TECHNISCHE UNIVERSITÄT MÜNCHEN

Größe: px
Ab Seite anzeigen:

Download "TECHNISCHE UNIVERSITÄT MÜNCHEN"

Transkript

1 TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I Wintersemester 3/ Aufgabenblatt 6. Januar Präsenzaufgaben Aufgabe 63. Basiswechsel konkret. Gegeben seien die 3 Einheitsvektoren e, e, e 3 R 3 sowie drei weitere Vektoren v, v, v 3 R 3 : e =, e =, e 3 =, v =, v =, v 3 =. Die Standardbasis des R Vektorraums R 3 besteht aus den drei Einheitsvektoren e, e, e 3 R 3. Zeigen Sie, dass die Vektoren v, v, v 3 R 3 ebenfalls eine Basis des R 3 bilden.. Gegeben seien nun die beiden Vektoren p = 6 3 und q = 3. Stellen Sie die beiden Vektoren p und q 9 6 a. als Linearkombination der Vektoren der Standardbasis {e, e, e 3 } dar und b. als Linearkombination der Vektoren der Basis {v, v, v 3 } dar.. Behauptung: Die drei Vektoren v, v, v 3 R 3 bilden eine Basis von R 3. Beweis: λ v + λ v + λ 3 v 3 = λ + λ + λ 3 = λ + λ + λ 3 = λ + λ 3 = λ + λ + λ 3 = Aus der zweiten Gleichung folgt λ 3 = λ. Einsetzen in die beiden anderen Gleichungen ergibt das zu obigem äquivalente Gleichungssystem λ =, λ λ =, λ 3 = λ 3. Aus der zweiten Gleichung folgt λ = λ also insgesamt λ = λ = λ 3 =, d.h. die drei Vektoren sind linear unabhängig. Da die Dimension von R 3 drei ist, bilden sie eine Basis von diesem Vektorraum.. a. Die Punkte p und q lassen sich wie folgt als Linearkombination der Einheitsvektoren e, e, e 3 darstellen: p = 6 e + 3 e + 9 e 3, q = 3 e + e + 6 e 3. b. Um die Punkte p und q und jeden beliebigen anderen Punkt als Linearkombination der Vektoren v, v, v 3 darzustellen, bestimmen wir die Linearkombination der Einheitsvektoren in v, v, v 3 : Wir suchen also jeweils λ, λ, λ 3 R, so daß λ v + λ v + λ 3 v 3 = e i für i =,, 3. Für e müssen dazu wir folgendes Gleichungssystem lösen: λ + λ + λ 3 = λ + λ + λ 3 = λ + λ 3 = λ + λ + λ 3 = Analoges Vorgehen wie in Aufgabenteil. liefert λ = λ = und λ 3 =. Damit ist e = v + v v 3.

2 Der Vektor e führt analog auf das Gleichungssystem λ + λ + λ 3 = λ + λ + λ 3 = λ + λ 3 = λ + λ + λ 3 = mit der Lösung λ =, λ = und λ 3 =. e hat also die Darstellung e = v + v. Auf gleichem Wege erhält man Damit gilt für die Punkte p und q e 3 = v + v 3. p = 6 e + 3 e + 9 e 3 = 6 v + v v v + v + 9 v + v 3 = 3v + 3v 3, q = 3 e + e + 6 e 3 = 3 v + v v 3 + v + v + 9 v + v 3 = v v + 3 v 3. Aufgabe 6. Strecklein schneid dich. Gegeben seien zwei Punkte p, q R. Die Menge aller Punkte x R, die auf der Geraden g durch diese beiden Punkte p und q liegen, ist durch die Menge {x R x = λ p + µ q ; λ, µ R ; λ + µ = } gegeben. 3 Sei nun p = R und q = R. a. Zeichnen Sie die Punkte p und q und die Gerade g durch diese beiden Punkte in ein Koordinatensystem. b. Geben Sie g in Parameterform an, d.h. bestimmen Sie Vektoren v, w, so dass g = {x R x = v + λ w R ; λ R}. c. Auf welchem Teil der Geraden befindet sich x R, wenn i λ > und µ > iii λ < und µ > ii λ > und µ < iv λ < und µ < Hinweis: Wählen Sie jeweils einige Beispielwerte für λ und µ. Markieren Sie die Teile der Geraden farbig. a. Zeichnung siehe Aufgabenteil c. b. x = λ p + µ q = λ p + λ q = q + λ p q = oder x = λ p + µ q = µ p + µ q = p + µ q p = c. i λ > und µ > : λ = und µ = = x = ii λ > und µ < : λ = und µ = = x 3 = iii λ < und µ > : λ = und µ = = x 5 = λ + µ [ [ 3 ] 3 = ] = 3 g, λ = 3 und µ = = x = 5 g g, λ = 3 und µ = = x = 5 g, λ = und µ = 3 = x 6 = λ + µ 3 g 7 g 8 mit λ R mit µ R.

