Fortleitung des Aktionspotentials

Größe: px
Ab Seite anzeigen:

Download "Fortleitung des Aktionspotentials"

Transkript

1 Fortleitung des Aktionspotentials

2 außen innen g K Ströme während des Aktionspotentials Ruhestrom: gleich starker Ein- und Ausstrom von K+ g Na Depolarisation: Na+ Ein- Strom g K Repolarisation: verzögerter K+ Ausstrom g K Hyperpolarisation: anhaltend stärkere K+ Leitfähigkeit

3 Fortleitung von Aktionspotenzialen Aktionspotenziale werden "aktiv" fortgeleitet - schnell - ohne Abschwächung - ohne "Informationsverlust" - in eine Richtung Die Geschwindigkeit der Erregungsleitung hängt vom Durchmesser des Axons und der Myelinisierung ab.

4 m/ses Säugetier myelinisiert log Leitgeschwindigkeit Amphibien myelinisiert Riesenfasern Invertebraten Polychaeten Krebs log Durchmesser Axon (µm)

5 Die Richtung ist eindeutig: Refraktärzeit

6 Die passiven Eigenschaften von Neuronen Elektrisches Ersatzschaltbild der Zellmembran: Stromquelle (Aktionspotential) innen außen elektrotonischer Potenzialabfall hoher R m Spannung Strom niedriger R m Zeitabhängigkeit der Membranspannung

7 Fortleitung von Aktionpotenzialen: *Strömchenthoerie der Fortleitung: Jedes AP schiebt eine Art von unterschwelliger Erregungswelle vor sich her, die räumlich entfernte Axonbezirke depolarisiert. Diese Depolarisation nimmt mit der Entfernung exponentiell ab. * Passive, elektrotonische Eigenschaften Dies liegt an den passiven oder elektrotonischen Eigenschaften der Membran: Dies bedeutet, dass eine Erregung an einer Stelle im Axon sich bereits auf andere weiter entfernte Bezirke auswirkt: Vorteil: Die elektrotonische Ausbreitung geschieht sehr schnell Nachteil: Die Ausbreitung geschieht mit Verlust an Amplitude (je weiter entfernt vom Ort der ursprünglichen Erregung, desto kleiner die Amplitude!) In den allermeisten Dendriten und Somata breitet sich die Erregung zum Axonhügel Passiv aus, also mit Dekrement. Erst am Axonhügel entstehen Aktionpotenziale, Die dann von dort wegen den Refraktäreigenschaften der Membran (absolute und relative Refraktärperiode) nur in eine Richtung fortgeleitet werden. Bei Wirbeltieren: Saltatorische Erregungsleitung: Aktionspotenziale entstehen nur im Ranvier schen Schnürring, in den dazwischenliegenden Abschnitten der Myelinhülle geschieht die Fortleitung passiv (d.h. sehr schnell!).

8 Axon eines Neurons außerhalb des zentralen Nervensystems Saltatorische Erregungsleitung Ranvierscher Schnürring Umgeben von Membranen der Schwann schen Zelle (Myelinscheide)

9 Synapsen Kontaktstellen zwischen Neuronen, oder zwischen Neuronen und Muskel (neuromuskuläre Synapse) Der Begriff geht auf Sir Charles Scott Sherrington ( ) zurück, der Professor der Physiologie in Oxford war. Entsprechend der Art ihrer Übertragung unterscheidet man elektrische oder chemische Synapsen. Eine Synapse besteht aus einem präsynaptischen Teil (Präsynapse, bei der neuromuskulären Synapse das Axonteminal) und einem postsynaptischen Teil (Postsynapse, bei der neuromuskulären Synapse der Muskel).

10 gap junctions = elektrische Synapse Elektronenmikroskopische Aufnahmen - Durchsicht Aufsicht-

11 Die Moleküle der elektrischen Synapse Connexone, Connexine Stromfluss

12 Elektrische Synapsen * Sehr enger Spalt (3,5 nm), gap junctions, * Bei Wirbeltieren: Connexine bilden Poren (Durchmesser 2 nm) zwischen prä- und postsynaptischer Zelle, leiten elektrisch in beiden Richtungen ohne zeitliche Verzögerung, * Austausch von niedermolekularem Material möglich (Ionen, bestimmte Farbstoffe) Kommen bei Neuronen für sehr schnelle Erregungsleitung vor, z.b. zur Steuerung von Fluchtreflexen, aber auch während der Entwicklung des Nervensystems (zwischen Neuroblasten). Sind auch sehr zahlreich im zentralen Nervensystem. Welche Rolle sie hier spielen ist noch wenig klar.

13 Chemische Synapsen Synapse

14 Chemische Synapse Axon Präsynaptische Endigung

15 Chemische Synapse: präsynaptischer Bereich Lebenszyklus von Vesikeln

16 Interaktionen von vesikulären Membranproteinen und Proteinen der präsynaptischen Zellmembran beim Prozess der Exozytose Aus: From Neuron to Brain, 4th edition, Nicholls,Martin, Wallace, Fuchs, Sinauer Associates, Sunderland, Mass., USA

17 Die SNARE Proteine und ihre Gifte Syntaxin SNAP-25 Synaptobrevin und eine ganze Reihe weiterer Proteine Botulinum Toxine: Gifte des Bakteriums Clostridium botulinum (Fleischvergiftung, Tod durch Lähmung der Atmungsmuskulatur) Tetanus Toxin: Gift der Tetanus Bakterien

18 Neurotransmitter Acetylcholin (neuromuskuläre Synapsde der Wirbeltiere, autonomes Nervensystem Biogene Amine Noradrenalin, Adrenalin (Catecholamine), Serotonin (5-Hydroxytryptamin, 5-HT), wichtige Transmitter im Gehirn Aminosäuren (Gamma) g-aminobuttersäure (GABA), Glycin, Glutamat (neuromuskuläre Synapse der Wirbellosen Tiere, und wichtiger Transmitter im Gehirn) Peptide FMRF-amid, Opioide: Opiocortine, Enkephaline, Dynorphin (endogene, körpereigene Opiate) Peptide der Neurohypophyse: Vasopressin, Oxytocin, Neurophysine Tachykinine: Substanz P, Insuline: Insulin, insulinähnliche Wachstumsfaktoren I und II Somatostatine: Somatostatin, Polypeptide der Bauchspeicheldrüse Gastrine: Gastrin, Cholecystokinin und viele mehr Gasförmige Transmitter Stickoxid (NO) Kohlenmomoxid (CO)

19 Chemische Synapsen * Synaptischer Spalt etwa nm, * Präsynaptische Zelle mit Vesikeln setzt Botenstoff (Neurotransmitter) frei, der durch den synaptischen Spalt zur postsynaptischen Zelle diffundiert und dort an spezifische Rezeptormoleküle bindet. Menge des freigesetzten Transmitters abhängig von der Zahl der einlaufenden Aktionspotentiale Chemische Synapsen sind gleichrichtend (Leitung nur in einer Richtung) und arbeiten mit einer Zeitverzögerung (delay) von etwa 1 ms. * Zwei Arten von Rezeptormolekülen: * Ionotrope Rezeptoren: sind Ionenkanäle und bewirken schnelle, im Millisekundenbereich liegende Änderungen des Membranpotentials der postsynaptischen Zelle. * Metabotrope Rezeptoren: lösen in der postsynaptischen Zelle Signalkaskade aus, langsame Änderung des Membranpotentials im Hunderte Millisekunden- und Sekundenbereich und oft längerfristig. Dabei wird immer ein intrazellulärer Botenstoff (sekundärer Botenstoff, secondary messenger) gebildet.

