Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen"

Transkript

1 Linienland, Flächenland und der Hyperraum Ein Ausflug durch die Dimensionen Stephan Rosebrock Pädagogische Hochschule Karlsruhe 23. März 2013 Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

2 Gliederung 1 Linienland und Flächenland 2 Raumland 3 Hyperraum Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

3 Linienland Man stelle sich vor: Alle Wesen leben in einer Linie, nur zwei Nachbarn die man im Leben sieht, Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

4 Linienland Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

5 Flächenland In Flächenland leben alle Wesen auf einer Fläche sie können nicht hoch oder runter gucken es gibt nur rechts und links und hinten und vorne Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

6 Flächenenland Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

7 Linienland in Flächenland Wie können Flächenlandbewohner den Linienländlern ihr Land erklären? Wenn Linienland in Flächenland ist, tauchen sie durch. Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

8 Linienland in Flächenland Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

9 Raumland Wir sind in Raumland. Wir müssen Flächenländlern unseren Raum erklären. Das geht, wenn Flächenland in unserem Raumland liegt. Wir tauchen Gegenstände durch. Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

10 Flächenland in Raumland Wie erklären wir eine Kugel? Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

11 Flächenland in Raumland Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

12 Flächenland in Raumland Wie erklären wir eine Würfel? Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

13 Flächenland in Raumland Der Würfel taucht entlang eines Randquadrats in Flächenland ein. Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

14 Flächenland in Raumland Würfel entlang einer Kante in Flächenland. Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

15 Flächenland in Raumland Würfel entlang einer Ecke in Flächenland. Wie sieht es aus, wenn der Würfel weiter durchtaucht? Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

16 Flächenland in Raumland Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

17 Räume Bisher hatten wir Linienland (1-dimensional, vorne - hinten) Flächenland (2-dimensional, vorne - hinten, rechts - links) Raumland (3-dimensional, vorne - hinten, rechts - links, oben - unten) Und dann? Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

18 Hyperraum Hyperraum 4-dimensional vorne - hinten, rechts - links, oben - unten, ana - kata vier zueinander senkrechte Richtungen passt nicht in unseren Raum Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

19 Hyperraum Wie sieht ein 4-dimensionaler Würfel (ein Hyperwürfel) aus? Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

20 Definition Würfel Was ist ein Würfel? Die konvexe Hülle aller Ecken 0 und 1 auf den Koordinatenachsen. Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

21 Definition Würfel W 1 W 2 W 3 Die Eckenzahl verdoppelt sich immer. Die Eckenzahl ist 2 d bei einem d-dimensionalen Würfel. Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

22 Definition Würfel Wir könnten einen 3-dimensionalen Würfel auch so zeichnen: Im Bild ist ein kleiner 2-dimensionaler Würfel in einem Großen. Und ein 4-dimensionaler Hyperwürfel? tephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

23 Definition Würfel 4-dimensionaler Hyperwürfel W 4 mit 16 Ecken: An jeder Ecke gehen 4 Kanten aus. Alle senkrecht zueinander. Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

24 4-dimensionaler Würfel Wie viele 3-dimensionale Würfel gibt es im Rand des Hyperwürfels? Zwischen je 3 Kanten an einer Ecke ist ein Randwürfel. D.h. 4 Randwürfel an jeder Ecke (bei 16 Ecken). Jeder Würfel ist in 8 Ecken = 8 Randwürfel Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

25 Randwürfel des Hyperwürfels Die 8 Randwürfel: Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

26 Flächenland in Raumland Wie war das: Würfel durch Ebene (mit einem Randquadrat zuerst)? Eine Richtung zum Durchtauchen (rot), zwei Richtungen sieht man. Man sieht von jeder roten Durchtauchkante einen Punkt, der wird Ecke des Quadrats, welches man sieht. Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

27 Flächenland in Raumland Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

28 Flächenland in Raumland Das Quadrat entsteht beim Durchtauchen in Flächenland. Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

29 Tauche Hyperwürfel durch Raumland Tauche Hyperwürfel durch Raumland, zuerst mit Randwürfel. Wir sehen also zuerst einen normalen Würfel. 3 Richtungen sieht man, eine (rote) zum Durchtauchen. tephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

30 Tauche Hyperwürfel durch Raumland An jeder Ecke geht eine rote Kante in kata-richtung. Die wird von unserem Raum geschnitten und sieht wie eine Ecke aus. Bei 8 Ecken am Anfang sehen wir also immer 8 (rote) Ecken. Wir sehen immer einen ganz normalen Würfel. Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

31 Flächenland in Raumland Der Schnitt eines 4-dimensionalen Würfels mit unserem Raum beim Durchtauchen mit einem Randwürfel zuerst. Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