3 iv λ < und µ < : Es existieren keine λ < und µ < mit λ + µ =. y x6 x5 p-q q x p x O x3 x x g. Somit können wir die Strecke [pq] zwischen p und q definieren als die Menge [pq] = {x R x = λ p + µ q; λ, µ R; λ + µ = ; λ > und µ > } = {x R x = p + µq p; µ [, ]} = {x R x = q + λp q; λ [, ]} Aufgabe 65. Lineare Abbildungen. Es seien K ein Körper, V und W K-Vektorräume. Desweiteren sei f : V W eine lineare Abbildung. Beweisen Sie, daß f genau dann injektiv ist, wenn Kernf = {} ist. Gegeben ist die beliebige lineare Abbildung f : V W, x fx. Hierbei bezeichne V den Nullvektor von V und W den Nullvektor von W. Der Kern von f ist dann die Menge { } Kernf := x V fx = W V. Da gemäß Vorlesung stets f V = W ist, gilt zumindest { V } Kernf. Wir setzen voraus, daß f injektiv ist. Da f schon V auf W abbildet, wird aufgrund der Injektivität von f kein weiterer Vektor x V \{ V } auf W abbgebildet. Es ist also Kernf = { V }. Sei nun Kernf = { V }. Wir betrachten zwei Vektoren x, y V mit fx = fy also fx fy = W. Aufgrund der Linearität von f folgt daraus fx y = W, also x y Kernf. Da ja Kernf = { V } bleibt nur der Fall x y = V, und damit x = y. f ist also injektiv. Hausaufgaben Aufgabe 66. Untervektorräume des R. Wir betrachten den Vektorraum V = R. Für v V \{} sei die Menge G v durch G v := {λ v R λ R} definiert. Zeigen Sie. G v ist ein Untervektorraum von V = R.

4 v w. Für v = V und w = V gilt G v w v = G w, genau dann wenn v w v w =. 3. Die Untervektorräume von V sind {}, V, G v mit v V \{}.. Zu zeigen ist, daß G v := { λ v λ R } mit v R \{} eine nichtleere Teilmenge des R ist, die bezüglich der Vektoraddition und bezüglich der skalaren Multiplikation abgeschlossen ist. Für λ = ist v = G v und somit G v {}. Auch wenn nach Voraussetzung v V \{}, ist der Nullvektor immer ein Element von G v für alle v V \{}. Für zwei beliebige Elemente λ v, µ v G v für λ, µ R ist ihre Summe λ v + µ v = λ + µ v wieder ein Element in G v denn λ + µ R. Für ein beliebiges Element λ v G v für ein λ R ist auch für alle µ R der Vektor µ λ v = µ λ v wieder ein Element in G v denn µ λ R. Somit ist G v für alle v V \{} ein Untervektorraum von V = R.. Die Behauptung, daß Aussage A genau dann gilt, wenn Aussage B zutrifft, ist allgemein in zwei Schritten zu beweisen: Man zeigt, daß aus Aussage A die Aussage B folgt und umgekehrt, daß aus Aussage B widerum Aussage A folgt. Wir zeigen zunächst die eine Richtung der nachzuweisenden Äquivalenz: Für zwei Vektoren v, w V \{} gilt G v = G w, genau dann wenn v w v w = erfüllt ist. v w Für zwei Vektoren v =, w = V \{} sei G v = G w. v w Dann existiert ein λ R, so daß w = λ v ist, was wiederum bedeutet, daß die beiden Gleichungen w = λ v und w = λ v erfüllt sind. Nun gilt v w v w = v λ v v λ v = und somit v w v w =. Nun zeigen wir die andere Richtung: Für die Koordinaten der beiden Vektoren v = v v, w = w w { } R\ gelte die Gleichung v w v w =. Wir zeigen zunächst die Inklusion G v G w : Ein beliebiges Element λ v G v für ein λ R ist genau dann auch in G w, wenn ein µ R existiert mit λ v = µ w G w, das heißt wenn zu jedem λ R ein µ R existiert, so daß v w λ = µ λ v = µ w und λ v = µ w. v w Wir unterscheiden die folgenden Fälle: Aus dem Fall v = und v v folgt wegen notwendig w =, und wegen w auch noch w. Somit bleibt in nur die eine Gleichung λ v = µ w wobei v, w zu überprüfen. Zu gegebenem λ erfüllt offenbar µ = λ w obige Gleichung. Der Fall v und v = liefert nach gleichem Vorgehen w und w =, und es ergibt sich µ = λ w v. Für den Fall v und v existiert das gesuchte µ R genau dann, wenn µ = λ w = λ w. v v Dies ist aber äquivalent dazu, daß gilt v w v w =, und das wiederum gilt nach Voraussetzung. Ganz analog zeigt man die Inklusion G w G v, woraus dann insgesamt G v = G w folgt. v

