Technische Universität München Zentrum Mathematik. Übungsblatt 5

Größe: px
Ab Seite anzeigen:

Download "Technische Universität München Zentrum Mathematik. Übungsblatt 5"

Transkript

1 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 5 Hausaufgaben Aufgabe 5. Bestimmen Sie folgende Grenzwerte. Benutzen Sie die Regel von de l Hôpital, falls diese anwendbar ist und begründen Sie jeweils, warum die Regel anwendbar ist. a) ln +3) sin e [7] b) + ) tan π [ π ] c) cosh e [ ] d) cos [] Lösung zu Aufgabe 5. a) Der Grenzwert ist vom Typ, die Regel ist also direkt anwendbar: ln + 3) sin L H e ln + 3) 3 4 sin cos +3 e ) Wieder ergibt sich ein Grenzwert vom Typ, wir fahren also fort: ln + 3) 3 4 sin cos +3 e ) L H )+ln+3) 3 +3) 4 cos + 4 sin 7 e 4 e b) Der Grenzwert ist vom Typ ), die Regel von de l Hôpital ist also nicht unmittelbar anwendbar. Wir können aber eine kleine Umformung vornehmen, um den Term auf die passende Gestalt zu bringen: π + ) tan + ) sin π cos π sin π + + ) π π sin π cos π π π c) Der Grenzwert ist hier vom Typ, wir versuchen also die Regel von de l Hôpital: cosh e L H sinh e L H cosh e

2 Leider stellen wir fest, dass die Regel hier nicht weiterhilft. Diesen Grenzwert bestimmen wir deshalb auf andere Weise: cosh e e + e ) e + e d) Der Grenzwert ist vom Typ, wir dürfen also de l Hôpital anwenden: cos sin Aufgabe 5. Gegeben sei die Funktion f : D R mit f) : a) für einen Parameter a >. Bestimmen Sie in Abhängigkeit von a die Nullstellen dieser Funktion, Symmetrieverhalten, berechnen Sie wo möglich) die Ableitung, sämtliche Asymptoten, das Monotonieverhalten, lokale und globale Maima und Minima sowie Wendepunkte. Skizzieren Sie anschließend den Graphen der Funktion f für a und tragen Sie die Informationen im Graphen ein. Lösung zu Aufgabe 5. Nullstellen: f) 3 +6a+3a + +a), wenn 3 + 6a + ) + 3a ist, also für, 6 ± 36a + a + 36a 6 a 6 ± 6 a +. Symmetrie: Es gilt f )3, das ist weder f) noch f), also besitzt f keine a ) offensichtliche Symmetrie. Asymptoten: Wir untersuchen zunächst die vertikale Asymptote bei a: Weiter gilt: 3 + ± 3 + a 3 + a + a) + a) + a) 3 + ± + a ) 3, also besitzt die Funktion eine horizontale Asymptote bei y 3.

3 Ableitungen: Wir berechnen die ersten drei Ableitungen: f ) + a) + a) + a) 4 + a + a) 3 a a + ) 3 f ) a + )3 3a )a + ) a + ) 6 f ) a + )4 4 4a)a + ) 3 a + ) 8 a 3a + 3 4a a + ) 4 a + ) 4 a a a + ) 5 8a 6 a + ) 5 Etrema und Monotonie: Die einzige Nullstelle der ersten Ableitung liegt bei a. Durch Einsetzen in die zweite Ableitung erhalten wir f a) a a) 4 <, da a > vorausgesetzt wurde. Daher ist a ein lokales Maimum. Für die Untersuchung der Monotonie ist darüber hinaus noch die Nullstelle a des Nenners von f ) von Bedeutung, dort wechselt der Nenner das Vorzeichen. Insgesamt haben wir folgendes Monotonieverhalten: ; a) a; a) a a; ) f fällt streng monoton f wächst streng monoton lokales Maimum f fällt streng monoton Wegen der Asymptoten gilt: f besitzt keine globalen Minima. Wegen fa) 3 + a 4a > 3 ist der Punkt a, fa)) aber ein globales Maimum der Funktionswert ist größer als die horizontale Asymptote!). Die Funktion besitzt keine lokalen Minima. Wendepunkte: Die einzige Nullstelle der zweiten Ableitung ist offenbar bei a. Hier gilt f a) 8a a 3a) 5, da a > ist. Daher besitzt f bei a tatsächlich einen Wendepunkt. Skizze für a : Für a hat der Graph etwa folgende Gestalt: 3

4 lokales Maimum f) 5 4 Aufgabe 5.3 Sie haben eine Coladose gekauft, die eine perfekte zylindrische Form besitzt. Die Masse M der Dose ohne Inhalt) ist gleichmäßig über die ganze Dose verteilt, die Dose habe Höhe H und Volumen V. Sie möchten, dass die Dose möglichst stabil steht, der Schwerpunkt der Dose inklusive Inhalt) soll also so tief wie möglich liegen. Wir unterstellen zur Vereinfachung, dass Cola die Dichte besitzt. Wie viel Cola Füllhöhe in Prozent der Dosenhöhe) müssen Sie trinken, damit der Schwerpunkt seinen tiefsten Stand erreicht? Lösung zu Aufgabe 5.3 Wir bezeichnen den Füllstand der Dose mit [; H]. Wir können die Verteilung der Gesamtmasse der Dose dann eindimensional in Abhängigkeit von modellieren. Der Schwerpunkt der leeren Dose liegt bei Höhe H /, der Schwerpunkt der Cola liegt bei Höhe /. Die Höhe des Schwerpunkts s des Gesamtsystems ergibt sich dann als Mittel der Schwerpunkte dieser beiden Teilsysteme, gewichtet mit deren jeweiligem Anteil an der Gesamtmasse: s) M H + V H M + V H MH + V H M + V H MH + V MH + V ) Um s) zu minimieren, bilden wir zunächst die erste und zweite Ableitung: s ) V )M + V ) MH + V H H H ) V ) H 4M + V V V + MH MH ) H ) MH + V ) s ) V H MM + V ) MH + V ) 3 4