32 Tauche Hyperwürfel durch Raumland Tauche Hyperwürfel durch Raumland, mit einer Ecke zuerst. Wir sehen also zuerst eine Ecke. und kurz danach? Alle 4 Kanten, die von der Ecke weggehen, liegen mit jeweils einem Punkt in Raumland. 4 Punkte, mit dem selben Abstand zueinander. Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

33 Tauche Hyperwürfel durch Raumland Wir sehen einen Tetraeder. Der wird immer größer. tephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

34 Tauche Hyperwürfel durch Raumland Tauche Hyperwürfel durch Raumland, mit einer Kante zuerst. Wir sehen also zuerst eine Kante. und kurz danach? Jede Ecke wird durch Schnitte mit 3 Kanten ersetzt An jeder Ecke entsteht ein gleichseitiges Dreieck. tephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

35 Flächenland in Raumland Der Schnitt eines 4-dimensionalen Würfels mit unserem Raum beim Durchtauchen mit einer Randkante zuerst. Ein Prisma über einem gleichseitigen Dreieck Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

36 Flächenland in Raumland Mit der blauen Kante taucht man ein. Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

37 Tauche Hyperwürfel durch Raumland Tauche Hyperwürfel durch Raumland, mit einem Randquadrat zuerst. Wir sehen also zuerst eine Quadrat. und kurz danach? Jede Ecke wird durch Schnitte mit 2 Kanten ersetzt An jeder Ecke entsteht eine Kante und das Quadrat wird aufgedickt. Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

38 Flächenland in Raumland Der Schnitt eines 4-dimensionalen Würfels mit unserem Raum beim Durchtauchen mit einem Quadrat zuerst. Ein Quader. Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

39 Flächenland in Raumland Der Quader im 4-dimensionalen Würfel. Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

40 Hyperraum Vielen Dank für Ihre Aufmerksamkeit. Stephan Rosebrock (Pädagogische Hochschule Linienland, Karlsruhe) Flächenland und der Hyperraum 23. März / 40

Definition und Begriffe

Definition und Begriffe Merkblatt: Das Dreieck Definition und Begriffe Das Dreieck ist ein Vieleck. In der Ebene ist es die einfachste Figur, die von geraden Linien begrenzt wird. Ecken: Jedes Dreieck hat drei Ecken, die meist

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl

Mehr

Blattfaltungen oder: Wie eine Unterlage zur Vorlage wird

Blattfaltungen oder: Wie eine Unterlage zur Vorlage wird H. Schupp, Universität des Saarlandes Blattfaltungen oder: Wie eine Unterlage zur Vorlage wird 1 1 wohlbekannt: Seitenlängen und Seitenverhältnisse der DIN-An-Rechtecke a b = a = 2 b b a / 2 2 Normierung:

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

Falten regelmäßiger Vielecke

Falten regelmäßiger Vielecke Blatt 1 Gleichseitige Dreiecke Ausgehend von einem quadratischen Stück Papier kann man ohne weiteres Werkzeug viele interessante geometrische Figuren nur mit den Mitteln des Papierfaltens (Origami) erzeugen.

Mehr

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene

Mehr

Grundregeln der Perspektive und ihre elementargeometrische Herleitung

Grundregeln der Perspektive und ihre elementargeometrische Herleitung Vortrag zu Mathematik, Geometrie und Perspektive von Prof. Dr. Bodo Pareigis am 15.10.2007 im Vorlesungszyklus Naturwissenschaften und Mathematische Wissenschaften im Rahmen des Seniorenstudiums der LMU.

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Quader und Würfel. 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen. Mathematische Bildung von der Schulstufe

Quader und Würfel. 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen. Mathematische Bildung von der Schulstufe Geometrische Körper Diagnoseblatt 5. Schulstufe Quader und Würfel 1. Kreuze jene Wörter oder Bilder an, die Körper bezeichnen Kreis Schuhschachtel Eistüte Fahrkarte Kugel Seite 1 2. Kannst du Quader und

Mehr

Lektion 6: Prozeduren mit Parametern Übergabe von Werten

Lektion 6: Prozeduren mit Parametern Übergabe von Werten Lektion 6: Prozeduren mit Parametern Übergabe von Werten 29 Bearbeitet von Karoline Selbach In den vorherigen Abschnitten haben wir wichtige Befehle zur Turtlegeometrie kennen gelernt. Mit Hilfe dieser

Mehr

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft. 6 Flächen Wie heißen die Figuren? a) Dreiecke Viereck d) Quadrat b) Kreis Quadrate e) Dreiecke Rechteck c) Rechtecke Viereck f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. a) Nimm vier gleich