5 3. Es sind zwei Dinge zu zeigen:a. Die Mengen {}, V und G v für v V \{} sind Untervektorräume von V = R. b. Dies sind alle Untervektorräume des R. Trivialerweise sind {} und V = R selbst Untervektorräume von V = R, in Teilaufgabe. wurde gezeigt, daß auch die Mengen G v := { λ v λ R } R mit v R \{} Untervektorräume des R sind. Somit ist Teil a. bewiesen. Zu zeigen ist nun, daß jeder Untervektorräum des R von der Gestalt {}, R oder G v ist. Dazu konstruieren wir uns alle möglichen Untervektorräume U des R wie folgt: Notwendig muß U den Nullvektor enthalten, ist also mindestens der Nullraum {}. Sei nun zusätzlich v in U enthalten, dann muß wegen der notwendigen Abgeschlossenheit von U bezüglich der skalaren Multiplikation auch für alle λ R der Vektor λ u in U enthalten sein. Damit ist U von der Form G v. w Sei nun noch ein weiterer Vektor w = R mit w und w v in U enthalten, also {, w } G v U. w Gilt für diesen Vektor w, daß w = λ v für ein λ R, dann ist w G v und U unverändert G v. Sei also w λ v für alle λ R. Dann gilt nach Aufgabenteil, daß v w v w ist. Aufgrund der notwendigen Abgeschlossenheit von U bezüglich der skalaren Multiplikation muss dann auch für alle µ R der Vektor µ w in U enthalten sein. Wegen der notwendigen Abgeschlossenheit von U bezüglich der Vektoraddition muss auch für jedes λ, µ R der Vektor λ v + µ w in U enthalten sein. Die Behauptung ist nun, daß für U dann bereits U = R gilt. Dazu ist zu zeigen, daß sich jedes Element x R als Linearkombination x = λ v + µ w schreiben läßt. x Für jeden Vektor x = R existieren in der Tat Skalare λ, µ R, so daß nämlich x x = λ v + µ w x x = λ v v + µ λ = x w x w v w v w und µ = v x v x v w v w. Aufgabe 67. Basen von Untervektorräumen. Bestimmen Sie Basen von den folgenden Untervektorräumen U K des K 3 : 3 3. K = R und U R = span, 3,, 3,, K = C und U C = span + i 6,, i. i i + 3. K = Z/7Z, U Z/7Z = span [] [3], [3] [5], [] [3]. [] [] [5]. Gesucht ist eine Basis des Untervektorraums des R 3. U R = span w w 3, 3 Ein Untervektorraum des R 3 kann höchstens die Dimension 3 besitzen. Können wir also drei linear unabhängige Vektoren aus U R angeben, bilden diese bereits eine Basis von U R und damit natürlich auch eine Basis von R 3, und es gilt U R = R 3. Bei genauer Betrachtung der Vektoren, kann man vermuten, dass die ersten drei Vektoren linear unabhängig sind. Das müssen wir aber noch beweisen, d. h. wir müssen zeigen, dass für die Gleichung λ + λ 3 + λ 3 = 3 3

