben wir jetzt alles gezeigt. Aufgabe 1.4 Was halten Sie von folgendem Beweis? Wo genau steckt der Fehler? Behauptung: Alle Katzen haben die gleiche Augenfarbe. Zum Beweis formulieren wir die Behauptung erst ein wenig genauer. Wir werden zeigen: Für jedes n N gilt: Alle Katzen in jeder n-elementigen Menge von Katzen besitzen alle die gleiche Augenfarbe.. Wir beweisen diese Aussage mit Induktion über n, damit folgt dann sofort unsere ursprüngliche Behauptung. Der Induktionsanfang ist klar: Für n = 1 besitzen alle Katzen in jeder 1-elementigen Menge von Katzen die gleiche Augenfarbe. Für den Induktionsschritt sei M eine (n + 1)-elementige Menge von Katzen. Wir nummerieren die Katzen in beliebiger Reihenfolge von 1 bis (n + 1) durch und betrachten die Mengen M 1 der ersten n Katzen (also der Katzen 1,..., n) und M 2 der letzten n Katzen (also der Katzen 2,..., (n + 1)). Auf diese beiden Mengen dürfen wir die Induktionsvoraussetzung anwenden, also gilt: Alle Katzen in der Menge M 1 und alle Katzen in der Menge M 2 besitzen jeweils die gleiche Augenfarbe. Da die zweite Katze in beiden Mengen enthalten ist, gilt weiter, dass die Augenfarbe aller M 1 -Katzen gleich der Augenfarbe aller M 2 -Katzen ist. Damit ist aber gezeigt, dass alle Katzen in M die gleiche Augenfarbe besitzen. Da M eine beliebige (n + 1)-elementige Katzenmenge war, zeigt das die Behauptung. 4

5 Lösung zu Aufgabe 1.4 Die Behauptung ist natürlich völliger Unsinn. Der Induktionsanfang ist allerdings unanfechtbar, und auch der Induktionsschritt scheint durchaus korrekt zu sein. Der Teufel steckt hier im Detail: Im Induktionsschritt wird ausgenutzt, dass es eine Katze (die zweite Katze) gibt, die in den Mengen M 1 und M 2 zugleich enthalten ist. Das stimmt auch, wenn wir wenigstens 3 Katzen betrachten. Für zwei Katzen geht es aber schief, weil dann M 1 = {1} und M 2 = {2} gilt. Zwei Katzen entspricht dem Fall n+1 = 2, also beim Schritt von 1 auf 2. Dieser Schritt ist aber entscheidend, weil es nach dem Induktionsanfang der erste Schritt wäre. Da der Induktionsschritt somit (ohne das ausdrücklich zu sagen) n voraussetzt, passt er nicht zum Induktionsanfang für n = 1, die Lücke zwischen 1 und 2 können wir nicht füllen (danach würde wieder alles funktionieren es stehen gewissermaßen nur die Dominosteine 1 und 2 zu weit auseinander). Wir haben also immerhin bewiesen: Wenn wir wüssten, dass je zwei Katzen die gleiche Augenfarbe haben (ganz egal, welche zwei Katzen Sie auswählen), dann hätten alle Katzen die gleiche Augenfarbe. Leider nützt uns diese Erkenntnis in der Praxis nicht allzu viel. Aufgaben für die Tutorübung Aufgabe 1.5 Zeigen Sie mit vollständiger Induktion: Für alle a N und alle n N ist (2a 1) n 1 eine gerade Zahl. Lösung zu Aufgabe 1.5 Offenbar gilt: (2a 1) n 1 ist genau dann eine gerade Zahl, wenn (2a 1) n eine ungerade Zahl ist. Wir müssen also zeigen: Für alle a N und alle n N ist (2a 1) n eine ungerade Zahl. Das zeigen wir für beliebiges a N mit vollständiger Induktion über n. Induktionsanfang (n = 1): Einsetzen ergibt (2a 1) 1 = 2a 1. Da 2a gerade ist (a ist ja eine natürliche Zahl), muss 2a 1 ungerade sein, die Behauptung gilt also für n = 1. Induktionsvoraussetzung Die Induktionsvoraussetzung lautet: Für ein n N und alle a N ist (2a 1) n eine ungerade Zahl. Induktionsschritt (n n + 1): Zahl ist. Dazu formen wir um: Zu zeigen ist, dass (2a 1) n+1 für alle a N eine ungerade (2a 1) n+1 = (2a 1) n (2a 1) Nach Induktionsvoraussetzung ist der erste Faktor (2a 1) n für alle a N ungerade. Der zweite Faktor (2a 1) ist es aber offenbar auch, vgl. Induktionsanfang. Damit ist (2a 1) n+1 ein Produkt aus zwei ungeraden Zahlen und damit selbst wieder ungerade. Das zeigt die Behauptung. Aufgabe 1.6 Zeigen Sie: Für jedes n N hat die Summe der ersten n ungeraden natürlichen Zahlen den Wert n 2. Lösung zu Aufgabe 1.6 5