20 Ionotroper Rezeptor -der Rezeptor ist ein Ionenkanal Metabotroper Rezeptor -der Rezeptor ist kein Ionenkanal, Ionenstrom wird indirekt vermittelt camp z.b. nikotinischer ACh-rezeptor z.b. muskarinischer ACh-rezeptor

21 Exzitatorische postsynaptische Potentiale (EPSP) von ionotropen und metabotropen Rezeptoren Inhibitorische postsynaptische Potentiale (IPSP) Cl- Cl- Cl- schnell, direkt langsam G-Protein vermittelt K +

22 * Ob ein Neurotransmitters erregend oder hemmend wirkt, hängt ausschliesslich von der Art der postsynaptischen Rezeptormoleküle ab: erregend: in der postsynaptischen Zelle wird ein EPSP (erregendes postsnaptisches Potential) gebildet hemmend: es wird ein IPSP (inhibitorisches postsynaptisches Potential) gebildet * Eine Nervenzelle kann mehr als einen Transmitter freisetzen (oft klassischer Transmitter und ein bis mehrere Co-Transmitter).

23 Messung der Ionenströme von iontoropen Rezeptoren mit der Einzelkanalpatch Methode Wie bestimmt man, Welche Ionen durch den Kanal fließen? Ionenstrom in pa

24 Bestimmung des Umkehrpotentials I in = I out Membranpotential V m in mv Na + E Na = 56 mv Cl - K + E Cl = -61 mv E K = -93 mv E Cl = -61 mv

25 Verrechnung (Integration) an Synapsen: Addition und Subtraktion erregende Synapse Axonhügel (Aktionspotential auslösende Zone) Laborjargon: Spike-generierende-Zone spike initiating zone In diesem Beispiel heben sich Erregung und Hemmung gerade auf! hemmende Synapse Membranpotential (mv) EPSP IPSP Zeit (ms)

26 Präsynaptische Hemmung an Synapsen Das präsynaptische Neuron wird durch Freisetzung eines Transmitters (vorwiegend GABA oder Glycin) gehemmt, und damit wird die Freisetzung des Transmitters aus der Präsynapse verhindert). Ein Mechanismus, der z.b. die Axonterminale von Sinneszellen differenziert hemmen kann, und damit die sensorischen Signale unterdrückt. Präsynaptisches Neuron (Axonterminal) Präsynaptische Hemmung Inhibitorisches (Hemm) Neuron Postsynaptisches Neuron Postsynaptische Hemmung

27 Verrechnung (Integration) an Synapsen: Zeitliche Summation

28 Verrechnung (Integration) an Synapsen: Räumliche Summation

29 Verrechnung (Integration) an Synapsen: Räumliche Summation EPSPs/IPSPs verschiedener Synapsen, die z. B. an einem Dendritenbaum ansetzen, werden In der postsynaptischen Zelle zu jedem Zeitpunkt addiert Zeitliche Summation Die in einer Präynapse zeitlich kurz aufeinanderfolgenden Aktionspotentiale lösen in der postsynaptischen Zelle EPSPs/IPSPs aus, welche addiert werden. Für die Integration sind die passiven elektrischen Eigenschaften (Kabeleigenschaften) des postsynaptischen Neurons sehr wichtig (Konstanten τ und λ). Synaptische Potentiale sind also abgestuft (graduiert). Sie stellen neben den Aktionapotentialen die zweite Form der Erregung im Nervensystem dar

30 Bahnung (Facilitation)

31 Bahnung (Fazilitation) an Synapsen Homosynaptische Bahnung EPSP Größe nimmt zu, wenn präsynaptische AP in einer Salve kommen (Durch das Eintreffen mehrer AP in kurzer Zeit (hochfrequent) strömt viel Ca 2+ in die Präsynapse ein, wird so schnell nicht weggefangen, und führt zur Fusion von mehr Vesikeln und damit zur erhöhten Freisetzung von Transmitter) Bei hochfrequenten ( tetanischen ) Reizen des präsynaptischen Neurons kommt es im postsynaptischen Neuron zur posttetanischen Potenzierung, die dann teilweise lang anhalten kann (siehe LTP, long term potentiation) Heterosynaptische Bahnung Durch Transmitterfreisetzung aus einem dritten Neuron (Neuromodulator) wird die synaptische Übertragung gesteigert. (Neuromodulator öffnet z.b. Calciumkanäle oder blockiert Kaliumkanäle in der Präsynapse, dadurch gesteigerte Transmitterfreisetzung)

32 Synaptische Depression Abnahme des postsynaptischen Potentiale bei rascher Wiederholung des präsynaptischen Eingangs. Ausschließlich oder überwiegend ein postsynaptisches Phäneomen: -Abbau der Transmitter-Rezeptor- Bindung noch nicht abgeschlossen;

33 Modulation von Synapsen Das präsynaptische und das postsynaptische Neuron (oder beide) werden durch einen von einem dritten Neuron freigesetzten Transmitter beeinflusst. Dieser als Neuromodulator bezeichnete Botenstoff hat selbst keine rasche Wirkung auf die Neurone, sondern die normale Übertragung zwischen den beiden Neuronen wird verändert (z.b. effizienter). Neuromodulatoren sind häufig biogene Amine (Dopamin, Noradrenalin, Serotonin (= 5Hydroxytryaptamin, 5HT), oder Peptide. Praesynapse Präsynapse eines modulierenden Neurons Postsynapse Lernen und Gedächtnisbildung beruht auf bestimmten Formen der aktivitätsabhängigen (assoziativen) Neuromodulation.

34 Der wichtigste erregende Rezeptor im Wirbeltiergehirn ist der Glutamat Rezeptor. Es gibt mehrere Typen, ionotrope und metabotrope. Dieser Glutamat Rezeptor (NMDA Rezeptor) hat die Eigenschaft, dass er nur dann seine Ionenpore öffnet, wenn zwei Ereignisse gleichzeitig eintreffen: -der Transmitter Glutamat -die Membranspannung depolarisiert ist. Die Rezeptortypen werden nach den Substanzen benannt, die als Antagonisten wirken, z.b. NMDA: N-Methyl-D-Aspartat

35 Wichtige Werkzeuge zur Untersuchung von Transmittern sind tierische Gifte und Drogen. Latrotoxin (Gift der Spinne, Schwarze Witwe) Verursacht massive Ausschüttung des Transmitters aus der Präsynapse Skorpionsgifte, Wespengifte, Botulinustoxin Verhindern die Freisetzung von Transmittern aus der Präsynapse (Wirkung auf Ca-Kanäle) Botulinus-Toxin aus Bakterium Clostridium botulinum sehr effektiv Eserin, Organophosphate ( E605, Rattengift), blockieren abbauendes Enzym Acetylcholin-Esterase, dadurch längere Bindung der ACh- Moleküle an den postsynaptischen Rezeptor. Curare (indianisches Pfeilgift, Amazonas) Besetzt Bindungsstelle am nachr und blockiert damit Ionenkanal, damit wird kein Muskelpotential gebildet und die Kontraktion verhindert. Kompetitive Hemmung, das heisst Wirkung ist konzentrationsabhängig. α-bungarotoxin (Schlangengift, Krait, Kobraverwandte) Bindet irreversibel an den nachr, wurde zur Isolierung des nachr verwendet. Atropin (aus der Tollkirsche) Conotoxine (Gifte von Meeresschnecken) Besetzt Bindungsstellen am machr. Peptide, blockieren Bindungsstellen am Rezeptor