6 als einzige Lösung nur die Lösung λ = λ = λ 3 = existiert. Dazu müssen wir das lineare Gleichungssystem λ + λ + λ 3 = λ + 3 λ + λ 3 = 3 λ + λ + 3 λ 3 = lösen. Die mittlere Gleichung lässt sich zu λ 3 = λ 3λ umformen. Einsetzen dieses Ergebnisses in die beiden anderen Gleichungen ergibt 3λ 5λ = und 3λ 7λ =. Gleichsetzen dieser beiden Gleichungen ergibt wiederum 5λ = 7λ, woraus sofort λ = folgt. Einsetzen ergibt wiederum λ = und λ 3 =. Somit ist λ = λ = λ 3 = die einzige Lösung des linearen Gleichungssystem, und somit sind die drei Vektoren linear unabhängig und bilden eine Basis von U R.. Durch scharfes Hinsehen erkennt man, daß die drei Vektoren linear abhängig sind: 6 + i i + = i i + i. Demnach ist U C = span + i, i. i Die beiden Vekoren sind linear unabhängig, weil für α, β C mit + i = α i + β i zuerst wegen der 3. Komponente α = sein muß, und dann z.b. wegen der. Komponente β = sein muß. 3. Wir überprüfen die lineare Unabhängigkeit der drei Vektoren. Für α, α, α 3 Z/7Z gelte [] [3] [] [] α [3] + α [5] + α 3 [3] = []. [] [] [5] [] Ausgeschrieben in drei Gleichungen lautet dies I []α + [3]α + []α 3 = [], II [3]α + [5]α + [3]α 3 = [], III []α + []α + [5]α 3 = []. Wir lösen durch äquivalente Zeilenumformungen. Zunächst wird II durch II = II 3 III ersetzt, I []α + [3]α + []α 3 = [], II []α + []α + [6]α 3 = [], III []α + []α + [5]α 3 = []. Nun ersetzen wir noch III durch III = III II, wodurch sich I []α + [3]α + []α 3 = [], II []α + []α + [6]α 3 = [], III []α + []α + [ 7]α 3 = [] ergibt. Da [ 7] = [] ist, kann α 3 [], also zum Beispiel α 3 = [] gewählt werden. Aus II folgt α = α 3 und aus I ergibt sich α = [3] [] α. Wegen [] [] = [] also α = []α. Die drei Vektoren sind also linear abhängig. Es gilt zum Beispiel [] [] [3] [3] = [5] [3] + [6] [5]. [5] [] []

7 [] Somit bilden die beiden Vektoren [3] [] unabhängig sind. und [3] [5] [] eine Basis von U Z/7Z, da sie offensichtlich linear Aufgabe 68. Sphere packings, Calvin and Hobbes. Wie Calvin schon erahnt, gibt es in Räumen höherer Dimension viel Raum... Dies führt auch zu scheinbaren Paradoxien: Es sei C d = {x,..., x d R d x i, i =,..., d} ein regelmäßiger d-dimensionaler Würfel mit Kantenlänge. Die d-dimensionale Kugel mit Mittelpunkt a R d und Radius r > ist die Menge Ba, r = {x R d x a r}, wobei y = y + y + + y d, y,..., y d R d. Der Würfel C d enthält die d Kugeln B±,..., ±,. Wir betrachten die Kugel, deren Mittelpunkt,..., ist, und die die d Kugeln berührt. In welcher Dimension d passt diese Kugel nicht mehr in den Würfel C d? Die innere Kugel B, r passt genau dann nicht mehr in den d-dimensionalen Würfel, wenn ihr Radius r die Zahl überschreitet. Ihr Radius r ist gleich Abstand des Ursprung zu einem der anderen d Kugelmittelpunkte minus, d.h. es ist r = ±,..., ±,..., = ± + + ± = d. Nun gilt genau für alle Zahlen d > die Ungleichung >. Somit tritt das in der Aufgabe beschriebene Phänomen in allen Dimensionen größer als 9 auf. Weird!