6 Wir schreiben die Behauptung erstmal sauber auf: Für jedes n N gilt (2i 1) = n 2. Der Beweis verwendet vollständige Induktion über n. Induktionsanfang (n = 1): Einsetzen von n = 1 ergibt 1 (2i 1) = (2i 1) = 2 1 = 1 n 2 = 1 2 = 1 Das beweist die Behauptung für n = 1. Induktionsvoraussetzung: n (2i 1) = n 2. Die Induktionsvoraussetzung lautet nun: Für ein n N gilt Induktionsschritt (n n+1): Wir setzen n+1 statt n ein, spalten den letzten Summanden ab und setzen die Induktionsvoraussetzung ein: (2i 1) = (2i 1) + (2(n + 1) 1) (IV = ) n 2 + 2n + 1 = (n + 1) 2 Damit ist die Behauptung für n + 1 gezeigt. Aufgabe 1.7 Bestimmen Sie jeweils alle reellen Lösungen der folgenden Gleichungen und Ungleichungen und kennzeichnen Sie jeweils die Lösungsmengen auf der Zahlengeraden. a) 7 6x = 2x + 3 b) x 2 x 6 > 0 c) 1 x 1 + 2x d) x x = 1 2 x3 Lösung zu Aufgabe 1.7 a) Es gilt: 7 6x = 2x + 3 8x = 4 x = 4 8 =

7 b) Wir bestimmen zunächst die Nullstellen von x 2 x 6: x 1,2 = 1 ± = 1 2 ± 5 2 Als Nullstellen ergeben sich x 1 = 3 und x 2 = 2, daher gilt x 2 x 6 = (x 3)(x + 2). Dieser Term ist genau dann positiv, wenn entweder beide Faktoren positiv oder beide Faktoren negativ sind. Es sind also zwei Fälle zu betrachten: Fall 1: x 3 > 0 und x + 2 > 0: Es gilt x 3 > 0 x + 2 > 0 x > 3 x > 2 x ]3; [ Fall 2: x 3 < 0 und x + 2 < 0: Es gilt x 3 < 0 x + 2 < 0 x < 3 x < 2 x ] ; 2[ Zusammen ergibt sich: x 2 x 6 > 0 x ] ; 2[ ]3; [. [ ] c) Bei Beträgen müssen wir grundsätzlich eine Fallunterscheidung machen. Fall 1 x 0 x 1: 1 x 1 + 2x 1 x 1 + 2x 0 3x x 0 Zusammen mit der Bedingung des Falls erhalten wir als ersten Teil der Lösungsmenge das Intervall [0; 1]. Fall 1 x < 0 x > 1: 1 x 1 + 2x x x 2 x x 2 Zusammen mit der Bedingung des Falls erhalten wir als zweiten Teil der Lösungsmenge das Intervall ]1; [ (da wir ja x > 1 vorausgesetzt hatten!). 7