5 Wir bestimmen nun die Nullstellen von s ) : s ) V H )M + V H ) MH + V H ) V H ) M + V H ) MH + V H ) V H + M MH, M ± 4M + 4MV V H H V M ± M + MV ) Die negative Lösung macht hier natürlich keinen Sinn, schließlich ist die Füllhöhe, also muss im Optimum gelten H M + M + MV ). V Da s ) > ist wegen > ) handelt es sich tatsächlich um ein Minimum, also die gesuchte Lösung. Um den optimalen Füllstand in Prozent zu bekommen, müssen wir diese Höhe noch durch H teilen, d. h. H M + M + MV ). V Für den optimalen Schwerpunkt s s ) bedeutet das H s MH + V M + MV + M M M H V + MV ) M + V H H V M + M + MV ) MH MH + V M + V M + MV ) M M + M + MV HM M + M M + MV )) + MV V Aufgabe 5.4 Zeigen Sie: Zu jedem Zeitpunkt gibt es auf dem Erdäquator zwei sich gegenüberliegende Punkte, an denen die gleiche Temperatur herrscht. Sie dürfen dafür annehmen, dass sich die Temperatur entlang des Äquators stetig ändert. Lösung zu Aufgabe 5.4 Wir nehmen zugegeben etwas vereinfacht) an, dass der Äquator ein Kreis ist. Die Temperatur ist dann eine Funktion T : [; π] R des Winkels Längengrad) mit T ) T π), die Funktion T ist nach Annahme stetig. Wir definieren eine Funktion f : [; π] R durch f) : T ) T +π). Ein Punkt auf dem Äquator und der ihm gegenüberliegende Punkt + π haben also genau dann die gleiche Temperatur, wenn f) gilt. Es ist damit zu zeigen, dass f eine Nullstelle auf [; π] besitzt. Es gilt f) T ) T π) und fπ) T π) T π) T π) T ) f) wegen T ) T π)). Ist f), so muss die Funktion f auf Grund des Zwischenwertsatzes auf 5

6 dem Intervall [; π] jeden Wert zwischen f) und f) annehmen, besitzt also insbesondere eine Nullstelle auf dem Intervall [; π], was zu zeigen war. Ist f), so ist die gesuchte Nullstelle und der Beweis ist ebenfalls erbracht. Aufgabe 5.5 Berechnen Sie die folgenden bestimmten Integrale. Geben Sie jeweils auch eine Stammfunktion des Integranden an. a) d [ ln ] b) π sin d [] c) + d [ln π ] d) + d [ ] ln e) π + sin d Additionsth.!) [4] f) π + +sin tan ) dt Lösung zu Aufgabe 5.5 a) [ ln d ] [ d ln ln ln b) Wegen cos) cos sin sin ) sin sin gilt: ] [ ln ] π sin d π [ ] π cos) d sin) c) + d [ ln + ) arctan ] + d + d ln π 4 ln + ln π d) + d e ln+) d [ e ln ] [ ln ln eln ] ln e e +) ln d e ln ln e ln d 6

7 e) Wir benutzen das Additionstheorem sin sin cos : π π π + sin d sin + cos + sin cos π d sin + cos d [ cos + sin ] π [ + ] 4 sin + cos ) d f) π + + sin tan ) dt + + sin tan ) [t] π π + + sin tan ) Aufgaben für die Tutorübung Aufgabe 5.6 aus einer GOP Seien a, b >. In die durch die Gleichung ) ) a + y b definierte Ellipse soll ein achsenparalleles Rechteck R einbeschrieben werden, d. h. die Ecken von R liegen auf der Ellipse. Wie sind die Seitenlängen des Rechtecks zu wählen, damit der Flächeninhalt von R maimal wird? Welchen Flächeninhalt besitzt R in diesem Fall? Lösung zu Aufgabe 5.6 b a y Wir verwenden die Bezeichnungen wie in obiger Skizze. Weil der Punkt /, y /) auf der Ellipse liegt, gilt ) ) y + y b a b 4a. Die Fläche F ) des Rechtecks beträgt damit F ) y b 4a b 4a b 4a a 4a Wir leiten diese Funktion nach ab, um lokale Etrema zu bestimmen: F ) b 4a a + b a 4a b a 4a 4a b a a 4a 7