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen. 1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Aufgaben zu Kapitel 15

Aufgaben zu Kapitel 15 Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Verständnisfragen Aufgabe 5 Zeigen Sie, dass die Menge K m n aller m n-matrizen über einem Körper K mit komponentenweiser Addition und skalarer Multiplikation

Mehr

Einführung in die Mathematik für Informatiker

Einführung in die Mathematik für Informatiker Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 21.11.2016 6. Vorlesung aufgespannter Untervektorraum Span(T ), Linearkombinationen von Vektoren Lineare Unabhängigkeit

Mehr

Lineare Hülle. span(a) := λ i v i : so dass k N, λ i R und v i A.

Lineare Hülle. span(a) := λ i v i : so dass k N, λ i R und v i A. Lineare Hülle Def A sei eine nichtleere Teilmenge des Vektorraums (V,+, ) Die lineare Hülle von A (Bezeichung: span(a)) ist die Menge aller Linearkombinationen der Elemente aus A { k } span(a) := λ i v

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufgabe 45. Polynome sind stets stetig. Höhere Mathematik für Informatiker II (Sommersemester

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

Die Dimension eines Vektorraumes

Die Dimension eines Vektorraumes Die Dimension eines Vektorraumes Ist (b 1, b 2,..., b n ) eine Basis des Vektorraums V, so heißt n die Dimension von V. Die Möglichkeit dieser Definition beruht auf dem folgenden nichttrivialen Satz. Je

Mehr

Kapitel 2: Mathematische Grundlagen

Kapitel 2: Mathematische Grundlagen [ Computeranimation ] Kapitel 2: Mathematische Grundlagen Prof. Dr. Stefan M. Grünvogel stefan.gruenvogel@fh-koeln.de Institut für Medien- und Phototechnik Fachhochschule Köln 2. Mathematische Grundlagen

Mehr

4. Vektorräume und Gleichungssysteme

4. Vektorräume und Gleichungssysteme technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume

Mehr

11. BASIS, UNTERRAUM, und DIMENSION

11. BASIS, UNTERRAUM, und DIMENSION 11. BASIS, UNTERRAUM, und DIMENSION 1 Basen werden zu unterschiedlichen Zwecken benutzt: Um lineare Abbildungen in ihrer Matrixdarstellung zu vereinfachen, um die Dimension von Vektorräumen und ihren Unterräumen

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

Lösungen Serie 6 (Vektorräume, Skalarprodukt)

Lösungen Serie 6 (Vektorräume, Skalarprodukt) Name: Seite: 1 Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Serie 6 (Vektorräume, Skalarprodukt) Dozent: R. Burkhardt Büro: 4.613 Klasse: 1. Studienjahr Semester: 1 Datum: HS 28/9

Mehr

4. Übungsblatt zur Mathematik I für Maschinenbau

4. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen

Mehr

2.2 Kern und Bild; Basiswechsel

2.2 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare

Mehr

Affine Geometrie (Einfachere, konstruktive Version)

Affine Geometrie (Einfachere, konstruktive Version) Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit

Mehr

10 Kapitel I: Anschauliche Vektorrechnung

10 Kapitel I: Anschauliche Vektorrechnung 10 Kapitel I: Anschauliche Vektorrechnung haben. In Mengenschreibweise ist G = {x x = a + tb für ein t R}. Wir werden für diese einführenden Betrachtungen im Interesse einer knappen Redeweise jedoch häufig

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008 KLAUSUR ZUR LINEAREN ALGEBRA I. Februar 008 MUSTERLÖSUNG Diese Klausur wurde je nach Sitzreihe in zwei verschiedenen Versionen geschrieben. Die andere Version unterscheidet sich von der vorliegenden jedoch

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff

Lineare Algebra I. Auswahlaxiom befragen. (Wer schon im Internet danach sucht, sollte das auch mal mit dem Begriff Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 2 Prof. Dr. Markus Schweighofer 11.11.2009 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 2.1: Behauptung:

Mehr

Mathematik Analytische Geometrie

Mathematik Analytische Geometrie Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Vektoren in der Ebene Zwei Punkten P, Q in der Ebene

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 2003/2004) Aufgabenblatt 9

Mehr

Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen

Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen Vorschau: Lineare Abbildungen Wer Vektorräume studiert,

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 2014/2015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.2015, 11 Uhr Auf diesem

Mehr

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen) Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f (v) = u} (Andere Bezeichnung: f (V) wird in Analysis-Vorlesung