36 An der neuromuskulären Synapse der Wirbeltiere ergibt sich ein Umkehrpotential von ca 10 mv, was auf eine Leitfähigkeitsänderung für K + - und Na + - ionen schließen läßt: I K out = I Na in oder I K out - I Na in = 0 Als Umkehrpotential (VR) bezeichnet man das Membranpotential, bei dem die Ionenflüsse im Gleichgewicht sind, das heisst durch den entsprechenden Ionenkanal findet kein Nettofluß von Ionen (= Nettostrom) statt. Eine Abweichung des Membranpotentials V m vom Gleichgewichtspotential des Ion X (E x ) verursacht eine treibende Kraft (elektromotorische Kraft), welche das Ion x entweder in die Zelle oder aus der Zelle treibt (bei jedem Überschreiten des Umkehrpotentials ändert sich die Stromrichtung, d. h. Ionen fliessen entweder in die Zelle oder aus der Zelle. Berechnung: Ohm sches Gesetz U = R I, daraus folgt I = U/R oder I = g U wobei g = 1/R (g = Leitfähigkeit) Für den Strom, der durch das Ion x getragen wird gilt: I x = g x (V m E x ), falls gilt V m = E x, so ist I x = 0 (das heisst es fließt kein Strom)

37 Aus der Lage des Umkehrpotentials lassen sich Aussagen über die Art der Ionen machen, welche bei der Öffnung des Kanals fliessen. Erregend: Na +, Ca +, oder Kationen (Na und K gleichzeitig), Hemmend: Cl -, K +, Der nachr kann deshalb auch als Kationenkanal bezeichnet werden und wirkt erregend, weil das Membranpotential der postsnaptischen Zelle depolarisiert wird, und bei Überschreiten des Schwellenwertes im Muskel ein Aktionspotential ausgelöst wird. Glutamatrezeptoren sind sehr ähnlich aufgebaut (es gibt NMDA-Rezeptoren, nonnmda-rezeptoren AMPA-Rezeptoren-, und metabotrope Glutamatrezeptoren - mglur-).

38 Zusammenfassung: Reaktionskaskade bei der synaptischen Übertragung 1) In der Präsynapse (Axonterminal) ankommendes AP führt zu Calciumionen-Einstrom, damit Fusion der Vesikel mit der Zellmembran in der aktiven Zone möglich 2) Vesikel enthalten Transmitter (Durchmesser etwa 50 nm, mit Transmittermolekülen), Exocytose der Transmittermoleküle und Diffusion durch den etwa 30 nm breiten, mit extrazellulärer Matrix gefüllten synaptischen Spalt 3) Bindung der Transmittermoleküle an spezifische Rezeptormoleküle der postsynaptischen Zelle, bei ionotropen Rezeptoren rasche Öffnung eines Ionenkanals und Einstrom entsprechender Ionen in die postsynaptische Zelle, dadurch Aufbau eines postsynaptischen Potenzials (EPSP oder IPSP). 4) Wirkung des Transmitters wird durch raschen enzymatischen Abbau begrenzt, Aufnahme der Abbauprodukte oder auch ganzer Moleküle durch Gliazellen oder in die präsynaptische Zelle durch spezifische Transportmoleküle (Transporter) 5) Vesikel werden recycelt (Bildung eines Endosoms in der Präsynapse, Bildung neuer Vesikel) (Würde das nicht geschehen, würde die Grösse der Präsynapse dauernd anwachsen, da ja ständig Vesikel mit der präsynaptischen Zellmembran verschmelzen).

Kontaktstellen zwischen Neuronen, oder zwischen Neuronen und Muskel (neuromuskuläre Synapse)

Kontaktstellen zwischen Neuronen, oder zwischen Neuronen und Muskel (neuromuskuläre Synapse) Synapsen Kontaktstellen zwischen Neuronen, oder zwischen Neuronen und Muskel (neuromuskuläre Synapse) Der Begriff geht auf Sir Charles Scott Sherrington (1857 1952) zurück, der Professor der Physiologie

Mehr

Synapsen und synaptische Integration: Wie rechnet das Gehirn?

Synapsen und synaptische Integration: Wie rechnet das Gehirn? Synapsen und synaptische Integration: Wie rechnet das Gehirn? Kontaktstellen zwischen Neuronen, oder zwischen Neuronen und Muskel (neuromuskuläre Synapse) Entsprechend der Art ihrer Übertragung unterscheidet

Mehr

BK07_Vorlesung Physiologie. 05. November 2012

BK07_Vorlesung Physiologie. 05. November 2012 BK07_Vorlesung Physiologie 05. November 2012 Stichpunkte zur Vorlesung 1 Aktionspotenziale = Spikes Im erregbaren Gewebe werden Informationen in Form von Aktions-potenzialen (Spikes) übertragen Aktionspotenziale

Mehr

Exzitatorische (erregende) Synapsen

Exzitatorische (erregende) Synapsen Exzitatorische (erregende) Synapsen Exzitatorische Neurotransmitter z.b. Glutamat Öffnung von Na+/K+ Kanälen Membran- Potential (mv) -70 Graduierte Depolarisation der subsynaptischen Membran = Erregendes

Mehr

Das synaptische Interaktionsgeflecht

Das synaptische Interaktionsgeflecht Synaptische Integration und Plastizität. Synaptische Mechanismen von Lernen und Gedächtnis Das synaptische Interaktionsgeflecht Praesynapse Praesynapse Postsynapse Astroglia Verrechnung (Integration) an

Mehr

Das Wichtigste: 3 Grundlagen der Erregungs- und Neurophysiologie. - Erregungsausbreitung -

Das Wichtigste: 3 Grundlagen der Erregungs- und Neurophysiologie. - Erregungsausbreitung - Das Wichtigste Das Wichtigste: 3 Grundlagen der Erregungs- und Neurophysiologie - Erregungsausbreitung - Das Wichtigste: 3.4 Erregungsleitung 3.4 Erregungsleitung Elektrotonus Die Erregungsausbreitung

Mehr

Die Erregung im Nervensystem: - Ruhepotential - Aktionspotential

Die Erregung im Nervensystem: - Ruhepotential - Aktionspotential Die Erregung im Nervensystem: - Ruhepotential - Aktionspotential ein in Representative neuron Verlauf der Erregung in einem Neuron Soma Soma cell body postsynaptische Seite präsynaptische Seite aus ou

Mehr

1 Bau von Nervenzellen

1 Bau von Nervenzellen Neurophysiologie 1 Bau von Nervenzellen Die funktionelle Einheit des Nervensystems bezeichnet man als Nervenzelle. Dendrit Zellkörper = Soma Zelllkern Axon Ranvier scher Schnürring Schwann sche Hüllzelle

Mehr

Abbildungen Schandry, 2006 Quelle: www.ich-bin-einradfahrer.de Abbildungen Schandry, 2006 Informationsvermittlung im Körper Pioniere der Neurowissenschaften: Santiago Ramón y Cajal (1852-1934) Camillo

Mehr

Neurobiologie. Prof. Dr. Bernd Grünewald, Institut für Bienenkunde, FB Biowissenschaften

Neurobiologie. Prof. Dr. Bernd Grünewald, Institut für Bienenkunde, FB Biowissenschaften Neurobiologie Prof. Dr. Bernd Grünewald, Institut für Bienenkunde, FB Biowissenschaften www.institut-fuer-bienenkunde.de b.gruenewald@bio.uni-frankfurt.de Synapsen II Die postsynaptische Membran - Synapsentypen