8 Die Nullstellen von F ) sind damit a und a, die einzige zulässige Lösung ist a. Da F ) an diesem Punkt stetig ist und das Vorzeichen von + nach wechselt, muss ein lokales Maimum der Funktion F sein. Zu prüfen bleibt, ob die Randpunkte oder a ein besseres Ergebnis liefern. Für ist die Fläche natürlich, für a ist y und die Fläche ist wiederum. Also hat das einbeschriebene Rechteck genau für a die maimale Fläche, der zugehörige y-wert ist dann y b a b. 4a Aufgabe 5.7 Zeigen Sie: Für > gilt < ln + ) <. + Tipp: Verwenden Sie den Mittelwertsatz der Differentialrechnung. Lösung zu Aufgabe 5.7 Wir betrachten die Funktion g : [; ) R, gy) : ln + y). Für jedes > ist diese Funktion auf dem Intervall [; ] stetig und auf ; ) differenzierbar, der Mittelwertsatz ist also anwendbar. Damit gibt es ein y ; ) mit ln + ) ln + ) ln + ) g) g) g y ) + y, also haben wir ein y ; ) mit ln + ) + y. Da y > ist, folgt + y > und damit +y <, das ergibt ln + ) + y < ln + ) <. Ebenso ist y <, also y + < + und damit +y >, damit folgt + ln + ) + y > + ln + ) > +. Alternativ kann man auch eine etwas andere Version des Mittelwertsatzes benutzen. Wenn man die Aussage leicht umformuliert, lautet sie: Mit den gleichen Voraussetzungen wie für den MWS aus der Vorlesung gilt: Es gibt ein λ ; ) mit b a) f a + λb a)) fb) fa). Setzt man nun f) ln + ), a und b, so gilt für dieses λ ; ) + λ Weil + λ > ist, folgt daraus die Ungleichung ln + ln + ). + λ <. 8

9 Da + λ < + gilt, folgt ebenso ln + ) + λ > +, und damit die zweite Ungleichung aus der Behauptung. Aufgabe 5.8 Zeigen Sie: n n k n + k ln Tipp: Interpretieren Sie die Partialsumme als Untersumme einer geeigneten Funktion. Lösung zu Aufgabe 5.8 Wir betrachten die Funktion f) : auf dem Intervall [; ], vgl. Skizze. Die Bilder + darunter zeigen die Untersummen für eine gleichmäßige Zerlegung des Intervalls [; ] in einen, zwei und drei Teile. f) + U n U + 3 4) n 3 3 U ) n 3 Offenbar hat U jeweils die Form n k für n, n bzw. n 3. Dieser Zusammenhang n+k gilt allgemein: Sei,, n,..., n n n eine Zerlegung des Intervalls [; ] in n n gleiche Teile, dann ist die Untersumme U n f) zu f bezüglich der Zerlegung {,,..., n } U n f) n n f k k ) n n n k + k n n n k n n n + k n + k k 9

10 Die Funktion f ist stetig auf [; ], also ist sie auch integrierbar. Im Grenzwert gilt daher: n n k n + k U nf) n + d [ln + )] ln ln ln

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Tutorium Mathematik I M WM Lösungen

Tutorium Mathematik I M WM Lösungen Tutorium Mathematik I M WM Lösungen 3... Durch mehrmaliges Anwenden der Regel von de l Hospital ergibt sich: e e sin() e cos()e sin() sin() cos() e + sin()e sin() cos ()e sin() sin() e + cos()e sin() +

Mehr

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 7

Vorkurs Mathematik für Ingenieur Innen WS 2018/2019 Übung 7 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieur Innen WS 018/019 Übung 7 Aufgabe 1 : Etremwerte Der Ellipse + y = 1 ist ein Rechteck mit Seitenlängen p, q, dessen Seiten parallel

Mehr

Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 6

Vorkurs Mathematik für Ingenieure WS 2015/2016 Übung 6 Prof. Dr. J. Pannek Dynamics in Logistics Vorkurs Mathematik für Ingenieure WS 015/016 Übung 6 Aufgabe 1 : Differentialrechnung (a Berechnen Sie die Ableitung nachstehender Funktionen an der Stelle 0 und

Mehr

3. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

3. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. Christian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 3. Übung zum G8-Vorkurs Mathematik (WiSe 0/) Aufgabe 3.: Gehen Sie die Inhalte der

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 3

Technische Universität München Zentrum Mathematik. Übungsblatt 3 Technische Universität München Zentrum Mathematik Mathematik Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 3 Hausaufgaben Aufgabe 3. Zeigen Sie mit Hilfe der ɛ-δ-formulierung vgl.

Mehr

Diskussion einzelner Funktionen

Diskussion einzelner Funktionen Diskussion einzelner Funktionen. Wir betrachten die Funktion f mit f() = cos sin (a) Berechne f() für { π, π, π, π, } 5π und zeichne den Grafen von f im - Intervall [ π, ] 5π. Einheiten: cm auf der y-achse,

Mehr

Serie 4: Flächeninhalt und Integration

Serie 4: Flächeninhalt und Integration D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr. Ana Cannas Serie 4: Flächeninhalt und Integration Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom. und 4. Oktober.. Das Bild zeigt

Mehr

Serie 6 - Funktionen II + Differentialrechnung

Serie 6 - Funktionen II + Differentialrechnung Analysis D-BAUG Dr. Meike Akvel HS 05 Serie 6 - Funktionen II + Differentialrechnung. a) Sei Lösung 3, falls < 0, f : R R, f) c +, falls 0, + 8, falls >. Bestimmen Sie c R un R, so ass f überall stetig

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 5. x 1 2x 3 = lim 6x D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 5. MC-Aufgaben Online-Abgabe. Durch zweifache Anwendung der Regel von Bernoulli-de l Hôpital folgt Stimmt diese Überlegung? lim x x 3 +