8 Insgesamt ergibt sich die Lösungsmenge [0; 1] ]1; [= [0; [. [ d) Wir lösen den Betrag wieder mit einer Fallunterscheidung auf. Fall x 0: x x = 1 2 x3 x 2 = 1 2 x3 Vorsicht: Hier darf nicht einfach durch x 2 geteilt werden, da ja x = 0 noch eine zulässige Lösung sein könnte! Vielmehr ist eine weitere Fallunterscheidung nötig: Unterfall x 0: In diesem Fall dürfen wir durch x 2 teilen und erhalten x = 2 als Lösung. Unterfall x = 0: Setzt man x = 0 in die Gleichung x 2 = 1 /2 x 3 ein, so erkennt man, dass auch x = 0 die Gleichung löst, wir erhalten also eine weitere Lösung. Zusammen mit der Bedingung des Falls ergibt sich als erste Teil-Lösungsmenge {0, 2}. Fall x < 0: x x = 1 2 x3 x 2 = 1 2 x3 Im Unterschied zu oben kann der Fall x = 0 hier nicht auftreten (wir setzen ja x < 0 voraus), wir dürfen also einfach durch x 2 teilen: 1 = 1 2 x x = 2 Das ist mit der Bedingung des Falls vereinbar, als Teil-Lösungsmenge erhalten wir also jetzt { 2}. Zusammen ergibt sich die Lösungsmenge { 2, 0, 2} für die Gleichung Aufgabe 1.8 Gegeben seien die folgenden Teilmengen der reellen Zahlen: A := {x R : 2 < x < 5} B := {x R : 1 x} C := { x R : x 2 4 } D := { x R : x 2 > 1 } 8

9 Bestimmen Sie jeweils die folgenden Mengen und skizzieren Sie diese auf der Zahlengerade: a) A B b) A D Lösung zu Aufgabe 1.8 c) B \ C d) D \ (A B) e) C (A B) f) (R \ (A B)) (C D) a) A B =] 2; 1] ] ] b) A D = R c) B \ C =] ; 2[ [ d) D \ (A B) =] ; 2] ]1; [ ] ] e) C (A B) = [ 2; 2] [ ] f) R \ (A B) (C B) = (] ; 2] ]1; [) ([ 2; 1[ ]1; 2]) =] ; 1[ ]1; [= R \ [ 1; 1] [ ] 9

Themen: Kubische Gleichungen, Ungleichungen, Induktion

Themen: Kubische Gleichungen, Ungleichungen, Induktion Lo sungen zu U bungsblatt Mathematik fu r Ingenieure Maschinenbauer und Sicherheitstechniker), 1. Semester, bei Prof. Dr. G. Herbort im WiSe1/14 Dipl.-Math. T. Pawlaschyk, 05.11.1 Themen: Kubische Gleichungen,

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 8. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 8. Vorlesung 1 / 25 Themen

Mehr

Vorlesung. Vollständige Induktion 1

Vorlesung. Vollständige Induktion 1 WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Kapitel 1. Grundlegendes

Kapitel 1. Grundlegendes Kapitel 1 Grundlegendes Abschnitt 1.4 Vollständige Induktion Charakterisierung der natürlichen Zahlen Die Menge N 0 = {0, 1, 2, 3,...} der natürlichen Zahlen läßt sich wie folgt charakterisieren: 1. 0

Mehr

Induktion und Rekursion

Induktion und Rekursion Induktion und Rekursion Induktion und Rekursion Vorkurs Informatik Theoretischer Teil WS 013/14. Oktober 013 Vorkurs Informatik WS 013/14 1/1 Vollständige Induktion Vorkurs Informatik WS 013/14 /1 Ziel

Mehr

3 Vollständige Induktion

3 Vollständige Induktion 3.1 Natürliche Zahlen In den vorherigen Kapiteln haben wir die Menge der natürlichen Zahlen schon mehrfach als Beispiel benutzt. Das Konzept der natürlichen Zahlen erscheint uns einfach, da wir es schon

Mehr

Vollständige Induktion

Vollständige Induktion 30. September 008 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Gliederung 1 3 4 Die Peano Axiome für die Menge der Natürlichen Zahlen N I. 0 ist eine natürliche Zahl, d.h. 0 N. II. Jede natürliche

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 8

Mathematische Grundlagen der Ökonomie Übungsblatt 8 Mathematische Grundlagen der Ökonomie Übungsblatt 8 Abgabe Donnerstag 7. Dezember, 0:5 in H 5+7+8 = 20 Punkte Mit Lösungshinweisen zu einigen Aufgaben 29. Das Bisektionsverfahren sucht eine Nullstelle

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 5

Technische Universität München Zentrum Mathematik. Übungsblatt 5 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 5 Hausaufgaben Aufgabe 5. Bestimmen Sie folgende Grenzwerte. Benutzen

Mehr

Zusammenfassung: Stichworte: Stellen Sie Ihre optimale Schriftgröße ein: Größere Schriftzeichen. 2x + 3 = 7. (1)