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Lineare Algebra Kapitel 9. Vektorräume Der Körper der reellen Zahlen Der Vektorraumbegriff, Beispiele Rechnen in Vektorräumen Linearkombinationen und Erzeugendensysteme Lineare Abhängigkeit und Unabhängigkeit

Mehr

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen

Mehr

1 Mengen und Abbildungen

1 Mengen und Abbildungen 1 MENGEN UND ABBILDUNGEN 1 1 Mengen und Abbildungen Wir starten mit einigen einführenden Definitionen und Ergebnissen aus der Theorie der Mengen und Abbildungen, die nicht nur Grundlage der Linearen Algebra

Mehr

1 0 1, V 3 = M, und λ A = λa

1 0 1, V 3 = M, und λ A = λa Aufgabe 57. Magische Quadrate Eine reelle 3 3-Matrix A = a 11 a 12 a 13 a 21 a 22 a 23 heißt magisches Quadrat, falls alle Zeilensummen, alle Spaltensummen und die beiden Diagonalsummen a 11 + a 22 + a

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Beziehungen zwischen Vektorräumen und ihren Dimensionen

Beziehungen zwischen Vektorräumen und ihren Dimensionen Beziehungen zwischen Vektorräumen und ihren Dimensionen Lineare Algebra I Kapitel 9 20. Juni 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK Projektive Geometrie (Sommersemester 2005) Lösungen zu Aufgabenblatt 4 (25. Mai 2005) Präsenzaufgaben

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger

Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

Lineare Algebra II, Lösungshinweise Blatt 9

Lineare Algebra II, Lösungshinweise Blatt 9 Prof Dr Katrin Wendland Priv Doz Dr Katrin Leschke Christoph Tinkl SS 27 Lineare Algebra II, Lösungshinweise Blatt 9 Aufgabe (4 Punkte) Sei 2 3 4 A = 5 6 Berechnen Sie A k für alle k N und verifizieren

Mehr

Lineare Abbildungen. i=0 c ix i n. K n K m

Lineare Abbildungen. i=0 c ix i n. K n K m Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

Affine und projektive Räume

Affine und projektive Räume Affine und projektive Räume W. Kühnel Literatur hierzu: G.Fischer, Analytische Geometrie, 7. Aufl., Vieweg 2001 Zur Motivation: Wenn man in einem Vektorraum die Elemente nicht als Vektoren, sondern als

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Explizite Formeln für rekursiv definierte Folgen

Explizite Formeln für rekursiv definierte Folgen Schweizer Mathematik-Olympiade Explizite Formeln für rekursiv definierte Folgen Aktualisiert: 6 Juni 014 In diesem Skript wird erklärt, wie man explizite Formeln für rekursiv definierte Folgen findet Als

Mehr

Basen von Schnitt und Summe berechnen

Basen von Schnitt und Summe berechnen Basen von Schnitt und Summe berechnen 1 / 8 Voraussetzung Es seien U 1, U 2 Untervektorräume von K n. Wir wollen Basen des Schnittes U 1 U 2 und der Summe bestimmen. U 1 + U 2 2 / 8 Bezeichnung Der Einfachheit

Mehr

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.

Mehr

Mathematischer Vorkurs Lösungen zum Übungsblatt 5

Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Mathematischer Vorkurs Lösungen zum Übungsblatt 5 Prof. Dr. Norbert Pietralla/Sommersemester 2012 c.v.meister@skmail.ikp.physik.tu-darmstadt.de Aufgabe 1: Berechnen Sie den Abstand d der Punkte P 1 und

Mehr

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Zeigen Sie mit vollständiger Induktion:

Mehr

Lineare Abbildungen und Gleichungssysteme

Lineare Abbildungen und Gleichungssysteme Lineare Abbildungen und Gleichungssysteme Klaus-R Loeffler Lineare Abbildungen Definition: Lineare Abbildung Es wird vorausgesetzt, dass V und W Vektorräume sind Eine Abbildung f von V in W heißt dann

Mehr

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya

Lineare Abhängigkeit und Unabhängigkeit. 1-E Ma 1 Lubov Vassilevskaya Lineare Abhängigkeit und Unabhängigkeit -E Ma Lubov Vassilevskaya Eindimensionaler Raum Abb. -: Zwei nicht gleiche Vektoren auf der gleichen Gerade Jeden Vektor, der auf einer Geraden liegt, kann man durch

Mehr

Definition Sei V ein Vektorraum, und seien v 1,..., v n V. Dann heißt eine Linearkombination. n λ i = 1. mit. v = v i λ i.