Mehr

Synaptische Übertragung und Neurotransmitter

Synaptische Übertragung und Neurotransmitter Proseminar Chemie der Psyche Synaptische Übertragung und Neurotransmitter Referent: Daniel Richter 1 Überblick Synapsen: - Typen / Arten - Struktur / Aufbau - Grundprinzipien / Prozesse Neurotransmitter:

Mehr

Neurobiologie. Prof. Dr. Bernd Grünewald, Institut für Bienenkunde, FB Biowissenschaften

Neurobiologie. Prof. Dr. Bernd Grünewald, Institut für Bienenkunde, FB Biowissenschaften Neurobiologie Prof. Dr. Bernd Grünewald, Institut für Bienenkunde, FB Biowissenschaften www.institut-fuer-bienenkunde.de b.gruenewald@bio.uni-frankfurt.de Freitag, 8. Mai um 8 Uhr c.t. Synapsen II Die

Mehr

Erregungsübertragung an Synapsen. 1. Einleitung. 2. Schnelle synaptische Erregung. Biopsychologie WiSe Erregungsübertragung an Synapsen

Erregungsübertragung an Synapsen. 1. Einleitung. 2. Schnelle synaptische Erregung. Biopsychologie WiSe Erregungsübertragung an Synapsen Erregungsübertragung an Synapsen 1. Einleitung 2. Schnelle synaptische Übertragung 3. Schnelle synaptische Hemmung chemische 4. Desaktivierung der synaptischen Übertragung Synapsen 5. Rezeptoren 6. Langsame

Mehr

Übertragung zwischen einzelnen Nervenzellen: Synapsen

Übertragung zwischen einzelnen Nervenzellen: Synapsen Übertragung zwischen einzelnen Nervenzellen: Synapsen Kontaktpunkt zwischen zwei Nervenzellen oder zwischen Nervenzelle und Zielzelle (z.b. Muskelfaser) Synapse besteht aus präsynaptischen Anteil (sendendes

Mehr

Synaptische Transmission

Synaptische Transmission Synaptische Transmission Wie lösen APe, die an den Endknöpfchen der Axone ankommen, die Freisetzung von Neurotransmittern in den synaptischen Spalt aus (chemische Signalübertragung)? 5 wichtige Aspekte:

Mehr

VL. 3 Prüfungsfragen:

VL. 3 Prüfungsfragen: VL. 3 Prüfungsfragen: - Wie entsteht ein Aktionspotential (AP)? - Welche Ionenkanäle sind am AP beteiligt? - Skizzieren Sie in einem Achsensystem den Verlauf eines APs. Benennen Sie wichtige Potentiale.

Mehr

abiweb NEUROBIOLOGIE 17. März 2015 Webinar zur Abiturvorbereitung

abiweb NEUROBIOLOGIE 17. März 2015 Webinar zur Abiturvorbereitung abiweb NEUROBIOLOGIE 17. März 2015 Webinar zur Abiturvorbereitung Bau Nervenzelle Neuron (Nervenzelle) Dentrit Zellkörper Axon Synapse Gliazelle (Isolierung) Bau Nervenzelle Bau Nervenzelle Neurobiologie

Mehr

Vorlesung Einführung in die Biopsychologie. Kapitel 4: Nervenleitung und synaptische Übertragung

Vorlesung Einführung in die Biopsychologie. Kapitel 4: Nervenleitung und synaptische Übertragung Vorlesung Einführung in die Biopsychologie Kapitel 4: Nervenleitung und synaptische Übertragung Prof. Dr. Udo Rudolph SoSe 2018 Technische Universität Chemnitz Grundlage bisher: Dieser Teil nun: Struktur

Mehr

postsynaptische Potentiale graduierte Potentiale

postsynaptische Potentiale graduierte Potentiale postsynaptische Potentiale graduierte Potentiale Postsynaptische Potentiale veraendern graduierte Potentiale aund, wenn diese Aenderungen das Ruhepotential zum Schwellenpotential hin anheben, dann entsteht

Mehr

Biopsychologie als Neurowissenschaft Evolutionäre Grundlagen Genetische Grundlagen Mikroanatomie des NS

Biopsychologie als Neurowissenschaft Evolutionäre Grundlagen Genetische Grundlagen Mikroanatomie des NS 1 1 25.10.06 Biopsychologie als Neurowissenschaft 2 8.11.06 Evolutionäre Grundlagen 3 15.11.06 Genetische Grundlagen 4 22.11.06 Mikroanatomie des NS 5 29.11.06 Makroanatomie des NS: 6 06.12.06 Erregungsleitung

Mehr

Synaptische Transmission

Synaptische Transmission Synaptische Transmission Wie lösen APe, die an den Endknöpfchen der Axone ankommen, die Freisetzung von Neurotransmittern in den synaptischen Spalt aus (chemische Signalübertragung)? 5 wichtige Aspekte:

Mehr

Passive und aktive elektrische Membraneigenschaften

Passive und aktive elektrische Membraneigenschaften Aktionspotential Passive und aktive elektrische Membraneigenschaften V m (mv) 20 Overshoot Aktionspotential (Spike) V m Membran potential 0-20 -40 Anstiegsphase (Depolarisation) aktive Antwort t (ms) Repolarisation

Mehr

Generierung eines APs

Generierung eines APs Generierung eines APs Interessante Bemerkungen: Die Zahl der Ionen, die während eines Aps in Bewegung sind, ist verglichen mit der Gesamtzahl der Ionen innerhalb und außerhalb eines Neurons sehr gering!

Mehr

winter-0506/tierphysiologie/

winter-0506/tierphysiologie/ Die Liste der Teilnehmer der beiden Kurse für Studenten der Bioinformatik finden Sie auf unserer web site: http://www.neurobiologie.fu-berlin.de/menu/lectures-courses/ winter-0506/tierphysiologie/ Das

Mehr

M 3. Informationsübermittlung im Körper. D i e N e r v e n z e l l e a l s B a s i s e i n h e i t. im Überblick

M 3. Informationsübermittlung im Körper. D i e N e r v e n z e l l e a l s B a s i s e i n h e i t. im Überblick M 3 Informationsübermittlung im Körper D i e N e r v e n z e l l e a l s B a s i s e i n h e i t im Überblick Beabeablog 2010 N e r v e n z e l l e n ( = Neurone ) sind auf die Weiterleitung von Informationen

Mehr

Was versteht man unter einer Depolarisation bzw. einer Hyperpolarisation des Membranpotentials?

Was versteht man unter einer Depolarisation bzw. einer Hyperpolarisation des Membranpotentials? 1 Was versteht man unter einer Depolarisation bzw. einer Hyperpolarisation des Membranpotentials? 2 Was ist der Unterschied zwischen der absoluten und der relativen Refraktärzeit eines Aktionspotentials?

Mehr

Synaptische Übertragung

Synaptische Übertragung Synaptische Übertragung Lernziel: 17. Prof. Gyula Sáry How Golgi Shared the 1906 Nobel Prize in Physiology or Medicine with Cajal Golgi: Reticulartheorie: das Nervensystem als ein Netzwerk Cajal: Neurondoktrin

Mehr

Kapitel 05.02: Die Nervenzelle

Kapitel 05.02: Die Nervenzelle Kapitel 05.02: Die Nervenzelle 1 Kapitel 05.02: Die Nervenzelle Kapitel 05.02: Die Nervenzelle 2 Inhalt Kapitel 05.02: Die Nervenzelle...1 Inhalt... 2 Informationsweiterleitung im menschlichen Körper...3

Mehr

Neurobiologie. Prof. Dr. Bernd Grünewald, Institut für Bienenkunde, FB Biowissenschaften

Neurobiologie. Prof. Dr. Bernd Grünewald, Institut für Bienenkunde, FB Biowissenschaften Neurobiologie Prof. Dr. Bernd Grünewald, Institut für Bienenkunde, FB Biowissenschaften www.institut-fuer-bienenkunde.de b.gruenewald@bio.uni-frankfurt.de Synapsen I Präsynaptische Ereignisse - Synapsentypen

Mehr

Vom Reiz zum Aktionspotential. Wie kann ein Reiz in ein elektrisches Signal in einem Neuron umgewandelt werden?