Zusammenfassung: Stichworte: Stellen Sie Ihre optimale Schriftgröße ein: Größere Schriftzeichen. 2x + 3 = 7. (1) 1 von 5 21.05.2015 14:30 Zusammenfassung: Eine Ungleichung ist die "Behauptung", dass ein Term kleiner, größer, kleiner-gleich oder größer-gleich einem andereren Term ist. Beim Auffinden der Lösungsmenge

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufgabe 45. Polynome sind stets stetig. Höhere Mathematik für Informatiker II (Sommersemester

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Induktion und Rekursion

Induktion und Rekursion Mathematische Beweistechniken Vorkurs Informatik SoSe13 10. April 013 Mathematische Beweistechniken Ziel Mathematische Beweistechniken Ziel beweise, dass eine Aussage A(n) für alle n N gilt. Beispiel Für

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14. Systeme linearer Ungleichungen in einer Variablen

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14. Systeme linearer Ungleichungen in einer Variablen ARBEITSBLATT 14 Systeme linearer Ungleichungen in einer Variablen Zunächst einmal können wir die Lösungen einer Ungleichung auf mehrere Arten angeben. Man kann wählen zwischen einer Ungleichungskette,

Mehr

mathe plus Aussagenlogik Seite 1

mathe plus Aussagenlogik Seite 1 mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet

Mehr

Fachwissenschaftliche Grundlagen

Fachwissenschaftliche Grundlagen Fachwissenschaftliche Grundlagen Vorlesung im Wintersemester 2011/2012, Universität Landau Roland Gunesch 9. Vorlesung Roland Gunesch (Mathematik) Fachwissenschaftliche Grundlagen 9. Vorlesung 1 / 17 Themen

Mehr

Zahlen und Funktionen

Zahlen und Funktionen Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker II (Sommersemester 2004) Lösungen zu Aufgabenblatt

Mehr

Mathematik und Logik

Mathematik und Logik Mathematik und Logik 5. Übungsaufgaben 2006-11-21 1. Beweisen Sie, daß die Aussage allgemeingültig ist. A = A Beweis. Dies ist ein Spezialfall von (((A = B) = B) = B) = (A = B), was wir wie folgt beweisen.

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Ungleichungen Inhalt: 1. Grundlegendes 2. Lineare Ungleichungen 3. Ungleichungen mit

Mehr

1 Das Prinzip der vollständigen Induktion

1 Das Prinzip der vollständigen Induktion 1 1 Das Prinzip der vollständigen Induktion 1.1 Etwas Logik Wir nennen eine Formel oder einen Satz der Alltagssprache eine Aussage, wenn sie wahr oder falsch sein kann. Die Formeln 2 = 3, 2 4, 5 5 sind

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen):

Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen): Prof. U. Stephan WiIng 1. Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Bitte lösen Sie die folgenden Aufgaben und prüfen Sie, ob Sie Lücken dabei haben. Bestimmen Sie jeweils die

Mehr

Das Volumen und die Oberfläche einer n-dimensionalen Kugel

Das Volumen und die Oberfläche einer n-dimensionalen Kugel Das Volumen und die Oberfläche einer n-dimensionalen Kugel Alois Temmel 6. Februar 14 c 14, A. Temmel Inhaltsverzeichnis 1 Die Volumenformel 3 1.1 Die n-dimensionale Kugel.................... 3 1.1.1 Die

Mehr

MATHEMATIK FÜR WIRTSCHAFTSWISSENSCHAFTLER MUSTERLÖSUNG 3. TEST

MATHEMATIK FÜR WIRTSCHAFTSWISSENSCHAFTLER MUSTERLÖSUNG 3. TEST Privatdozent Dr. C. Diem diem@math.uni-leipzig.de http://www.math.uni-leipzig.de/ diem/wiwi MATHEMATIK FÜR WIRTSCHAFTSWISSENSCHAFTLER MUSTERLÖSUNG 3. TEST Es folgt eine Musterlösung zusammen mit Anleitungen

Mehr

7. Übungsblatt Aufgaben mit Lösungen

7. Übungsblatt Aufgaben mit Lösungen 7. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung β-version) Aufgabe : Bestimmen Sie alle Häufungspunkte der Folgen mit den Folgengliedern a) a n n n X + cosnπ), b) b n i) i j, und geben Sie

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Sei f : R R gegeben durch f(x 1, x ) = x 3

Mehr

Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren

Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren 1.1 Was ist eine Wurzelgleichung? Wurzelgleichungen Beispiel für eine Wurzelgleichung Eine Wurzelgleichung ist eine Gleichung bei der in mindestens einem Radikanten (Term unter der Wurzel) die Unbekannte

Mehr

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung ) Institut für Analysis und Scientific Computing TU Wien W. Auzinger WS 05/6 A N A L Y S I S I F Ü R T P H, U E (03.088). Übungstest (FR, 6..05) (mit Lösung ) Aufgabe. a ) Wandeln Sie die periodische Dezimalzahl

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.