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 2

Technische Universität München Zentrum Mathematik. Übungsblatt 2 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 2 Hausaufgaben Aufgabe 2.1 Sei [a, b] R ein Intervall und ( ) n N [a,

Mehr

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 211 G8 Musterabitur Mathematik Infinitesimalrechnung I Teilaufgabe 1 (3 BE) Bestimmen Sie die Nullstellen der Funktion f : x (e x 2) (x 3 2x ) mit Definitionsbereich

Mehr

2.6 Lokale Extrema und Mittelwertsatz

2.6 Lokale Extrema und Mittelwertsatz 2.6. Lokale Etrema und Mittelwertsatz 49 2.6 Lokale Etrema und Mittelwertsatz In diesem Kapitel bezeichne f stets eine reellwertige Funktion, definiert auf einem abgeschlossenen Intervall [a, b]. Unter

Mehr

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Kapitel VII Untersuchung von Funktionen mittels Ableitungen (Lösungen)

Kapitel VII Untersuchung von Funktionen mittels Ableitungen (Lösungen) Kapitel VII Untersuchung von Funktionen mittels Ableitungen (Lösungen) 7 cos sin 7 a) b a b b a a b a ln ln ln b) 8 sin cos sin ) ( lnsin π π π π π c) + + + ln 7 a) + e e e e b) ) + + ( + + 7 a) + + +

Mehr

9. Übungsblatt zur Vorlesung Mathematik I für Informatik

9. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof. Dr. Thomas Streicher Dr. Sven Herrmann Dipl.-Math. Susanne Pape 9. Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 2009/2010 8./9. Dezember 2009 Gruppenübung

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Sei f : R R gegeben durch f(x 1, x ) = x 3

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 202/3 Institut für Analysis 26..202 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 7. Übungsblatt Aufgabe Untersuchen

Mehr

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion.

4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. 4. Anwendung der Differentialrechnung: Kurvendiskussion 4.1. Maxima und Minima einer Funktion. Definition 4.3. Es sei f : R D R eine auf D erklarte Funktion. Die Funktion f hat in a D eine globales oder

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Wolf Dr. M. Prähofer TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Phsiker Analsis ) MA9 http://www-m5.ma.tum.de/allgemeines/ma9 8S Sommersem. 8 Lösungsblatt 5 4.5.8) Zentralübung

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 7. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 9. Potential mittels

Mehr

Übungsaufgaben zur Analysis

Übungsaufgaben zur Analysis Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

mathphys-online Abiturprüfung Berufliche Oberschule 2007 Mathematik 13 Technik - A I - Lösung Teilaufgabe 1.0 x Gegeben ist die Funktion f a

mathphys-online Abiturprüfung Berufliche Oberschule 2007 Mathematik 13 Technik - A I - Lösung Teilaufgabe 1.0 x Gegeben ist die Funktion f a Abiturprüfung Berufliche Oberschule 007 Mathematik 3 Technik - A I - Lösung Teilaufgabe.0 Gegeben ist die Funktion f a mit f a ( ) ln mit a IR + und der maimalen Definitionsmenge D IR. a fa Teilaufgabe.

Mehr

Abitur 2013 Mathematik Infinitesimalrechnung II

Abitur 2013 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 213 Mathematik Infinitesimalrechnung II Teilaufgabe Teil 1 1 (5 BE) Geben Sie für die Funktion f mit f(x) = ln(213 x) den maximalen Definitionsbereich

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

Mathematik IT 3 (Analysis)

Mathematik IT 3 (Analysis) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Mathematik IT (Analysis) für die Studiengänge Informatik, IMT und ebusiness im Wintersemester 0/04 Geben Sie

Mehr

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z

(1 + z 2j ) = 1 z2n+2. 1 z. (1 + z)(1 z) 1 z. 1 z. (1 + z 2j ) = 1 z. 1 z 1 z Aufgabe Zeigen Sie mit vollständiger Induktion: Für alle n N gilt (8 Punkte) n ( + z 2j ) = 2n+, wobei z C, z, eine komplexe Zahl ist Lösung [8 Punkte] Induktionsanfang: n = : ( + z 2j ) = ( + z 2 ) =

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Berechnen Sie die folgenden unbestimmten Integrale.

Mehr

ARBEITSUNTERLAGEN. zum STARTERKURS an der UNIVERSITÄT DES SAARLANDES

ARBEITSUNTERLAGEN. zum STARTERKURS an der UNIVERSITÄT DES SAARLANDES ARBEITSUNTERLAGEN zum STARTERKURS an der UNIVERSITÄT DES SAARLANDES Vorbemerkung Ziel des Propädeutikums ist es, die Schulmathematik wieder ins Gedächtnis zu rufen und eine gemeinsame Grundlage für die

Mehr

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7 Universität Basel 4 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Kurvendiskussionen Inhaltsverzeichnis 1 Höhere Ableitungen 2 2 Mittelwertsatz und

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 10

Technische Universität München Zentrum Mathematik. Übungsblatt 10 Technische Universität München Zentrum Mathematik Mathematik 2 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt Hausaufgaben Aufgabe. Sei f : R 2 R gegeben durch x 2 y für (x, y)

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 11. Übungsblatt. { wachsend fallend

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 11. Übungsblatt. { wachsend fallend UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 8/9 Aufgabe Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University

Priv. Doz. Dr. A. Wagner Aachen, 19. September 2016 S. Bleß, M. Sc. Analysis. Übungsaufgaben. im Vorkurs Mathematik 2016, RWTH Aachen University Priv. Doz. Dr. A. Wagner Aachen, 9. September 6 S. Bleß, M. Sc. Analysis Übungsaufgaben im Vorkurs Mathematik 6, RWTH Aachen University Intervalle, Supremum und Infimum Für a, b R, a < b nennen wir eine

Mehr

100 und (a) Wie gross ist die Konzentration des Medikaments zu Beginn des Experiments (für t = 0), bzw. nach 5 Stunden (für t = 5)?