Mehr

Klimatisiertes Handschuhfach für A4 (B5) und Andere

Klimatisiertes Handschuhfach für A4 (B5) und Andere Klimatisiertes Handschuhfach für A4 (B5) und Andere Wie ihr sicherlich wisst bietet Audi das kühlbare Handschuhfach ja schon lange als Extra für einige Modelle an. Da ich dies unbedingt auch haben wollte

Mehr

Mit Excel Strickvorlagen erstellen (GRUNDKURS)

Mit Excel Strickvorlagen erstellen (GRUNDKURS) Mit Excel Strickvorlagen erstellen (GRUNDKURS) Themen: Einstellen der Spaltenbreite Einfärben von Flächen Umranden oder Unterteilen von Flächen Strickschriften erstellen Zellen formatieren So geht s: Einstellen

Mehr

3 Übungen zur Kräftigung

3 Übungen zur Kräftigung 3 Übungen zur Kräftigung Definition Kraftfähigkeit: Fähigkeit des Sportlers, Widerstände durch willkürliche Muskelkontraktion zu überwinden bzw. äußeren Kräften entgegenwirken zu können (Schnabel/Harre/Borde,

Mehr

2.5. VERBINDUNGSNETZWERKE GESTALTUNGSKRITERIEN DER NETZWERKE TOPOLOGIE ALS GRAPH. Vorlesung 5 TOPOLOGIE: DEFINITIONEN : Sei G = (V, E) ein Graph mit:

2.5. VERBINDUNGSNETZWERKE GESTALTUNGSKRITERIEN DER NETZWERKE TOPOLOGIE ALS GRAPH. Vorlesung 5 TOPOLOGIE: DEFINITIONEN : Sei G = (V, E) ein Graph mit: Vorlesung 5.5. VERBINDUNGSNETZWERKE Kommunikation zwischen den einzelnen Komponenten eines arallelrechners wird i.d.r. über ein Netzwerk organisiert. Dabei unterscheidet man zwei Klassen der Rechner: TOOLOGIE:

Mehr

Paper Computer Science Experiment. Computation (NP-Vollständigkeit) Steinerbäume

Paper Computer Science Experiment. Computation (NP-Vollständigkeit) Steinerbäume Paper Computer Science Experiment Great Principles of Computing Computation (NP-Vollständigkeit) Thema Steinerbäume Unterrichtsform Entdeckendes Lernen, Einzelarbeit, Lernen am Modell Voraussetzung Bäume

Mehr

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1

Das Mathematikabitur. Abiturvorbereitung Geometrie. Autor: Claus Deser Abiturvorbereitung Mathematik 1 Das Mathematikabitur Abiturvorbereitung Geometrie Autor: Claus Deser Abiturvorbereitung Mathematik 1 Gliederung Was sind Vektoren/ ein Vektorraum? Wie misst man Abstände und Winkel? Welche geometrischen

Mehr

3.2 Spiegelungen an zwei Spiegeln

3.2 Spiegelungen an zwei Spiegeln 3 Die Theorie des Spiegelbuches 45 sehen, wenn die Person uns direkt gegenüber steht. Denn dann hat sie eine Drehung um die senkrechte Achse gemacht und dabei links und rechts vertauscht. 3.2 Spiegelungen

Mehr

Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen Studie

Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen Studie Didaktisches Kolloquium Mathematik Institut für Didaktik der Mathematik und Elementarmathematik der TU Braunschweig 13. 12. 2011 Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen

Mehr

Steinmikado I. Steinmikado II. Steinzielwerfen. Steinwerfen in Dosen

Steinmikado I. Steinmikado II. Steinzielwerfen. Steinwerfen in Dosen Steinmikado I Steinmikado II : ab 4 : ab 4 : 20 Steine : 20 Steine Spielregel : M 10-01 In der Mitte des Raumes schichten wir einen Steinberg auf. Die Aufgabe besteht darin, vom Fuße des Berges jeweils

Mehr

1. Theorie: Kondensator:

1. Theorie: Kondensator: 1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und

Mehr

A B. Geometrische Grundbegriffe zuordnen. Geometrische Grundbegriffe zuordnen.

A B. Geometrische Grundbegriffe zuordnen.  Geometrische Grundbegriffe zuordnen. Hinweis: Dieses Geometrieheft wurde im Zuge einer ergänzenden Lernbegleitung für die Jahrgangsstufe 4 erstellt und erhebt keinen Anspruch auf Vollständigkeit, bzw. wird fortlaufend weiterentwickelt Das

Mehr

Grundlagen von Corel Draw

Grundlagen von Corel Draw Grundlagen von Corel Draw Allgemeines Corel Draw ist ein so genanntes Vektorgrafik-Programm. Der Vorteil von Vektorgrafiken besteht darin, dass die Qualität auch beim Vergrößern im Gegensatz zu Bitmap-Bildern