Mehr

1 x. Eine kurze Erinnerung an die Definition der Betragsfunktion:

1 x. Eine kurze Erinnerung an die Definition der Betragsfunktion: Wie rechne ich mit Ungleichungen? Die do s und don t s mit Beispielen aus der Miniklausur Lukas Steenvoort Addition und Subtraktion 1 ) Dies funktioniert ähnlich wie bei Gleichungen addieren wir denselben

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente Universität Basel Wirtschaftswissenschaftliches Zentrum Kombinatorik Dr. Thomas Zehrt Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente 2 Teil 1 Endliche Mengen Eine endliche Menge M ist eine Menge,

Mehr

Vorkurs Mathematik für Informatiker 6 Logik, Teil 2

Vorkurs Mathematik für Informatiker 6 Logik, Teil 2 6 Logik, Teil 2 Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 6: Logik, Teil 2 1 Aussagenformen Aussage mit Parameter (zum Beispiel x) Aussage wahr oder falsch abhängig vom Parameter

Mehr

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an:

1 Übungen zu Mengen. Aufgaben zum Vorkurs B S. 1. Aufgabe 1: Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: Aufgaben zum Vorkurs B S. 1 1 Übungen zu Mengen Geben Sie folgende Mengen durch Aufzählen ihrer Elemente an: A = {x N 0 < x < 4, 8} B = {t N t ist Teiler von 4} C = {z Z z ist positiv, durch 3 teilbar

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 2

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 2 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 2013/14 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie svorschläge

Mehr

Vertiefungskurs Mathematik

Vertiefungskurs Mathematik Vertiefungskurs Mathematik Anforderungen für das Universitäts-Zertifikat im Schuljahr 01/13 Grundvoraussetzung: Teilnahme am Vertiefungskurs Mathematik in Klasse 11. Inhaltliche Voraussetzungen: Aussagenlogik

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I Wintersemester 3/ Aufgabenblatt 6. Januar Präsenzaufgaben

Mehr

Kapitel 3. Natürliche Zahlen und vollständige Induktion

Kapitel 3. Natürliche Zahlen und vollständige Induktion Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

Lösungen. 1. Klausur zur MIA: Analysis I für Mathematiker

Lösungen. 1. Klausur zur MIA: Analysis I für Mathematiker MATHEMATISCHES INSTITUT WS 006/07 DER UNIVERSITÄT MÜNCHEN Prof. Dr. M. Schottenloher Dr. S. Tappe Version 5.. Lösungen zur. Klausur zur MIA: Analysis I für Mathematiker vom 6..06 Aufgabe. ( + Punkte) a)

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Grundlagen der Mathematik Lösungsskizzen 2 Präsenzaufgaben (P2) Wir betrachten drei Teilmengen der natürlichen Zahlen: - A = {n

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

Studienmaterial Einführung in das Rechnen mit Resten

Studienmaterial Einführung in das Rechnen mit Resten Studienmaterial Einführung in das Rechnen mit Resten H.-G. Gräbe, Institut für Informatik, http://www.informatik.uni-leipzig.de/~graebe 12. April 2000 Die folgenden Ausführungen sind aus Arbeitsmaterialien

Mehr

Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung?

Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung? 8 Grundsätzliches zu Beweisen Frage 8.3. Wozu dienen Beweise im Rahmen einer mathematischen (Lehramts-)Ausbildung? ˆ Mathematik besteht nicht (nur) aus dem Anwenden auswendig gelernter Schemata. Stattdessen

Mehr

Kapitel 11 Beweisführung. Mathematischer Vorkurs TU Dortmund Seite 125 / 254

Kapitel 11 Beweisführung. Mathematischer Vorkurs TU Dortmund Seite 125 / 254 Kapitel 11 Beweisführung Kapitel 11 Beweisführung Mathematischer Vorkurs TU Dortmund Seite 125 / 254 Kapitel 11 Beweisführung Grundsätzlich: ein mathematischer Satz ist eine Aussage der Form wenn... gilt,