100 und (a) Wie gross ist die Konzentration des Medikaments zu Beginn des Experiments (für t = 0), bzw. nach 5 Stunden (für t = 5)? Mathematik I für Naturwissenschaften Dr. Christine Zehrt 18.10.18 Übung 5 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 22. Oktober 2018 in den Übungsstunden Sei f() = 1 f(1+h) f(1) und g(h)

Mehr

dx nf(x 0). dx f(n 1) (x 0 ) = dn

dx nf(x 0). dx f(n 1) (x 0 ) = dn 4.3. Höhere Ableitungen, Konveität, Newtonverfahren 65 4.3 Höhere Ableitungen, Konveität, Newtonverfahren Ist f:i R differenzierbar auf einem Intervall I, so erhalten wir eine neue Funktion auf I, nämlich

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: P. Engel, T. Pfrommer S. Poppitz, Dr. I. Rybak 4. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 9 Prof. Dr. M. Stroppel Prof. Dr. N. Knarr Lösungshinweise zu en Hausaufgaben: Aufgabe H. a)

Mehr

Abitur 2010 Mathematik GK Infinitesimalrechnung I

Abitur 2010 Mathematik GK Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 2010 Mathematik GK Infinitesimalrechnung I Teilaufgabe 2 (4 BE) Gegeben ist für k R + die Schar von Funktionen f k : x 1 Definitionsbereich D k. Der

Mehr

Mathematik LK13 Kursarbeit Musterlösung Aufgabe I:

Mathematik LK13 Kursarbeit Musterlösung Aufgabe I: Mathematik LK13 Kursarbeit 1 6.11.14 Musterlösung Aufgabe I: Analysis I 1. Spaß mit natürlichen Eponentialfunktionen Gegeben sind die Funktionen f ()=e ( + ) und g ( )=5 e Untersuchen Sie beide Funktionen

Mehr

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0.

Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0. Analysis D-BAUG Dr Cornelia Busch FS 2016 Serie 3 1 a) Zeigen Sie, dass der Graph von f(x, y) = 9 (x 2) 2 (y 3) 2 eine Halbkugel beschreibt und bestimmen Sie ihren Radius und ihr Zentrum z = f(x, y) =

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren

Mehr

6 Die Bedeutung der Ableitung

6 Die Bedeutung der Ableitung 6 Die Bedeutung der Ableitung 24 6 Die Bedeutung der Ableitung Wir wollen in diesem Kapitel diskutieren, inwieweit man aus der Kenntnis der Ableitung Rückschlüsse über die Funktion f ziehen kann Zunächst

Mehr

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 12. Übung

Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 12. Übung TU Bergakademie Freiberg Vorl. Frau Prof. Dr. Swanhild Bernstein Übung Dipl.-Math. Daniel Lorenz Freiberg, WS 017/18 Höhere Mathematik I für Ingenieurinnen und Ingenieure Lösungen zur 11. und 1. Übung

Mehr

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2.

Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung. Lösungen zur Probeklausur 2. Adµ Universität Stuttgart Fakultät Mathematik und Physik Institut für Analysis, Dynamik und Modellierung Blatt Probeklausur 2 Lösungen zur Probeklausur 2 Aufgabe 1 1. Formulieren Sie den Satz von Taylor

Mehr

Ferienkurs Stetigkeit und Konvergenz Seite 1. Technische Universität München Ferienkurs Analysis 1. Musterlösung = lim.

Ferienkurs Stetigkeit und Konvergenz Seite 1. Technische Universität München Ferienkurs Analysis 1. Musterlösung = lim. Ferienkurs Stetigkeit und Konvergenz Seite Technische Universität München Ferienkurs Analysis Hannah Schamoni Stetigkeit und Konvergenz Musterlösung 6.03.20. Grenzwerte I Berechnen Sie lim f(), lim f()

Mehr

2. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 L := 2. sin(2x) + 1 sin(x)

2. Gruppenübung zur Vorlesung. Höhere Mathematik 2. Sommersemester 2013 L := 2. sin(2x) + 1 sin(x) O. Alaya, R. Bauer M. Fetzer, K. Sanei Kashani B. Krinn, J. Schmid. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 03 Lösungshinweise zu den Hausaufgaben: Aufgabe H 5. Stetigkeit Gegeben ist

Mehr

Analysis 2. f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt:

Analysis 2.  f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: Analysis 2 www.schulmathe.npage.de Aufgaben 1. Gegeben ist die Funktion f durch f(x) = x2 6x + 8 x 2 6x + 5 a) Ermitteln Sie den Definitionsbereich der Funktion f. Weisen Sie nach, dass gilt: f (x) = 6(x

Mehr

Matur-/Abituraufgaben Analysis

Matur-/Abituraufgaben Analysis Matur-/Abituraufgaben Analysis 1. Tropfen Die folgende Skizze zeigt die Kurve k mit der Gleichung y = (1 ) im Intervall 1. Die Kurve k bildet zusammen mit ihrem Spiegelbild k eine zur -Achse symmetrische

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 7 Anwendungen der Differentialrechnung 7.1 Maxima und Minima einer Funktion................. 141 7.2 Mittelwertsatz............................ 144 7.3 Kurvendiskussion..........................