Vom Reiz zum Aktionspotential. Wie kann ein Reiz in ein elektrisches Signal in einem Neuron umgewandelt werden? Vom Reiz zum Aktionspotential Wie kann ein Reiz in ein elektrisches Signal in einem Neuron umgewandelt werden? Vom Reiz zum Aktionspotential Primäre Sinneszellen (u.a. in den Sinnesorganen) wandeln den

Mehr

Neurobiologie. Prof. Dr. Bernd Grünewald, Institut für Bienenkunde, FB Biowissenschaften

Neurobiologie. Prof. Dr. Bernd Grünewald, Institut für Bienenkunde, FB Biowissenschaften Neurobiologie Prof. Dr. Bernd Grünewald, Institut für Bienenkunde, FB Biowissenschaften www.institut-fuer-bienenkunde.de b.gruenewald@bio.uni-frankfurt.de Synapsen I Ausschüttung von Transmitter - Synapsentypen

Mehr

Gelöste Teilchen diffundieren von Orten höherer Konzentration zu Orten geringerer Konzentration

Gelöste Teilchen diffundieren von Orten höherer Konzentration zu Orten geringerer Konzentration 1 Transportprozesse: Wassertransport: Mit weinigen ausnahmen ist die Zellmembran frei durchlässig für Wasser. Membrantransport erfolgt zum größten Teil über Wasserkanäle (Aquaporine) sowie über Transportproteine

Mehr

Synapsengifte S 2. Colourbox. Goecke II/G1. istockphoto. istockphoto. 95 RAAbits Biologie Dezember 2017

Synapsengifte S 2. Colourbox. Goecke II/G1. istockphoto. istockphoto. 95 RAAbits Biologie Dezember 2017 Synapsengifte Reihe 5 Verlauf Material S 2 LEK Glossar Mediothek 1 Colourbox Goecke M1 2 Thinkstock a r o 3 4 5 6 istockphoto V istockphoto i s n Thinkstock t h c S 6 M 2 Die Erregungsübertragung an der

Mehr

Vorlesung Neurophysiologie

Vorlesung Neurophysiologie Vorlesung Neurophysiologie Detlev Schild Abt. Neurophysiologie und zelluläre Biophysik dschild@gwdg.de Vorlesung Neurophysiologie Detlev Schild Abt. Neurophysiologie und zelluläre Biophysik dschild@gwdg.de

Mehr

Zelluläre Kommunikation

Zelluläre Kommunikation Zelluläre Kommunikation 1. Prinzipien der zellulären Kommunikation?? 2. Kommunikation bei Nervenzellen Die Zellen des Nervensystems Nervenzellen = Neuronen Gliazellen ( Glia ) Astrozyten Oligodendrozyten

Mehr

Postsynaptische Potenziale

Postsynaptische Potenziale Postsynaptisches Potenzial Arbeitsblatt Nr 1 Postsynaptische Potenziale Links ist eine Versuchsanordnung zur Messung der Membranpotenziale an verschiedenen Stellen abgebildet. Das Axon links oben wurde

Mehr

was sind Neurotransmitter? vier wichtige Eigenschaften von Neurotransmittern Neurotransmitterklassen Klassische Neurotransmitter Peptidtransmitter

was sind Neurotransmitter? vier wichtige Eigenschaften von Neurotransmittern Neurotransmitterklassen Klassische Neurotransmitter Peptidtransmitter was sind Neurotransmitter? vier wichtige Eigenschaften von Neurotransmittern Neurotransmitterklassen Klassische Neurotransmitter Peptidtransmitter unkonventionelle Transmitter Neurotransmitter sind heterogene

Mehr

Das Ruhemembranpotential eines Neurons

Das Ruhemembranpotential eines Neurons Das Ruhemembranpotential eines Neurons Genaueres zu den 4 Faktoren: Faktor 1: Die so genannte Brown sche Molekularbewegung sorgt dafür, dass sich Ionen (so wie alle Materie!) ständig zufällig bewegen!

Mehr

1. Welche Arten von Zell Zell Verbindungen kennen Sie und was sind ihre Hauptaufgaben? Verschliessende Verbindungen (Permeabilitätseinschränkung)

1. Welche Arten von Zell Zell Verbindungen kennen Sie und was sind ihre Hauptaufgaben? Verschliessende Verbindungen (Permeabilitätseinschränkung) Fragen Zellbio 2 1. Welche Arten von Zell Zell Verbindungen kennen Sie und was sind ihre Hauptaufgaben? Verschliessende Verbindungen (Permeabilitätseinschränkung) Haftende Verbindungen (Mechanischer Zusammenhalt)

Mehr

BK07_Vorlesung Physiologie. 12. November 2012

BK07_Vorlesung Physiologie. 12. November 2012 BK07_Vorlesung Physiologie 12. November 2012 Stichpunkte zur Vorlesung Beendigung der Wirkung eines Neurotransmitters: 1. Abtransport des Transmitters (aktiv) und Wiederaufnahme in präsynaptische Endigung

Mehr

Didaktische FWU-DVD. Das Nervensystem des Menschen. Neuronale Informationsübermittlung. Klasse Klasse Trailer ansehen

Didaktische FWU-DVD. Das Nervensystem des Menschen. Neuronale Informationsübermittlung. Klasse Klasse Trailer ansehen 46 11267 Didaktische FWU-DVD Das Nervensystem des Menschen Neuronale Informationsübermittlung Biologie Chemie Klasse 10 13 Klasse 10 13 Trailer ansehen Schlagwörter Adenosintriphosphat; Aktionspotential;

Mehr

Reizleitung in Nervenzellen. Nervenzelle unter einem Rasterelektronenmikroskop

Reizleitung in Nervenzellen. Nervenzelle unter einem Rasterelektronenmikroskop Reizleitung in Nervenzellen Nervenzelle unter einem Rasterelektronenmikroskop Gliederung: 1. Aufbau von Nervenzellen 2. Das Ruhepotential 3. Das Aktionspotential 4. Das Membranpotential 5. Reizweiterleitung

Mehr

Das Neuron (= Die Nervenzelle)

Das Neuron (= Die Nervenzelle) Das Neuron (= Die Nervenzelle) Die Aufgabe des Neurons besteht in der Aufnahme, Weiterleitung und Übertragung von Signalen. Ein Neuron besitzt immer eine Verbindung zu einer anderen Nervenzelle oder einer

Mehr

Das Ruhemembranpotential eines Neurons

Das Ruhemembranpotential eines Neurons Das Ruhemembranpotential eines Neurons An diesem Ungleichgewicht sind 4 Arten von Ionen maßgeblich beteiligt: - Natriumionen (Na + ) (außen viel) - Kaliumionen (K + ) (innen viel) - Chloridionen (Cl -

Mehr

Beide bei Thieme ebook

Beide bei Thieme ebook Beide bei Thieme ebook Neurophysiologie 1) Funktionelle Anatomie 2) Entstehung nervaler Potentiale 3) Erregungsfortleitung 4) Synaptische Übertragung 5) Transmitter und Reflexe 6) Vegetatives Nervensystem