Mehr

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November 2009 1 Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Vollständige Induktion

Vollständige Induktion Schweizer Mathematik-Olympiade smo osm Vollständige Induktion Aktualisiert: 1 Dezember 01 vers 100 Eine der wichtigsten Beweistechniken der Mathematik überhaupt ist die (vollständige) Induktion Wir nehmen

Mehr

Kapitel 13. Lineare Gleichungssysteme und Basen

Kapitel 13. Lineare Gleichungssysteme und Basen Kapitel 13. Lineare Gleichungssysteme und Basen Matrixform des Rangsatzes Satz. Sei A eine m n-matrix mit den Spalten v 1, v 2,..., v n. A habe den Rang r. Dann ist die Lösungsmenge L := x 1 x 2. x n x

Mehr

II. Wissenschaftliche Argumentation

II. Wissenschaftliche Argumentation Gliederung I. Motivation II. Wissenschaftliche Argumentation i. Direkter Beweis ii. iii. Indirekter Beweis Beweis durch vollständige Induktion Seite 35 II. Wissenschaftliche Argumentation Ein Beweis ist

Mehr

1. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

1. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. Christian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 1. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 1.1: Gehen Sie die Inhalte

Mehr

Übungen Mathematik I, M

Übungen Mathematik I, M Übungen Mathematik I, M Übungsblatt, Lösungen (Stoff aus Mathematik 0) 09.0.0. Kommissar K hat 3 Tatverdächtige P, Q und R. Er weiß: (a) Wenn sich Q oder R als Täter herausstellen, dann ist P unschuldig.

Mehr

ANALYSIS I FÜR TPH WS 2016/17 1. Übung Übersicht

ANALYSIS I FÜR TPH WS 2016/17 1. Übung Übersicht . Übung Übersicht Aufgaben zu Kapitel und 2 Aufgabe : Drei klassische Ungleichungen Aufgabe 2: ) Beweis einer Summenformel Induktion) Aufgabe : ) Teleskopsummen Aufgabe 4: Noch etwas Formelmanipulation

Mehr

Einige Gedanken zur Fibonacci Folge

Einige Gedanken zur Fibonacci Folge Einige Gedanken zur Fibonacci Folge Im Folgenden gehe ich auf einige Aspekte von Aufgabe 4 auf Übungsblatt, d.h. auf Aufgabe 4 auf Seiten und 3 des Buches Hahn-Dzewas: Mathematik, ein. Die Aufgabe hat

Mehr

40. Österreichische Mathematik-Olympiade Kurswettbewerb Lösungen

40. Österreichische Mathematik-Olympiade Kurswettbewerb Lösungen 40. Österreichische Mathematik-Olympiade Kurswettbewerb Lösungen TU Graz, 29. Mai 2009 1. Für welche Primzahlen p ist 2p + 1 die dritte Potenz einer natürlichen Zahl? Lösung. Es soll also gelten 2p + 1

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 2003/2004) Aufgabenblatt 9

Mehr

Vorkurs Mathematik. Ein Übungsbuch für Fachhochschulen. Bearbeitet von Michael Knorrenschild

Vorkurs Mathematik. Ein Übungsbuch für Fachhochschulen. Bearbeitet von Michael Knorrenschild Vorkurs Mathematik Ein Übungsbuch für Fachhochschulen Bearbeitet von Michael Knorrenschild 1. Auflage 2004. Buch. 176 S. Hardcover ISBN 978 3 446 22818 4 Format (B x L): 14,6 x 21,2 cm Gewicht: 259 g Weitere

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2015/16 Prof. Dr. M. Hinze Dr. P. Kiani Analysis I für Studierende der Ingenieurwissenschaften Lösungshinweise zu Blatt 2 Aufgabe 1: (12 Punkte) a) Beweisen

Mehr

Abiturprüung Mathematik 010 Baden-Württemberg (ohne CAS) Wahlteil - Augaben Analysis I 1 Augabe I 1.1: Au einem ebenen Gelände beindet sich ein geradliniger, 500 m langer Lärmschutzwall. Das Proil seines

Mehr

Ungleichungen mit Brüchen

Ungleichungen mit Brüchen Ungleichungen mit Brüchen W. Kippels 24. November 2013 Inhaltsverzeichnis 1 Allgemeines zum Lösen von Ungleichungen 3 2 Aufgaben 6 2.1 Aufgabe 1................................... 6 2.2 Aufgabe 2...................................