Definition Sei V ein Vektorraum, und seien v 1,..., v n V. Dann heißt eine Linearkombination. n λ i = 1. mit. v = v i λ i. Kapitel Geometrie Sei V ein Vektorraum, z.b. V = R 3. Wenn wir uns für geometrische Eigenschaften von R 3 interessieren, so stört manchmal die Ausnahmerolle des Nullvektors, die es ja in V gibt. Beispielsweise

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker II (Sommersemester 2004) Lösungen zu Aufgabenblatt

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Vorlesung. Funktionen/Abbildungen

Vorlesung. Funktionen/Abbildungen Vorlesung Funktionen/Abbildungen 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Variante A. Hinweise

Variante A. Hinweise Lehrstuhl C für Mathematik (Analsis Prof. Dr. Y. Guo Aachen, den 6..3 Klausur zur Höheren Mathematik I WS /3 Variante A Hinweise Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind handschriftliche

Mehr

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen Geometrische Objekte im -dimensionalen affinen Raum Bekanntlich versteht man unter geometrischen Objekten Punktmengen, auf die man die üblichen Mengenoperationen wie z.b.: Schnittmenge bilden: - aussagenlogisch:

Mehr

Kapitel 12. Lineare Abbildungen und Matrizen

Kapitel 12. Lineare Abbildungen und Matrizen Kapitel 12 Lineare Abbildungen und Matrizen Lineare Abbildungen f : R n R m Wir wissen schon: Eine lineare Abbildung f : R n R m ist eindeutig durch ein n-tupel von Vektoren v 1, v 2,, v n des R m bestimmt

Mehr

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME

Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Analysis II (FS 2015): ZUSAMMENHÄNGENDE METRISCHE RÄUME Dietmar A. Salamon ETH-Zürich 23. Februar 2015 1 Topologische Grundbegriffe Sei (X, d) ein metrischer Raum, d.h. X ist eine Menge und d : X X R ist

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

Lineare Abbildungen und Darstellungsmatrizen

Lineare Abbildungen und Darstellungsmatrizen KAPITEL 4 Lineare Abbildungen und Darstellungsmatrizen 1. Lineare Abbildungen Definition 4.1 (Lineare Abbildungen). Seien V und W zwei Vektorräume über den selben Körper K. Eine Abbildung f : V W heißt

Mehr

Anhang A. Etwas affine Geometrie. A.1 Die affine Hülle

Anhang A. Etwas affine Geometrie. A.1 Die affine Hülle Anhang A Etwas affine Geometrie In diesem Anhang stellen wir die wichtigsten Grundbegriffe aus der affinen Geometrie zusammen, soweit sie eben für uns von Nutzen sind. Für weiterführende Ergebnisse sei

Mehr

4. Übungsblatt Matrikelnr.: 6423043

4. Übungsblatt Matrikelnr.: 6423043 Lineare Algebra I 1. Name: Bleeck, Christian 4. Übungsblatt Matrikelnr.: 6423043 Abgabe: 15.11.06 12 Uhr (Kasten D1 320) Übungsgruppe: 03 Patrick Schützdeller 2. Name: Niemann, Philipp Matrikelnr.: 6388613

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.3 2009/05/25 15:03:47 hk Exp $ 7 Vektorräume und Körperweiterungen Wir sind gerade bei der Besprechung derjenigen Grundeigenschaften des Tensorprodukts, die mit vergleichsweise wenig

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R.