Mehr

Anatomie/Physiologie 19.05.04 (Dr. Shakibaei) Nervengewebe. besteht aus 2 Bestandteilen:

Anatomie/Physiologie 19.05.04 (Dr. Shakibaei) Nervengewebe. besteht aus 2 Bestandteilen: Anatomie/Physiologie 19.05.04 (Dr. Shakibaei) Nervengewebe besteht aus 2 Bestandteilen: Nervenzelle ( Neuron : Signal aufnehmen, verarbeiten und weiterleiten) Gliazelle, Stützzelle: div. metabolische Funktionen

Mehr

Unterschied zwischen aktiver und passiver Signalleitung:

Unterschied zwischen aktiver und passiver Signalleitung: Unterschied zwischen aktiver und passiver Signalleitung: Passiv: Ein kurzer Stromimpuls wird ohne Zutun der Zellmembran weitergeleitet Nachteil: Signalstärke nimmt schnell ab Aktiv: Die Zellmembran leitet

Mehr

Neurobiologie Teil 1: 1. Gemeinsamkeit macht stark Neurone. 2. Strom ohne Steckdosen Aktionspotential. 3. Und wieviele Kontakte hast du?

Neurobiologie Teil 1: 1. Gemeinsamkeit macht stark Neurone. 2. Strom ohne Steckdosen Aktionspotential. 3. Und wieviele Kontakte hast du? Neurobiologie Teil 1: 1. Gemeinsamkeit macht stark Neurone 2. Strom ohne Steckdosen Aktionspotential 3. Und wieviele Kontakte hast du? Synapsen 4. Die Chemie des Geistes Neurotransmitter 5. Bis das Faß

Mehr

Nanostrukturphysik II Michael Penth

Nanostrukturphysik II Michael Penth 16.07.13 Nanostrukturphysik II Michael Penth Ladungstransport essentiell für Funktionalität jeder Zelle [b] [a] [j] de.academic.ru esys.org giantshoulders.wordpress.com [f] 2 Mechanismen des Ionentransports

Mehr

www.bernhard.schnepf.de.vu

www.bernhard.schnepf.de.vu In den Tieren gibt es zwei große Informations-Transportsysteme! - Nervensystem (bis ca. 140 m/s) - Hormone (Mensch: Blut mit einer Fließgeschwindigkeit von ca. 40cm/s und mittlerer Umlaufzeit von 20 Sekunden)

Mehr

Tutoriat zur Vorlesung Synapsen im HS 2010

Tutoriat zur Vorlesung Synapsen im HS 2010 Tutoriat zur Vorlesung Synapsen im HS 2010 Beschreiben Sie die Strukturelemente der Synapse. Die Synapse ist in 3 Teile gegliedert: - Präsynaptische Membran (Axonterminal): mit Mitochondrien, Vesikeln

Mehr

Tutoriat zur Vorlesung Neuronale Informationsverarbeitung im HS 2010

Tutoriat zur Vorlesung Neuronale Informationsverarbeitung im HS 2010 Tutoriat zur Vorlesung Neuronale Informationsverarbeitung im HS 2010 ----------------------------------------------------------------------------------------------------- Wie definiert man elektrische

Mehr

Membranpotential bei Neuronen

Membranpotential bei Neuronen Membranpotential bei Neuronen J. Almer 1 Ludwig-Thoma-Gymnasium 9. Juli 2012 J. Almer (Ludwig-Thoma-Gymnasium ) 9. Juli 2012 1 / 17 Gliederung 1 Aufbau der Neuronmembran 2 Ruhepotential bei Neuronen Diffusion

Mehr

Aufbau und Funktionweise der Nervenzelle - Wiederholung Vorlesung -

Aufbau und Funktionweise der Nervenzelle - Wiederholung Vorlesung - Aufbau und Funktionweise der Nervenzelle - Wiederholung Vorlesung - Fragen zur Vorlesung: Welche Zellen können im Nervensystem unterschieden werden? Aus welchen Teilstrukturen bestehen Neuronen? Welche

Mehr

Zelltypen des Nervensystems

Zelltypen des Nervensystems Zelltypen des Nervensystems Im Gehirn eines erwachsenen Menschen: Neurone etwa 1-2. 10 10 Glia: Astrozyten (ca. 10x) Oligodendrozyten Mikrogliazellen Makrophagen Ependymzellen Nervenzellen Funktion: Informationsaustausch.

Mehr

Physiologische Grundlagen. Inhalt

Physiologische Grundlagen. Inhalt Physiologische Grundlagen Inhalt Das Ruhemembranpotential - RMP Das Aktionspotential - AP Die Alles - oder - Nichts - Regel Die Klassifizierung der Nervenfasern Das Ruhemembranpotential der Zelle RMP Zwischen

Mehr

Peter Walla. Die Hauptstrukturen des Gehirns

Peter Walla. Die Hauptstrukturen des Gehirns Die Hauptstrukturen des Gehirns Die Hauptstrukturen des Gehirns Biologische Psychologie I Kapitel 4 Nervenleitung und synaptische Übertragung Nervenleitung und synaptische Übertragung Wie werden Nervensignale

Mehr

1. Kommunikation Informationsweiterleitung und -verarbeitung

1. Kommunikation Informationsweiterleitung und -verarbeitung 1. Kommunikation Informationsweiterleitung und -verarbeitung Sinnesorgane, Nervenzellen, Rückenmark, Gehirn, Muskeln und Drüsen schaffen die Grundlage um Informationen aus der Umgebung aufnehmen, weiterleiten,

Mehr

neurologische Grundlagen Version 1.3

neurologische Grundlagen Version 1.3 neurologische Grundlagen Version 1.3 ÜBERBLICK: Neurone, Synapsen, Neurotransmitter Neurologische Grundlagen Zentrale Vegetatives Peripheres Überblick: Steuersystem des menschlichen Körpers ZNS Gehirn

Mehr

Übung 6 Vorlesung Bio-Engineering Sommersemester Nervenzellen: Kapitel 4. 1

Übung 6 Vorlesung Bio-Engineering Sommersemester Nervenzellen: Kapitel 4. 1 Bitte schreiben Sie Ihre Antworten direkt auf das Übungsblatt. Falls Sie mehr Platz brauchen verweisen Sie auf Zusatzblätter. Vergessen Sie Ihren Namen nicht! Abgabe der Übung bis spätestens 21. 04. 08-16:30

Mehr

Grundstrukturen des Nervensystems beim Menschen

Grundstrukturen des Nervensystems beim Menschen Grundstrukturen des Nervensystems beim Menschen Die kleinste, funktionelle und strukturelle Einheit des Nervensystems ist die Nervenzelle = Neuron Das menschl. Gehirn besteht aus ca. 100 Mrd Neuronen (theor.