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

Handout zu Beweistechniken

Handout zu Beweistechniken Handout zu Beweistechniken erstellt vom Lernzentrum Informatik auf Basis von [Kre13],[Bün] Inhaltsverzeichnis 1 Was ist ein Beweis? 2 2 Was ist Vorraussetzung, was ist Behauptung? 2 3 Beweisarten 3 3.1

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 9 In theory, theory and praxis are the same, in praxis they aren t Die Multiplikation auf den natürlichen Zahlen Zur Definition

Mehr

Folgen und endliche Summen

Folgen und endliche Summen Kapitel 2 Folgen und endliche Summen Folgen und ihre Eigenschaften Endliche arithmetische und geometrische Folgen und Reihen Vollständige Induktion Anwendungen Folgen/endliche Summen Eigenschaften Folgen

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

Vorkurs Mathematik 2016

Vorkurs Mathematik 2016 Vorkurs Mathematik 2016 WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok Skript VK5 vom 22.9.2016 VK5: Elementare reelle Arithmetik, Ungleichungen und Intervalle VK5.1: Ungleichungen

Mehr

Ferienkurs Analysis 1: Übungsblatt 1

Ferienkurs Analysis 1: Übungsblatt 1 Ferienkurs Analysis : Übungsblatt Marta Krawczyk, Andreas Schindewolf, Simon Filser 5.3.00 Aufgaben zur vollständigen Induktion. Verallgemeinerte geometrische Summenformel. Zeigen Sie mittels vollständiger

Mehr

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag

Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr E Schörner WS / Blatt 6 Übungen zur Vorlesung Lineare Algebra und analytische Geometrie I (Unterrichtsfach) Lösungsvorschlag Wir verwenden das Unterraumkriterium,

Mehr

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium Gruber I Neumann Erfolg in VERA-8 Vergleichsarbeit Mathematik Klasse 8 Gymnasium . Zahlen Zahlen Tipps ab Seite, Lösungen ab Seite 0. Zahlen und Zahlenmengen Es gibt verschiedene Zahlenarten, z.b. ganze

Mehr

Lösungen zu Ungerade Muster in Pyramiden. Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl.

Lösungen zu Ungerade Muster in Pyramiden. Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl. Lösungen zu Ungerade Muster in Pyramiden Aufgabe Muster: Die Summe der ungeraden Zahlen (in jeder Teilpyramide) ist stets eine Quadratzahl. Begründung : Zunächst schauen wir eine Abbildung an, in der die

Mehr

8 Summen von Quadraten

8 Summen von Quadraten 8 Summen von Quadraten A. Summen von zwei Quadraten. Sei p eine Primzahl. Beispiele. = 1 + 1, 5 = 1 +, 13 = + 3 Aber 3 und 7 sind nicht Summen von zwei Quadraten. 8.1 Satz. Genau dann ist p Summe von zwei

Mehr

Betrags-Gleichungen und -Ungleichungen

Betrags-Gleichungen und -Ungleichungen Betrags-Gleichungen und -Ungleichungen W. Kippels 16. August 2014 Inhaltsverzeichnis 1 Grundlagen zu Beträgen 2 1.1 Gleichungen mit Beträgen.......................... 2 1.2 Ungleichungen mit Beträgen.........................

Mehr

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 2013/14 Höhere Mathemati I für die Fachrichtung Informati Lösungsvorschläge zum 2. Übungsblatt Aufgabe

Mehr

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit.

Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die kontinuierlich ablaufende Zeit. Kapitel 4 Reelle Zahlen 4.1 Die reellen Zahlen (Schranken von Mengen; Axiomatik; Anordnung; Vollständigkeit; Überabzählbarkeit und dichte Mengen) Als typisches Beispiel für die reellen Zahlen dient die

Mehr

Trigonometrische Funktionen und Exponentialfunktion

Trigonometrische Funktionen und Exponentialfunktion Kapitel 6 Trigonometrische Funktionen und Exponentialfunktion 6.1 Es seien a>0, b>0 und c IR. Man definiere f : IR IR durch f(x) =a sin(bx + c). Zeigen Sie, daß f die folgenden Eigenschaften hat. (i) f(x)

Mehr

Technische Universität Berlin. Klausur Analysis I

Technische Universität Berlin. Klausur Analysis I SS 2008 Prof. Dr. John M. Sullivan Kerstin Günther Technische Universität Berlin Fakultät II Institut für Mathematik Klausur Analysis I 4.07.2008 Name: Vorname: Matr.-Nr.: Studiengang: Mit der Veröffentlichung

Mehr

Wie werden die Vorlesungen/Übungen organisiert?