Mehr

1. Eine gleiche Anzahl von Legosteine wird in jeweils einer Reihe angeordnet:

1. Eine gleiche Anzahl von Legosteine wird in jeweils einer Reihe angeordnet: Versuch 1: Materialliste: - Legosteine - (Tüte Gummibärchen) Ablauf: 1. Eine gleiche Anzahl von Legosteine wird in jeweils einer Reihe angeordnet: -- -- -- -- -- -- -- -- -- -- -- -- -- -- Das Kind wird

Mehr

Sylvia Zierz. Schneidermeisterin und Dessousfachfrau. Rosengartenstr. 3 64665 Alsbach Tel. 06257/61276 www.mode-studio.com

Sylvia Zierz. Schneidermeisterin und Dessousfachfrau. Rosengartenstr. 3 64665 Alsbach Tel. 06257/61276 www.mode-studio.com Sylvia Zierz Schneidermeisterin und Dessousfachfrau Rosengartenstr. 3 64665 Alsbach Tel. 06257/61276 www.mode-studio.com Dessouskurse und mehr Dessouskurse und mehr Dessouskurse und mehr Dessouskurse Anfertigung

Mehr

Basteln und Zeichnen

Basteln und Zeichnen Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle

Mehr

Dynamische Mathematik mit GeoGebra 30. März 1. April 2009

Dynamische Mathematik mit GeoGebra 30. März 1. April 2009 Dynamische Mathematik mit GeoGebra 30. März 1. April 2009 Angebote für Fortgeschrittene Thema 1 Gegeben ist ein beliebiges Dreieck. Über die Seiten des Dreiecks werden Quadrate errichtet. In zwei Ecken

Mehr

Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR)

Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR) Abituraufgabe zur analytischen Geometrie, Hessen 2013, B2, Grundkurs (TR) 1 Bei Ausgrabungen wurden die Überreste einer 4500 Jahre alten Pyramide entdeckt. Die Abbildung zeigt die Ansicht der Pyramidenruine

Mehr

Frag die Maus. Sascha Kurz sascha.kurz@uni-bayreuth.de. Diskrete Geometrie 09.05.2006. Universität Bayreuth. Frag die Maus. Sascha Kurz.

Frag die Maus. Sascha Kurz sascha.kurz@uni-bayreuth.de. Diskrete Geometrie 09.05.2006. Universität Bayreuth. Frag die Maus. Sascha Kurz. sascha.kurz@uni-bayreuth.de Universität Bayreuth Diskrete Geometrie 09.05.2006 Gliederung 1 2 Frag doch mal die Maus Frag doch mal die Maus Für alle, die die große Samstagabend-Show im Ersten verpasst

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion

Darstellende Geometrie Übungen. Tutorial. Übungsblatt: Perspektive - Rekonstruktion Darstellende Geometrie Übungen Institut für Architektur und Medien Tutorial Übungsblatt: Perspektive - Rekonstruktion Gegeben sind ein Foto von einem quaderförmigen Objekt sowie die Abmessungen des Basisrechteckes.

Mehr

Übungsaufgaben Klasse 7

Übungsaufgaben Klasse 7 Übungsaufgaben Klasse 7 2. Oktober 2006 Dreieckskonstruktion Versuche erst, alle Aufgaben zu lösen. Die Lösungen findest du ab Montag auf: http://www.hagener-berg.de/serdar/ unter dem Punkt Schulinfos.

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

Vom goldenen Schnitt zum Alexanderplatz in Berlin

Vom goldenen Schnitt zum Alexanderplatz in Berlin Vom goldenen Schnitt zum Alexanderplatz in Berlin Mathematik von 1200 bis 2004 Stefan Kühling, Fachbereich Mathematik skuehling @ fsmath.mathematik.uni-dortmund.de Schnupper Uni 26. August 2004 1 1 Goldener

Mehr

Triangulierungen von Punktmengen und Polyedern

Triangulierungen von Punktmengen und Polyedern Triangulierungen von Punktmengen und Polyedern Vorlesung im Sommersemester 2000 Technische Universität Berlin Jörg Rambau 21.06.2000 Flipdefizit 10 In diesem Kapitel starten wir die Untersuchung von Triangulierungen,

Mehr

DOWNLOAD VORSCHAU. Bilderrahmen und Bilderhalter. zur Vollversion. Alltagsgegenstände fantasievoll gestalten. Gerlinde Blahak

DOWNLOAD VORSCHAU. Bilderrahmen und Bilderhalter. zur Vollversion. Alltagsgegenstände fantasievoll gestalten. Gerlinde Blahak DOWNLOAD Gerlinde Blahak Bilderrahmen und Bilderhalter Alltagsgegenstände fantasievoll gestalten auszug aus dem Originaltitel: Lehrerhinweise zu den einzelnen Projekten Haltevorrichtung für Bilder Zeitaufwand:

Mehr

Verfasser: M. Krokowski, R. Dietrich Einzelteilzeichnung CATIA-Praktikum. Ableitung einer. Einzelteilzeichnung. mit CATIA P2 V5 R11

Verfasser: M. Krokowski, R. Dietrich Einzelteilzeichnung CATIA-Praktikum. Ableitung einer. Einzelteilzeichnung. mit CATIA P2 V5 R11 Ableitung einer Einzelteilzeichnung mit CATIA P2 V5 R11 Inhaltsverzeichnis 1. Einrichten der Zeichnung...1 2. Erstellen der Ansichten...3 3. Bemaßung der Zeichnung...6 3.1 Durchmesserbemaßung...6 3.2 Radienbemaßung...8

Mehr

Übersicht. Wo lebt die Schildkröte? Wie programmiert man die Schildkröte? Wo lebt die Schildkröte? Wie programmiert man die Schildkröte?

Übersicht. Wo lebt die Schildkröte? Wie programmiert man die Schildkröte? Wo lebt die Schildkröte? Wie programmiert man die Schildkröte? Übersicht Wo lebt die Schildkröte? Wie programmiert man die Schildkröte? Schildkröten-Befehle Aufgaben Wo lebt die Schildkröte? Auf dem Bildschirm! Beispiel: Wie programmiert man die Schildkröte? Mit Schildkröten-Befehlen,

Mehr

Vermessung und Verständnis von FFT Bildern

Vermessung und Verständnis von FFT Bildern Vermessung und Verständnis von FFT Bildern Viele Auswertungen basieren auf der "Fast Fourier Transformation" FFT um die (ungewünschten) Regelmäßigkeiten im Schliffbild darzustellen. Die Fourier-Transformation

Mehr

1 Grundwissen Pyramide

1 Grundwissen Pyramide 1 Grundwissen Pyramide 1 Definition und Volumen der Pyramide Eine Pyramide ist ein geradlinig begrenzter Körper im R 3. Dabei wird ein Punkt S außerhalb der Ebene eines Polygons (Vieleck) mit den Ecken

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Oberflächenspannung. Von Centstücken, Wasserläufern und Büroklammern. Oberflächenspannung

Oberflächenspannung. Von Centstücken, Wasserläufern und Büroklammern. Oberflächenspannung Oberflächenspannung Von Centstücken, Wasserläufern und Büroklammern Bezug zum Bildungsplan 2004 der Realschule: Ein wichtiges Ziel des Bildungsplans 2004 bezüglich des Faches NWA ist es, die Schüler und

Mehr

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat)

Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Flächeninhalt Rechteck u. Quadrat Mathe-Wissen 5-7. Klasse (eine Auswahl) Thema Erklärung Beispiel A = a b (Rechteck) A = a a (Quadrat) Wie lang ist die Seite b des Rechtecks? 72cm 2 b Flächeninhalt Dreieck

Mehr

Costa Rica Sixaola. Panama. Land Einreise: Land Ausreise

Costa Rica Sixaola. Panama. Land Einreise: Land Ausreise Land Ausreise Costa Rica Sixaola Land Einreise: Stand: Dezember 2014 To Do Achtung: Beachte die Zeitverschiebung von 1 Stunde nach vorne zwischen Costa Rica und Panama. Schwierigkeitsgrad: Mittel Dauer:

Mehr

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1

Vergleichsarbeiten in 3. Grundschulklassen. Mathematik. Aufgabenheft 1 Vergleichsarbeiten in 3. Grundschulklassen Mathematik Aufgabenheft 1 Name: Klasse: Herausgeber: Projekt VERA (Vergleichsarbeiten in 3. Grundschulklassen) Universität Koblenz-Landau Campus Landau Fortstraße

Mehr

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung

Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Kanton St.Gallen Bildungsdepartement St.Gallische Kantonsschulen Gymnasium Aufnahmeprüfung 013 Mathematik 1: (ohne Taschenrechner) Korrekturanleitung Löse die Aufgaben auf diesen Blättern. Der Lösungsweg

Mehr

11: Die Euler sche Polyederformel für planare Graphen

11: Die Euler sche Polyederformel für planare Graphen Chr.Nelius: Graphentheorie (WS 2016/17) 38 11: Die Euler sche Polyederformel für planare Graphen (11.1) BEM: a) Ein Polyeder (auch Vielflach oder Vielflächner) ist ein geometrischer Körper, der nur von

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Mathematik be-greifen

Mathematik be-greifen Vanessa Krummeck, Jürgen Richter-Gebert Mathematik be-greifen Mathematische Erfahrungen mit Alltagsmaterialien: Spiegel, Pfeifenreiniger und Papier Kinder im Vor- und Grundschulalter haben meist noch ein