Mehr

neurologische Grundlagen Version 1.3

neurologische Grundlagen Version 1.3 neurologische Version 1.3 ÜBERBLICK: Überblick: Steuersystem des menschlichen Körpers ZNS Gehirn Rückenmark PNS VNS Hirnnerven Sympathicus Spinalnerven Parasympathicus 1 ÜBERBLICK: Neurone = Nervenzellen

Mehr

Einige Grundbegriffe der Elektrostatik. Elementarladung: e = C

Einige Grundbegriffe der Elektrostatik. Elementarladung: e = C Einige Grundbegriffe der Elektrostatik Es gibt + und - Ladungen ziehen sich an Einheit der Ladung 1C Elementarladung: e = 1.6.10-19 C 1 Abb 14.7 Biologische Physik 2 Parallel- und Serienschaltung von Kondensatoren/Widerständen

Mehr

Ligandengesteuerte Ionenkanäle

Ligandengesteuerte Ionenkanäle Das Gehirn SS 2010 Ligandengesteuerte Ionenkanäle Ligandengesteuerte Kanäle Ligand-gated ion channels LGIC Ionotrope Rezeptoren Neurotransmission Liganden Acetylcholin Glutamat GABA Glycin ATP; camp; cgmp;

Mehr

Second Messenger keine camp, cgmp, Phospholipidhydrolyse (Prozess) Aminosäuren (Glutamat, Aspartat; GABA, Glycin),

Second Messenger keine camp, cgmp, Phospholipidhydrolyse (Prozess) Aminosäuren (Glutamat, Aspartat; GABA, Glycin), Neurotransmitter 1. Einleitung 2. Unterscheidung schneller und langsamer Neurotransmitter 3. Schnelle Neurotransmitter 4. Acetylcholin schneller und langsamer Neurotransmitter 5. Langsame Neurotransmitter

Mehr

Transmitterstoff erforderlich. und Tremor. Potenziale bewirken die Erregungsübertragung zwischen den Nervenzellen. Begriffen

Transmitterstoff erforderlich. und Tremor. Potenziale bewirken die Erregungsübertragung zwischen den Nervenzellen. Begriffen 4 Kapitel 2 Nervensystem 2 Nervensystem Neurophysiologische Grundlagen 2.1 Bitte ergänzen Sie den folgenden Text mit den unten aufgeführten Begriffen Das Nervensystem besteht aus 2 Komponenten, dem und

Mehr

Intra- und extrazelluläre Ionenkonzentrationen

Intra- und extrazelluläre Ionenkonzentrationen Neurophysiologie Neurophysiologie Intra- und extrazelluläre Ionenkonzentrationen intrazellulär extrazellulär Na + 8-30 145 K + 100-155155 5 Ca 2+ 0.0001 2 Cl - 4-30 120 HCO 3-8-15 25 große Anionen 100-150

Mehr

Nervensystem. www.tu-ilmenau.de/nano

Nervensystem. www.tu-ilmenau.de/nano Nervensystem ist übergeordnete Steuerungs- und Kontrollinstanz des Körpers besteht aus Nervenzellen und Stützzellen (z. B. Glia) hat drei Hauptfunktionen Reizaufnahme Reizintegration, Interpretation, Handlungsplanung

Mehr

Vorlesung: Grundlagen der Neurobiologie (Teil des Grundmoduls Neurobiologie) Synaptische Verbindungen. R. Brandt

Vorlesung: Grundlagen der Neurobiologie (Teil des Grundmoduls Neurobiologie) Synaptische Verbindungen. R. Brandt Vorlesung: Grundlagen der Neurobiologie (Teil des Grundmoduls Neurobiologie) Synaptische Verbindungen R. Brandt Synaptische Verbindungen - Synapsen, Dornen und Lernen - Alzheimer Krankheit und Vergessen

Mehr

Mark Hübener und Rüdiger Klein

Mark Hübener und Rüdiger Klein Elektrisch aktiv 15 Für fast 100 Jahre war die im Text erwähnte Golgi-Methode die einzige Möglichkeit, einzelne Neurone vollständig anzufärben. Nach Behandlung des Gewebes mit verschiedenen Salzlösungen

Mehr

Humanbiologie. Nervenphysiologie

Humanbiologie. Nervenphysiologie Humanbiologie Nervenphysiologie Prof. Dr. Karin Busch Institut für Molekulare Zellbiologie - IMZ Gliederung der VL SoSe 2016 20.4. Bestandteile und Funktionen der Zelle 27.4. Atmung 04.5. Herz/Blutkreislauf

Mehr

Inhaltsfeld: IF 4: Neurobiologie

Inhaltsfeld: IF 4: Neurobiologie Unterrichtsvorhaben IV: Thema/Kontext: Molekulare und zellbiologische Grundlagen der neuronalen Informationsverarbeitung Wie ist das Nervensystem Menschen aufgebaut und wie ist organisiert? Inhaltsfeld:

Mehr

Biologische Grundlagen der Elektrogenese

Biologische Grundlagen der Elektrogenese Proseminar: Elektrophysiologie kognitiver Prozesse WS 2008/2009 Dozentin: Dr. Nicola Ferdinand Referent: Michael Weigl Biologische Grundlagen der Elektrogenese Ein Überblick Zum Einstieg Die Gliederung

Mehr

Dynamische Systeme in der Biologie: Beispiel Neurobiologie

Dynamische Systeme in der Biologie: Beispiel Neurobiologie Dynamische Systeme in der Biologie: Beispiel Neurobiologie Dr. Caroline Geisler geisler@lmu.de April 11, 2018 Veranstaltungszeiten und -räume Mittwoch 13:00-14:30 G00.031 Vorlesung Mittwoch 15:00-16:30

Mehr

Neuronale Signalverarbeitung

Neuronale Signalverarbeitung neuronale Signalverarbeitung Institut für Angewandte Mathematik WWU Münster Abschlusspräsentation am 08.07.2008 Übersicht Aufbau einer Nervenzelle Funktionsprinzip einer Nervenzelle Empfang einer Erregung

Mehr

Conotoxine. Von Dominic Hündgen und Evgeni Drobjasko

Conotoxine. Von Dominic Hündgen und Evgeni Drobjasko Conotoxine Von Dominic Hündgen und Evgeni Drobjasko Inhalt Vorkommen Aufbau/Arten Wirkungsweise Therapie und Nutzen 2 Vorkommen Gruppe von Toxinen aus der Kegelschnecken-Gattung Conus 600 anerkannte Arten

Mehr

Neuronale Reizleitung

Neuronale Reizleitung Neuronale Reizleitung Ionen und elektrische Signale Kurzer Blick auf die Zellbiologie Bildung und Aufrechterhaltung des Ruhepotentials Voraussetzungen für die Entstehung eines Aktionspotentials Weiterleitung

Mehr

Übungsfragen, Neuro 1

Übungsfragen, Neuro 1 Übungsfragen, Neuro 1 Grundlagen der Biologie Iib FS 2012 Auf der jeweils folgenden Folie ist die Lösung markiert. Die meisten Neurone des menschlichen Gehirns sind 1. Sensorische Neurone 2. Motorische

Mehr

Funktionsprinzipien von Synapsen

Funktionsprinzipien von Synapsen 17.3.2006 Funktionsprinzipien von Synapsen Andreas Draguhn Aufbau Transmitter und präsynaptische Vesikel Postsynaptische Rezeptoren Funktion einzelner Synapsen Prinzipien der Informationsverarbeitung:

Mehr

Schematische Übersicht über das Nervensystem eines Vertebraten

Schematische Übersicht über das Nervensystem eines Vertebraten Schematische Übersicht über das Nervensystem eines Vertebraten Die Integration des sensorischen Eingangs und motorischen Ausgangs erfolgt weder stereotyp noch linear; sie ist vielmehr durch eine kontinuierliche

Mehr

Passive und aktive elektrische Membraneigenschaften

Passive und aktive elektrische Membraneigenschaften Aktionspotential Passive und aktive elektrische Membraneigenschaften V m (mv) 20 Overshoot Aktionspotential (Spike) V m Membran potential 0-20 -40 Anstiegsphase (Depolarisation) aktive Antwort t (ms) Repolarisation

Mehr

Synaptische Verbindungen - Alzheimer

Synaptische Verbindungen - Alzheimer Vorlesung: Grundlagen der Neurobiologie (Teil des Grundmoduls Neurobiologie) Synaptische Verbindungen - Alzheimer R. Brandt (Email: brandt@biologie.uni-osnabrueck.de) Synaptische Verbindungen - Synapsen,