Mehr

Übungen zu Einführung in die Analysis

Übungen zu Einführung in die Analysis Übungen zu Einführung in die Analysis (Nach einer Zusammengestellung von Günther Hörmann) Sommersemester 2011 Vor den folgenden Aufgaben werden in den ersten Wochen der Übungen noch jene zur Einführung

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 10. Übungsblatt. < 0 für alle t > 1. tan(x) tan(0) x 0 KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann WS 03/4 Höhere Mathematik I für die Fachrichtung Informatik Lösungsvorschläge zum 0. Übungsblatt Aufgabe

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 2. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anreas Herz, Dr. Stefan Häusler email: haeusler@biologie.uni-muenchen.e Department Biologie II Telefon: 089-80-74800 Großhaernerstr. Fa:

Mehr

Prüfungklausur HM 1 (Ing), Lösungshinweise

Prüfungklausur HM 1 (Ing), Lösungshinweise Aufgabe : a Welche komplexen Zahlen erfüllen die Gleichung z + i z =? Skizzieren Sie die Lösungsmenge in der Gaussschen Zahlenebene. 6 Punkte b Für welche komplexen Zahlen z gilt (z + i = 8 e π i? Die

Mehr

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!.

1. Aufgabe (6 Punkte) Zeigen Sie mit Hilfe der vollständigen Induktion, dass folgende Gleichheit gilt für alle n N, n 2. k (k + 1)! = 1 1 n!. . Aufgabe (6 Punte) Zeigen Sie mit Hilfe der vollständigen Indution, dass folgende Gleichheit gilt für alle n N, n 2 n ( + )! n!. [6P] Ind. Anfang: n 2 oder l.s. ( + )! 2 r.s. 2! 2. ( + )! 2! 2! 2 2 2

Mehr

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw

Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Höhere Mathematik I: Klausur Prof Dr. Irene Bouw Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 85 Punkte. Die Klausureinsicht findet am Montag, den 5..8 ab : Uhr im H3 statt. Aufgabe. (a) Lösen Sie

Mehr

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x. Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen

Mehr

b) Kettenregel anwenden 1 8x + 3sin(x) f '(x) = ( 8x 3( sin(x) )) 2 4x 3cos(x) 2 4x 3cos(x) b) [2P]

b) Kettenregel anwenden 1 8x + 3sin(x) f '(x) = ( 8x 3( sin(x) )) 2 4x 3cos(x) 2 4x 3cos(x) b) [2P] Mathematik Name: Lösungen Nr. K Punkte: /3 Note: Schnitt: 7..3 Pflichtteil (etwa 40 min) Ohne Taschenrechner und ohne Formelsammlung (Dieser Teil muss mit den Lösungen abgegeben sein, ehe der GTR und die

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik SS 2013 Doz.: Gündel-vom Hofe, Hömberg, Ortgiese Ass.

Technische Universität Berlin Fakultät II Institut für Mathematik SS 2013 Doz.: Gündel-vom Hofe, Hömberg, Ortgiese Ass. Technische Uniersität Berlin Fakultät II Institut für Mathematik SS 3 Doz.: Gündel-om Hofe, Hömberg, Ortgiese 5.7.3 Ass.: Böttle, Meiner Juli Klausur Analysis I für Ingenieure Name:... Vorname:... Matr.

Mehr

Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2018 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 55 4. Anwendungen der Differentialrechnung Monotonie Krümmung Linearisierung einer Funktion Extremwerte

Mehr

Modulprüfung Analysis I für Ingenieurwissenschaften

Modulprüfung Analysis I für Ingenieurwissenschaften Technische Universität Berlin WiSe 4/5 Fakultät II Institut für Mathematik 20. Februar 205 Doz.: Fackeldey, Guillemard, Penn-Karras Ass.: Beßlich, Winkert Modulprüfung Analysis I für Ingenieurwissenschaften

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x.

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x. Technische Universität München WS 009/0 Fakultät für Mathematik Prof. Dr. J. Edenhofer Dipl.-Ing. W. Schultz Übung Lösungsvorschlag Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I Aufgabe

Mehr

Analysis 7. f(x) = 4 x (x R)

Analysis 7.   f(x) = 4 x (x R) Analysis 7 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch fx) = 4 x R) a) Führen Sie für die Funktion f eine Kurvendiskussion durch Nullstellen, Koordinaten der lokalen Extrempunkte,

Mehr

Klausur Mathematik I

Klausur Mathematik I Klausur Mathematik I E-Techniker/Mechatroniker/Informatiker/W-Ingenieure). März 007 Hans-Georg Rück) Aufgabe 6 Punkte): a) Berechnen Sie alle komplexen Zahlen z mit der Eigenschaft z z = und z ) z ) =.