Wie werden die Vorlesungen/Übungen organisiert? Wie werden die Vorlesungen/Übungen organisiert? Mein Name: Prof Vladimir Matveev Sprechstunden: nach jeder Vorlesung bzw in der Pause Homepage der Vorlesung: http://usersminetuni-jenade/~matveev/lehre/la13/

Mehr

Übungen zu Grundlagen der Logik in der Informatik - WS15/16

Übungen zu Grundlagen der Logik in der Informatik - WS15/16 Übungen zu Grundlagen der Logik in der Informatik - WS15/16 1 / 11 Übungen zu Grundlagen der Logik in der Informatik - WS15/16 Donnerstag 14:15-15:45, Cauerstraße 7/9, Raum 0.154-115 Freitag 14:15-15:45,

Mehr

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann

Reihen/Partialsummenfolgen und vollständige Induktion. Robert Klinzmann Reihen/Partialsummenfolgen und vollständige Induktion Robert Klinzmann 3. Mai 00 Reihen / Partialsummen 1 Inhaltsverzeichnis 1 Vorwort Das Prinzip der vollständigen Induktion 3 3 Herleitung der Gauß schen

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

< hergeleitet. < war nach 1.9 mit Hilfe von Rechenregeln für

< hergeleitet. < war nach 1.9 mit Hilfe von Rechenregeln für 2 Angeordnete Körper 2.1 Grundrechenregeln für < in einem angeordneten Körper 2.3 Weitere Rechenregeln für < und 2.4 Positive und negative Elemente 2.5 Ungleichung des arithmetischen Mittels 2.7 Betrag

Mehr

Lösen von Gleichungen mittels Ungleichungen

Lösen von Gleichungen mittels Ungleichungen Lösen von Gleichungen mittels Ungleichungen. März 00 Die Aufgaben sind mit Schwierigkeitsstufen leicht, mittel, schwer markiert. Aufgabe (leicht) Ermittle alle nichtnegativen reellen Zahlen a, b, c, für

Mehr

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006

Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester vom 15. Januar 2006 Prof. E.-W. Zink Institut für Mathematik Humboldt-Universität zu Berlin Elemente der Algebra und Zahlentheorie Musterlösung, Serie 3, Wintersemester 2005-06 vom 15. Januar 2006 2te, korrigierte und erweiterte

Mehr

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln $Id: integral.tex,v.5 2009/05/05 4:57:29 hk Exp hk $ 2 Integralrechnung 2.3 Die Integrationsregeln Wir wollen noch eine letzte kleine Anmerkung zur Substitutionsregel machen. Der letzte Schritt bei der

Mehr

Vollständige Induktion

Vollständige Induktion Seite 1 Klaus Messner, klaus_messner@web.de Seite 2 Problem: Problem Man hat eine Aussage (z.b. eine Formel) und soll zeigen, dass diese Aussage für alle natürlichen Zahlen gilt. Beispiel: Es soll gezeigt

Mehr

47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen

47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen 47. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen 31. März 016 Aufgabe 1. Man bestimme alle positiven ganzen Zahlen k und n, die die Gleichung erfüllen. k 016 = 3

Mehr

Institut für Stochastik, Fernstudienzentrum

Institut für Stochastik, Fernstudienzentrum Institut Stochastik, Fernstudienzentrum Vorkurs Mathematik die Fachrichtung Wirtschaftswissenschaften im Herbst 01 Präsenzwoche Übungsaufgaben zum Thema Zahlbereiche Aufgabe 7 Im Yellowstone Nationalpark

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen und Ungleichungen 1. Erkläre den (oder die) Fehler in folgender Aufgabe und verbessere die Aufgabe! 123 x = 78, G = {2,4,6,8,...}, L = {45} Lösung: 123 x = 78, G = {2,4,6,8,...}, L = {} 2.

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 4: Wörter (und vollständige Induktion) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/29 Überblick Wörter Wörter Das leere Wort Mehr zu

Mehr