Mehr

Ergänzungen zum Fundamentum

Ergänzungen zum Fundamentum Matura 2014 - Mathematik - Gymnasium Immensee 2 Ergänzungen zum Fundamentum Abstand eines Punktes zu einer Geraden d = AP v v Substitution ohne Grenzen Mit u = g(x) gilt: f(g(x))dx = 1 u f(u)du Matura

Mehr

Analyse der bestehenden Situation

Analyse der bestehenden Situation Nutzungen Verkehr/Erschließung Viel Verkehr Wohnen Wenig Verekhr Mischnutzung Dienstleistung Einzelhandel Schwarzplan Gebäude in einem guten Zustand Bestehende Gebäude Erhaltenswerte Gebäude 5. Die Blockstruktur

Mehr

1 Elektrische Feldlinienbilder

1 Elektrische Feldlinienbilder 1 Elektrische Feldlinienbilder Feldlinien in der Umgebung eines elektrischen Monopols(Punktladung) Feldlinien eines elektrischen Dipols aus zwei ungleichnamigen, gleichstarken Punktladungen Feldlinien

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag

Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag Symmetrische Figuren 1 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. Symmetrie 1 2 1 Zeichne die Spiegelachsen ein. Symmetrie 2 3 1 Zeichne die Spiegelachsen

Mehr

PHYSIK Kräfte. Kräfte Überlagerungen Zerlegungen. Datei Nr. 91011. Friedrich W. Buckel. Juli 2002. Internatsgymnasium Schloß Torgelow

PHYSIK Kräfte. Kräfte Überlagerungen Zerlegungen. Datei Nr. 91011. Friedrich W. Buckel. Juli 2002. Internatsgymnasium Schloß Torgelow PHYSIK Kräfte Kräfte Überlagerungen Zerlegungen Datei Nr. 90 riedrich W. Buckel Juli 00 Internatsgymnasium Schloß Torgelow Inhalt Kräfte sind Vektoren. Überlagerung zweier gleich großer Kräfte. Zerlegung

Mehr

Das Falten-und-Schneiden Problem

Das Falten-und-Schneiden Problem Das Falten-und-Schneiden Problem Kristian Bredies Uttendorf, 14. Februar 2005 Inhalt Einleitung Origami Das Falten-und-Schneiden Problem Mathematische Analyse Flaches Origami Lokale Eigenschaften Faltbarkeit

Mehr

Lichtbrechung an Linsen

Lichtbrechung an Linsen Sammellinsen Lichtbrechung an Linsen Fällt ein paralleles Lichtbündel auf eine Sammellinse, so werden die Lichtstrahlen so gebrochen, dass sie durch einen Brennpunkt der Linse verlaufen. Der Abstand zwischen

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

Selbstorganisation ist die höchste Stufe der Professionalität des Lernens

Selbstorganisation ist die höchste Stufe der Professionalität des Lernens Selbstorganisation ist die höchste Stufe der Professionalität des Lernens Selbstorganisation ist die höchste Stufe der Professionalität des Lernens und nicht die Naivität in Reinkultur Selbstorganisation

Mehr

Wirtschaftsrechnen. Leseprobe

Wirtschaftsrechnen. Leseprobe Wirtschaftsrechnen Kapitel 1 Darstellung von Größen 1.1 Größen im Koordinatensystem 1.2 Diagramme und Ihre Verwendung 1.2.1 Säulendiagramm 1.2.2 Balkendiagramm 1.2.3 Punktdiagramm (Streudiagramm) 1.2.4

Mehr

Abitur 2013 Mathematik Geometrie V

Abitur 2013 Mathematik Geometrie V Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die

Mehr

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen.

m2l 60.odt Klausur 12/I B 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 2. Klausur 12/I B Thema: Lagebeziehung Gerade, Ebene 1. Gegeben seien zwei Geraden. Wie gehen Sie vor, um über deren Lagebeziehung eine Aussage zu treffen. 5 6 s 3 0 11 10, g BC : x = 3 u 5 1 2. Gegeben

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Die Größe von Flächen vergleichen

Die Größe von Flächen vergleichen Vertiefen 1 Die Größe von Flächen vergleichen zu Aufgabe 1 Schulbuch, Seite 182 1 Wer hat am meisten Platz? Ordne die Figuren nach ihrem Flächeninhalt. Begründe deine Reihenfolge. 1 2 3 4 zu Aufgabe 2

Mehr

Simulation von Zinsentwicklungen und Bewertung von gängigen Finanzprodukten

Simulation von Zinsentwicklungen und Bewertung von gängigen Finanzprodukten Simulation von Zinsentwicklungen und Bewertung von gängigen Finanzprodukten Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 1. Februar 2010 1 / 7 Gliederung 1 Was ist Finanzmathematik