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R. Übung 6 1) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 + bx 2 + c mit a, b, c R und nennen diesen V. Die Vektoren f 1 (x) = 2x 4 + 2x 2 + 2 und f 2 (x) = 3x 4 + x 2 + 4 sind in diesem Vektorraum

Mehr

2. Der Grad von Körpererweiterungen

2. Der Grad von Körpererweiterungen 2. Der Grad von Körpererweiterungen 15 2. Der Grad von Körpererweiterungen Wenn wir untersuchen wollen, ob eine gegebene Konstruktion in der Ebene mit Zirkel und Lineal durchführbar ist, haben wir im vorigen

Mehr

1 Fraktale Eigenschaften der Koch-Kurve

1 Fraktale Eigenschaften der Koch-Kurve Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................

Mehr

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v Kap 1: VEKTORRÄUME Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung ϕ : I X, i ϕ(i) = x i, wobei die Menge I in diesem Zusammenhang auch Indexmenge genannt wird. Man schreibt vereinfacht

Mehr

x 3 Genau dann liegt ein Punkt X mit dem Ortsvektor x auf g, wenn es ein λ R gib,t so dass

x 3 Genau dann liegt ein Punkt X mit dem Ortsvektor x auf g, wenn es ein λ R gib,t so dass V. Geradengleichungen in Parameterform 5. Definition ---------------------------------------------------------------------------------------------------------------- x 3 v a x x x Definition und Satz :

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für den Pflichtteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Themen des Pflichtteils... Analysis Von der Gleichung

Mehr

Der Satz von DESARGUES und der Satz von PAPPOS

Der Satz von DESARGUES und der Satz von PAPPOS Der Satz von DESARGUES und der Satz von PAPPOS Kirstin Strokorb November 2005 Inhaltsverzeichnis 1 Einleitung 2 2 Der Satz von DESARGUES 2 2.1 Das Dualitätsprinzip........................ 3 3 Der Satz

Mehr

Quadratische Matrizen

Quadratische Matrizen Quadratische Matrizen (n n)-matrizen heißen quadratische Die entsprechenden linearen Abbildungen sind laut Definition Endomorphismen des R n (weil f A : R n R n ) Das Produkt von (n n)- Matrizen ist auch

Mehr

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................

Mehr

einführendes Beispiel: In der Skizze ist die durch die Punkte A(2, 4, 3) B(2, 6, 2) C(4, 4, 2) festgelegte Ebene ε dargestellt.

einführendes Beispiel: In der Skizze ist die durch die Punkte A(2, 4, 3) B(2, 6, 2) C(4, 4, 2) festgelegte Ebene ε dargestellt. 6 4. Darstellung der Ebene 4. Die Parametergleichung der Ebene einführendes Beispiel: In der Skizze ist die durch die Punkte A(2, 4, 3) B(2, 6, 2) C(4, 4, 2) festgelegte Ebene ε dargestellt. 0 2 r uuur

Mehr

Vektorgeometrie Layout: Tibor Stolz

Vektorgeometrie Layout: Tibor Stolz Hanspeter Horlacher Vektorgeometrie Layout: Tibor Stolz 1. Einführung Eine Grösse, zu deren Festlegung ausser einer Zahl auch noch die Angabe einer Richtung nötig ist, heisst VEKTOR. P 2 P 1 P 1 P 2 P

Mehr

5 Geraden im R Die Geradengleichung. Übungsmaterial 1

5 Geraden im R Die Geradengleichung. Übungsmaterial 1 Übungsmaterial 5 Geraden im R 5. Die Geradengleichung Eine Gerade ist eindeutig festgelegt durch zwei Punkte oder durch einen Punkt und eine Richtung. Beispiel: Die Gerade g durch die Punkte A(-//) und

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13

Mathematischer Vorkurs für Physiker WS 2012/13 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13 Übungsblatt 2 Wichtige Formeln aus der Vorlesung: Basisaufgaben Beispiel 1: 1 () grad () = 2 (). () () = ( 0 ) + grad ( 0 ) ( 0 )+

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme

II. Lineare Gleichungssysteme. 10 Matrizen und Vektoren. 52 II. Lineare Gleichungssysteme 52 II Lineare Gleichungssysteme II Lineare Gleichungssysteme 10 Matrizen und Vektoren 52 11 Der Gaußsche Algorithmus 58 12 Basen, Dimension und Rang 62 13 Reguläre Matrizen 66 14 Determinanten 69 15 Skalarprodukte

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 2013/14 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7

Mathematik für Wirtschaftswissenschaftler im WS 2013/14 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7 Mathematik für Wirtschaftswissenschaftler im WS 203/4 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7 Aufgabe 27 Sei eine lineare Abbildung f : R 4 R 3 gegeben durch f(x, x 2, x 3 ) = (2 x 3 x 2

Mehr