Mehr

BK07_Vorlesung Physiologie 29. Oktober 2012

BK07_Vorlesung Physiologie 29. Oktober 2012 BK07_Vorlesung Physiologie 29. Oktober 2012 1 Schema des Membrantransports Silverthorn: Physiologie 2 Membranproteine Silverthorn: Physiologie Transportproteine Ionenkanäle Ionenpumpen Membranproteine,

Mehr

Biologische Psychologie I

Biologische Psychologie I Biologische Psychologie I Kapitel 4 Nervenleitung und synaptische Übertragung 3 Nervenleitung und synaptische Übertragung Folgendes wollen wir heute lernen: Wie werden Nervensignale erzeugt? Wie werden

Mehr

Die Signalübertragung und das Lernen durch den Synapsenbau ausführlich

Die Signalübertragung und das Lernen durch den Synapsenbau ausführlich Die Signalübertragung und das Lernen durch den Synapsenbau ausführlich Wie kommt die Erregung (und die Hemmung als Gegenpart) überhaupt in unsere Köpfe? Dazu muss man wissen, dass Nervenzellen ihre Informationen

Mehr

Neuronale Grundlagen bei ADHD. (Attention Deficit/Hyperactivity Disorder) Mechanismen der Ritalinwirkung. Dr. Lutz Erik Koch

Neuronale Grundlagen bei ADHD. (Attention Deficit/Hyperactivity Disorder) Mechanismen der Ritalinwirkung. Dr. Lutz Erik Koch Neuronale Grundlagen bei ADHD (Attention Deficit/Hyperactivity Disorder) Mechanismen der Ritalinwirkung Dr. Lutz Erik Koch Die Verschreibung von Ritalin bleibt kontrovers Jeden Tag bekommen Millionen von

Mehr

Nervengewebe. Neurone. Gliazellen. - eigentliche Nervenzellen - Sinneszellen. -ZNS-Glia -PNS-Glia

Nervengewebe. Neurone. Gliazellen. - eigentliche Nervenzellen - Sinneszellen. -ZNS-Glia -PNS-Glia Nervengewebe Neurone Gliazellen - eigentliche Nervenzellen - Sinneszellen -ZNS-Glia -PNS-Glia Neurone: Formen und Vorkommen apolar: Sinneszellen - Innenohr, Geschmacksknospen unipolar: Sinneszellen - Retina,

Mehr

Die neuronale Synapse

Die neuronale Synapse Die neuronale Synapse AB 1-1, S. 1 Arbeitsweise der neuronalen Synapse Wenn am synaptischen Endknöpfchen ein Aktionspotenzial ankommt, öffnen sich spannungsgesteuerte Calciumkanäle. Da im Zellaußenmedium

Mehr

Wiederholung: Dendriten

Wiederholung: Dendriten Wiederholung: Dendriten Neurone erhalten am Dendriten und am Zellkörper viele erregende und hemmende Eingangssignale (Spannungsänderungen) Die Signale werden über Dendrit und Zellkörper elektrisch weitergeleitet.

Mehr

Das Ruhemembran-Potenzial RMP

Das Ruhemembran-Potenzial RMP Erregbarkeit der Axon Das Ruhemembran-Potenzial RMP - + Nervenzellen sind von einer elektrisch isolierenden Zellwand umgeben. Dadurch werden Intrazellularraum und Extrazellularraum voneinander getrennt.

Mehr

Physiologie 3. 1 Allgemeine Neurophysiologie. 1.1 Überblick. 1.2 Entstehung und Weiterleitung zellulärer Erregung

Physiologie 3. 1 Allgemeine Neurophysiologie. 1.1 Überblick. 1.2 Entstehung und Weiterleitung zellulärer Erregung 5 Physiologie 3 Sebastian Kaulitzki/fotolia.com 1 Allgemeine Neurophysiologie 1.1 Überblick Die Neurophysiologie behandelt die Weitergabe und Bearbeitung von Informationen innerhalb und zwischen verschiedenen

Mehr

Membranen und Potentiale

Membranen und Potentiale Membranen und Potentiale 1. Einleitung 2. Zellmembran 3. Ionenkanäle 4. Ruhepotential 5. Aktionspotential 6. Methode: Patch-Clamp-Technik Quelle: Thompson Kap. 3, (Pinel Kap. 3) 2. ZELLMEMBRAN Abbildung

Mehr

Glia- sowie Nervenzellen (= Neuronen) sind die Bausteine des Nervensystems. Beide Zellarten unterscheiden sich vorwiegend in ihren Aufgaben.

Glia- sowie Nervenzellen (= Neuronen) sind die Bausteine des Nervensystems. Beide Zellarten unterscheiden sich vorwiegend in ihren Aufgaben. (C) 2014 - SchulLV 1 von 5 Einleitung Du stehst auf dem Fußballfeld und dein Mitspieler spielt dir den Ball zu. Du beginnst loszurennen, denn du möchtest diesen Ball auf keinen Fall verpassen. Dann triffst

Mehr

Messung des Ruhepotentials einer Nervenzelle

Messung des Ruhepotentials einer Nervenzelle Messung des Ruhepotentials einer Nervenzelle 1 Extrazellulär Entstehung des Ruhepotentials K+ 4mM Na+ 120 mm Gegenion: Cl- K + kanal offen Na + -kanal zu Na + -K + Pumpe intrazellulär K+ 120 mm Na+ 5 mm

Mehr

Glutamat und Neurotoxizitaet. Narcisse Mokuba WS 18/19

Glutamat und Neurotoxizitaet. Narcisse Mokuba WS 18/19 Glutamat und Neurotoxizitaet Narcisse Mokuba WS 18/19 Gliederung 1.Teil : Glutamat als Botenstoff ; Synthese Glutamat-Rezeptoren : Aufbau & Funktion Signaluebertragung 2.Teil : Bedeutung als Gescmacksverstaerker

Mehr

abiweb NEUROBIOLOGIE Abituraufgaben 17. März 2015 Webinar zur Abiturvorbereitung

abiweb NEUROBIOLOGIE Abituraufgaben 17. März 2015 Webinar zur Abiturvorbereitung abiweb NEUROBIOLOGIE Abituraufgaben 17. März 2015 Webinar zur Abiturvorbereitung Vergleichen Sie die Leitungsgeschwindigkeiten der myelinisierten (blau/ grau) und nicht myelinisierten (helles blau) Nervenbahnen!

Mehr

Hier geht s zum Buch >> Botenstoffe für Glück und Gesundheit

Hier geht s zum Buch >> Botenstoffe für Glück und Gesundheit Leseprobe aus: Botenstoffe für Glück und Gesundheit von Diethard Stelzl. Abdruck erfolgt mit freundlicher Genehmigung des Verlages. Alle Rechte vorbehalten. Hier geht s zum Buch >> Botenstoffe für Glück

Mehr

NaCl. Die Originallinolschnitte, gedruckt von Marc Berger im V.E.B. Schwarzdruck Berlin, liegen als separate Auflage in Form einer Graphikmappe vor.

NaCl. Die Originallinolschnitte, gedruckt von Marc Berger im V.E.B. Schwarzdruck Berlin, liegen als separate Auflage in Form einer Graphikmappe vor. NaCl Künstlerische Konzeption: Xenia Leizinger Repros: Roman Willhelm technische Betreuung und Druck: Frank Robrecht Schrift: Futura condensed, Bernhard Modern Papier: Igepa Design Offset naturweiß 120

Mehr