Mehr

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten:

Basistext Geometrie Grundschule. Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Basistext Geometrie Grundschule Geometrische Figuren Strecke Eine Strecke bezeichnet man einer direkte Verbindung zwischen zwei Punkten: Gerade Eine Gerade ist eine Strecke ohne Endpunkte. Die Gerade geht

Mehr

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23 MB 10 Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 ab Seite MB 15 Checkliste Seite MB 23 Wissensspeicher Körper und Flächen MB 11 Wissensspeicher Fachwörter zu Körpern

Mehr

Fröbelstern Fotofaltkurs Schritt für Schritt aus der Zeitschrift LC 431, Seite 64/65

Fröbelstern Fotofaltkurs Schritt für Schritt aus der Zeitschrift LC 431, Seite 64/65 OZ-Verlags-GmbH Papierstreifen. Die Enden des vierten gefalteten Papierstreifens weiter durch den zweiten gefalteten Streifen oben ziehen. 1 Die vier Papierstreifen jeweils waagerecht in der Mitte falten.

Mehr

Bilderzeugung Pixel. Daniela Glatz Jasmin Rießle. Sommersemester 2012

Bilderzeugung Pixel. Daniela Glatz Jasmin Rießle. Sommersemester 2012 Bilderzeugung Pixel Daniela Glatz Jasmin Rießle Sommersemester 2012 Bilderzeugung Pixel Inhaltsverzeichnis Definition: Was ist ein Pixel? Aufbau eines digitalen Pixels Auflösung Interpolation Farbe Pixelanimation

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Tag der Mathematik 2012

Tag der Mathematik 2012 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en und Bepunktung Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

Falte den letzten Schritt wieder auseinander. Knick die linke Seite auseinander, sodass eine Öffnung entsteht.

Falte den letzten Schritt wieder auseinander. Knick die linke Seite auseinander, sodass eine Öffnung entsteht. MATERIAL 2 Blatt farbiges Papier (ideal Silber oder Weiß) Schere Lineal Stift Kleber Für das Einhorn benötigst du etwa 16 Minuten. SCHRITT 1, TEIL 1 Nimm ein einfarbiges, quadratisches Stück Papier. Bei

Mehr

Festes Wasser. Wasserschule Unterfranken. Wasser-Experimente. Januar Dezember. Materialien

Festes Wasser. Wasserschule Unterfranken. Wasser-Experimente. Januar Dezember. Materialien 1 Festes Wasser 2h ein Marmeladenglas mit Schraubdeckel Eine Gefriertruhe 1. Fülle das Glas randvoll mit Wasser. 2. Lege den Deckel lose auf die Öffnung, ohne ihn zuzuschrauben. 3. Stelle alles in die

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: School-Scout.de Thema:

Mehr

Seite 8 Benennen von Prismen

Seite 8 Benennen von Prismen Lösungen eometrie-ossier Körper und ihr Aufbau 1 Seite 8 Benennen von Prismen Quader oder Würfel weder noch Prisma Quader oder Würfel weder noch Prisma Quader oder Würfel weder noch Prisma Quader oder

Mehr

Flächeninhalt, Volumen und Integral

Flächeninhalt, Volumen und Integral Flächeninhalt, Volumen und Integral Prof. Herbert Koch Mathematisches Institut - Universität Bonn Schülerwoche 211 Hausdorff Center for Mathematics Donnerstag, der 8. September 211 Inhaltsverzeichnis 1

Mehr

BUCH IV: RAUM MIT. 1. Einführung VIERTE DIMENSION

BUCH IV: RAUM MIT. 1. Einführung VIERTE DIMENSION BUCH IV: RAUM MIT n-dimensionen 1. Einführung VIERTE DIMENSION Wir verlassen nun die uns vertrauten Sphären und begeben und in die Welt der vier Dimensionen! 1 1 Sind Sie bereit für die viere Dimension?

Mehr

Aufgaben für den Mathematikunterricht. Inhaltsbereich 1: Raum und Form. 1.2 elementare geometrische Figuren kennen und herstellen

Aufgaben für den Mathematikunterricht. Inhaltsbereich 1: Raum und Form. 1.2 elementare geometrische Figuren kennen und herstellen Nr. 1 Geometrische Körper und ihre Eigenschaften Fülle die Tabelle aus. Würfel Quader Pyramide Zylinder Kegel Kugel Ecken Kanten Flächen Nr. 1 Geometrische Körper und ihre Eigenschaften Fülle die Tabelle

Mehr

Schritte. Schritte 3/2. im Beruf. Gespräche führen: Einen Arbeitsauftrag bekommen und darauf reagieren