Mehr

13. Übungsblatt zur Mathematik I für Maschinenbau

13. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 3. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 00/ 07.0.-.0. Aufgabe G Stetigkeit) a) Gegeben

Mehr

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 15 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 15 Peter Hartmann Verständnisfragen 1. Ist f : D und 0 D, so ist der Differenzenquotient eine Abbildung von D\ 0. Warum muss hier 0 aus dem Definitionsbereich herausgenommen werden? Weil sonst der Nenner 0 werden kann..

Mehr

ANALYSIS I FÜR TPH WS 2018/19 7. Übung Übersicht

ANALYSIS I FÜR TPH WS 2018/19 7. Übung Übersicht 7. Übung Übersicht Aufgaben zu Kapitel 1, 11 und (ein wenig) 12 Aufgabe 1: Kurvendiskussion (i) Aufgabe 2: Kurvendiskussion (ii) Aufgabe 3: ( ) Kurvendiskussion (iii) Aufgabe 4: ( ) Beweis einer Ungleichung

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 9. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 4 M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 6. Gegeben ist

Mehr

2) Gegeben sei die Menge. Bei welchen der gegebenen Zerlegungen handelt es sich um eine Klasseneinteilung?

2) Gegeben sei die Menge. Bei welchen der gegebenen Zerlegungen handelt es sich um eine Klasseneinteilung? 00 0 000 0 000 000 0 000 000 0 0 0 0 0 000 000 0 000 00 000 0 0 0 00 0 0 0 0 000 000 000 00 000 0 0 0 0 0 0 0 0 000 0 0 0 Themenkatalog Mengenlehre Aussagenlogik Relationen Funktionen Vollständige Induktion

Mehr

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7 Universität Basel 4 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Kurvendiskussionen Inhaltsverzeichnis 1 Höhere Ableitungen 2 2 Mittelwertsatz und

Mehr

Aufgaben zur e-funktion

Aufgaben zur e-funktion Aufgaben zur e-funktion 1.0 Gegeben ist die reelle Funktion f(x) = 2x 2x e 1 x2 mit x R (Abitur 2000 AII). 1.1 Untersuchen Sie das Symmetrieverhalten des Graphen der Funktion f und bestimmen Sie die Nullstellen

Mehr

Übung (16) (cos(x y) cos(x + y)), also insbesondere

Übung (16) (cos(x y) cos(x + y)), also insbesondere Übung (6) () Man hat sin()sin(y) = (cos( y) cos( + y)), also insbesondere und der fragliche Mittelwert ist U(t)I(t) = (cos (ϕ) cos (ωt + ϕ)), ω π π/ω π/ω dt (cos (ϕ) cos (ωt + ϕ)) π/ω = ω cos (ϕ) dt +

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Pflichtteil Aufgabe BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit 4 f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ()) an das Schaubild der Funktion

Mehr

Analysis I Lösung von Serie 9

Analysis I Lösung von Serie 9 FS 07 9.. MC Fragen: Ableitungen (a) Die Figur zeigt den Graphen einer zweimal differenzierbaren Funktion f. Was lässt sich über f, f und f sagen? Nichts Die Funktion f ist positiv. Die Funktion f ist

Mehr

Aufgabe 2: Analysis (WTR)

Aufgabe 2: Analysis (WTR) Abitur Mathematik: Nordrhein-Westfalen 2013 Aufgabe 2 a) (1) STARTPUNKT BERECHNEN Der x Wert des Startpunktes ist mit 8 gegeben. Der zugehörige y Wert ist 8 1 50 8 3 106 8 4,24. 4 25 Der Startpunkt liegt

Mehr

Angewandte Geometrie

Angewandte Geometrie Technische Universität München SS 215 Zentrum Mathematik Blatt 4 Prof. Dr. J. Hartl Angewandte Geometrie 1. Ein Kind läuft einen geradlinigen Weg entlang und zieht an einer Schnur ein (seitlich des Weges

Mehr

Musterlösungen zu Blatt 14

Musterlösungen zu Blatt 14 Musterlösungen zu Blatt 4 Aufgabe 79 Sei F eine Stammfunktion von f (eistiert, da f stetig ist). Dann ist b() a() f(t)dt = F (b()) F (a()) nach dem Hauptsatz der Differential- und Integralrechnung. Man

Mehr

Tutorium Mathematik ITB1(B), WI1(B)

Tutorium Mathematik ITB1(B), WI1(B) Tutorium Mathematik ITB(B), WI(B) Aufgabenblatt D Differenzialrechnung Prof Dr Peter Plappert Fachbereich Grundlagen Die Aufgaben dieses Aufgabenblattes sollen ohne die Benutzung von Taschenrechnern bearbeitet

Mehr

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115

5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 115 5.5. UMKEHRFUNKTIONEN TRIGONOMETRISCHER FUNKTIONEN 5 Satz 5.5.2 (Ableitung der Umkehrfunktion einer Winkelfunktionen) Die Umkehrfunktionen der trigonometrischen Funktionen sind nach Satz 5.2.3 auf den

Mehr

Funktionen untersuchen

Funktionen untersuchen Funktionen untersuchen Mögliche Fragestellungen Definition: lokale und globale Extrema Monotonie und Extrema Notwendige Bedingung für Extrema Hinreichende Kriterien, Vergleich Krümmungsverhalten Neumann/Rodner