Schritte. Schritte 3/2. im Beruf. Gespräche führen: Einen Arbeitsauftrag bekommen und darauf reagieren 1 Sehen Sie die Bilder an und ordnen Sie die Wörter zu. Breze Brot Brötchen Butter Eier Gabeln Honig Joghurt Kaffee Käse Kuchen Löffel Marmelade Milch Messer Obst Quark Schüsseln Servietten Tee Teller

Mehr

Schnittmuster & Nähanleitung Kleine Clipbörse

Schnittmuster & Nähanleitung Kleine Clipbörse Seite 1 Inhaltsverzeichnis Einleitung Seite 3 Nähanleitung im Blog Seite 3 Allgemeine Informationen zum Schnittmuster & Nähvorgang Seite 3 Materialliste Seite 4 Schritt 1: Stoff und Vlies zuschneiden Seite

Mehr

Kap. 8: Speziell gewählte Kurven

Kap. 8: Speziell gewählte Kurven Stefan Lucks 8: Spezielle Kurven 82 Verschl. mit Elliptischen Kurven Kap. 8: Speziell gewählte Kurven Zur Erinnerung: Für beliebige El. Kurven kann man den Algorithmus von Schoof benutzen, um die Anzahl

Mehr

Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung

Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung Anwengungen geometrischer Abbildungen Kongruenz- und Ähnlichkeitsabbildung Amina Duganhodzic Proseminar: Mathematisches Problemlösen Unter der Leitung von Privat Dozentin Dr. Natalia Grinberg 26. Juni

Mehr

Pangea Ablaufvorschrift

Pangea Ablaufvorschrift Pangea Mathematik-Wettbewerb 2011 Klassenstufe 9 Pangea Ablaufvorschrift Antwortbogen Überprüfung der Anmeldedaten Kennzeichnung (Beispiel) beachten! Prüfung Zur Beantwortung der 25 Fragen hast du 60 Minuten

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Geometrie-Dossier Würfel und Quader

Geometrie-Dossier Würfel und Quader Geometrie-Dossier Würfel und Quader Name: Inhalt: Der Würfel (Definition, Eigenschaften, Netz, Raumbild) Der Quader (Definition, Eigenschaften, Netz, Raumbild) Berechnungen in Würfel und Quader (Oberfläche,

Mehr

Ein Prisma ist ein geometrischer Körper mit einer Grundfläche und einer Deckfläche.

Ein Prisma ist ein geometrischer Körper mit einer Grundfläche und einer Deckfläche. 1 Das Prisma Ein Prisma ist ein geometrischer Körper mit einer Grundfläche und einer Deckfläche. Grund- und Deckfläche sind deckungsgleich und zueinander parallele Vielecke. Die Höhe des Prismas ist der

Mehr

Wie Sie mit Mastern arbeiten

Wie Sie mit Mastern arbeiten Wie Sie mit Mastern arbeiten Was ist ein Master? Einer der großen Vorteile von EDV besteht darin, dass Ihnen der Rechner Arbeit abnimmt. Diesen Vorteil sollten sie nutzen, wo immer es geht. In PowerPoint

Mehr

EINFACHES HAUSHALT- KASSABUCH

EINFACHES HAUSHALT- KASSABUCH EINFACHES HAUSHALT- KASSABUCH Arbeiten mit Excel Wir erstellen ein einfaches Kassabuch zur Führung einer Haushalts- oder Portokasse Roland Liebing, im November 2012 Eine einfache Haushalt-Buchhaltung (Kassabuch)

Mehr

Formelsammlung zur Kreisgleichung

Formelsammlung zur Kreisgleichung zur Kreisgleichung Julia Wolters 6. Oktober 2008 Inhaltsverzeichnis 1 Allgemeine Kreisgleichung 2 1.1 Berechnung des Mittelpunktes und Radius am Beispiel..... 3 2 Kreis und Gerade 4 2.1 Sekanten, Tangenten,

Mehr

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $

Mathematische Probleme, SS 2016 Freitag $Id: convex.tex,v /05/13 14:42:55 hk Exp $ $Id: convex.tex,v.28 206/05/3 4:42:55 hk Exp $ 3 Konvexgeometrie 3. Konvexe Polyeder In der letzten Sitzung haben wir begonnen uns mit konvexen Polyedern zu befassen, diese sind die Verallgemeinerung der

Mehr

Verpackungen mathematische Körper beschreiben, herstellen, zeichnen

Verpackungen mathematische Körper beschreiben, herstellen, zeichnen 31 Verpackungen mathematische Körper beschreiben, herstellen, zeichnen In diesem Kapitel untersuchst du, wozu es so viele Formen von Verpackungen gibt lernst du, wie man diese Formen gut beschreiben und

Mehr