Mehr

Analysis I. 1. Beispielklausur mit Lösungen

Analysis I. 1. Beispielklausur mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Analysis I. Beispielklausur mit en Aufgabe. Definiere die folgenden (kursiv gedruckten) Begriffe. () Das Bild einer Abbildung F: L M. (2) Eine Cauchy-Folge

Mehr

Mathematischer Vorkurs NAT-ING II

Mathematischer Vorkurs NAT-ING II Mathematischer Vorkurs NAT-ING II (02.09.2013 20.09.2013) Dr. Jörg Horst WS 2013-2014 Mathematischer Vorkurs TU Dortmund Seite 1 / 252 Kapitel 7 Differenzierbarkeit Mathematischer Vorkurs TU Dortmund Seite

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Analysis II WS 11/12 Serie 9 Musterlösung

Analysis II WS 11/12 Serie 9 Musterlösung Analysis II WS / Serie 9 Musterlösung Aufgabe Bestimmen Sie die kritischen Punkte und die lokalen Extrema der folgenden Funktionen f : R R: a fx, y = x + y xy b fx, y = cos x cos y Entscheiden Sie bei

Mehr

1 Differentialrechnung

1 Differentialrechnung BT/MT SS 6 Mathematik II Klausurvorbereitung www.eah-jena.de/~puhl Thema: Üben, üben und nochmals üben!!! Differentialrechnung Aufgabe Differenzieren Sie folgende Funktionen: a y = ln( b f( = a a + c f(

Mehr

Aufgabe 51. Gegeben ist die Preis-Absatz-Funktion. p W R C! R C mit p.x/ D 20 2x :

Aufgabe 51. Gegeben ist die Preis-Absatz-Funktion. p W R C! R C mit p.x/ D 20 2x : Aufgabe 5 Differentialrechnung: Preiselastizität (DIFF0.4) Gegeben ist die Preis-Absatz-Funktion p W R C! R C mit p./ D 0 : Dabei steht R C für die nachgefragte Menge und p R C für den Preis. Bestimmen

Mehr

Abschlussprüfung Berufliche Oberschule 2017 Mathematik 12 Technik - A II - Lösung mit CAS. e 2x mit der maximalen Definitionsmenge D f = IR.

Abschlussprüfung Berufliche Oberschule 2017 Mathematik 12 Technik - A II - Lösung mit CAS. e 2x mit der maximalen Definitionsmenge D f = IR. Abschlussprüfung Berufliche Oberschule 07 Mathematik Technik - A II - Lösung mit Teilaufgabe.0 Gegeben ist die reelle Funktion f mit f( ) e mit der maimalen Definitionsmenge D f IR. Teilaufgabe. ( BE)

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 4

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 4 D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 4. MC-Aufgaben Online-Abgabe). Es sei f : [a, b] R eine Funktion. Welche der folgenden Aussagen ist richtig? a) b) f ist stetig f ist differenzierbar.

Mehr

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik I Wiederholung Mathematik für Bauingenieure Wiederholungsaufgaben: Mathematik I Aufgabe : Für die Aussagenverbindung T = (A B) ( A) gebe man

Mehr

Sommersemester (1,1) (b) f(x,y,z) = cos(y 2 )+ze xy, P = (0,0,π), v = 1. (1,1,2) (c) f(x,y,z) = ln(xyze x ), P = (1,1,1), v = 1

Sommersemester (1,1) (b) f(x,y,z) = cos(y 2 )+ze xy, P = (0,0,π), v = 1. (1,1,2) (c) f(x,y,z) = ln(xyze x ), P = (1,1,1), v = 1 D. Garmatter C. Apprich, B. Krinn J. Hörner, M. Werth 3. Gruppenübung zur Vorlesung Höhere Mathematik Sommersemester 4 M. Künzer M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 76. Ableitungen

Mehr

Scheinklausur Höhere Mathematik 2 Musterlösung , Version 1. Matrikel- Nummer: Aufgabe Summe

Scheinklausur Höhere Mathematik 2 Musterlösung , Version 1. Matrikel- Nummer: Aufgabe Summe Scheinklausur Höhere Mathematik Musterlösung 0. 0. 0, Version Name, Vorname: Nummer: Matrikel- Studiengang: Aufgabe 5 6 7 8 9 0 Summe Punkte / / / / / /5 / / / / / Bitte beachten Sie die folgenden Hinweise:

Mehr

Hausaufgabe Analysis-Buch Seite 172, Aufgabe 23. Gegeben ist die Funktion f k mit f k (x) = x2 k 2. , wobei k > 0 ist.

Hausaufgabe Analysis-Buch Seite 172, Aufgabe 23. Gegeben ist die Funktion f k mit f k (x) = x2 k 2. , wobei k > 0 ist. ..6. 5. Hausaufgabe.. Analysis-Buch Seite 7, Aufgabe Gegeben ist die Funktion f k mit f k ( = k, wobei k > ist. k G fk ist der Graph von f k. a Bestimme den maimalen Definitionsbereich und untersuche f

Mehr

Mathematik M 1/Di WS 2001/02 1. Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D. Sei a D. f heißt stetig in a, falls gilt

Mathematik M 1/Di WS 2001/02 1. Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D. Sei a D. f heißt stetig in a, falls gilt Mathematik M 1/Di WS 2001/02 1 b) Stetigkeit Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D Sei a D f heißt stetig in a, falls gilt lim f() = f(a) a f heißt stetig auf D, wenn f in jedem

Mehr