Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download ""

Transkript

1 Wie beim letzten Mal - bitte besucht: Ihr seid gleich wieder gefragt...

2 Übung Algorithmen I Lukas Barth (Mit Folien von Julian Arz, Timo Bingmann, Sebastian Schlag und Christoph Striecks)

3 Organisatorisches Zweimal nicht abgeholte Übungsblätter: Kasten vor Raum 277 Zu den üblichen Arbeitszeiten Karatsuba-Ofman-Aufgabe auf ÜB1: Mea Culpa!

4 Roadmap Listen Skip List Hotlist Amortisierte Analyse

5 Verkettete Listen Gut: Einfügen Schlecht: Suchen

6 Listen - Mit Überholspur head head

7 Listen - Mit Überholspur head head Skip Lists Mehrere Levels von verketteten Listen Unterstes Level: Normale Liste Höhere Level: Elemente überspringen Elemente haben eine Höhe Sinnvoll vor allem für sortierte Listen

8 Skip Lists head head Optimale Höhe der Elemente?

9 Skip Lists head head Optimale Höhe der Elemente? height(k) = max{h a Z: a 2 h = k} Simuliert binäre Suche

10 Skip Lists head height(k) = max{h a Z: a 2 h = k} Simuliert binäre Suche

11 Skip Lists head height(k) = max{h a Z: a 2 h = k} Simuliert binäre Suche Pingo Time! Laufzeiten von Suchen und Einfügen?

12 Skip Lists head height(k) = max{h a Z: a 2 h = k} Simuliert binäre Suche Laufzeiten? Suche: O(log n) Iterieren: O(n) Einfügen, Löschen...?

13 Skip Lists Dynamische Datenstruktur? Randomisiert! Höhe h mit Wahrscheinlichkeit p h p = 1? 2

14 Skip Lists Dynamische Datenstruktur? Randomisiert! Höhe h mit Wahrscheinlichkeit p h p = 1? 2 Bei linearen Operationen: aufräumen

15 Skip Lists Dynamische Datenstruktur? Randomisiert! Höhe h mit Wahrscheinlichkeit p h p = 1? 2 Bei linearen Operationen: aufräumen Wie lange dauert das Aufräumen..? Primitive Listen-Operationen: O(1)

16 Skip Lists Dynamische Datenstruktur? Randomisiert! Höhe h mit Wahrscheinlichkeit p h p = 1 2? Bei linearen Operationen: aufräumen Wie lange dauert das Aufräumen..? Primitive Listen-Operationen: O(1) Jedes Element muss in max. log n Listen eingefügt (oder entfernt) werden

17 Skip Lists Dynamische Datenstruktur? Randomisiert! Höhe h mit Wahrscheinlichkeit p h p = 1 2? Bei linearen Operationen: aufräumen Wie lange dauert das Aufräumen..? Primitive Listen-Operationen: O(1) Jedes Element muss in max. log n Listen eingefügt (oder entfernt) werden O(n log n)

18 Skip Lists - Performance Erwartete Komplexität Speicherplatz: O(n)

19 Skip Lists - Performance Erwartete Komplexität Speicherplatz: O(n) Suchen: O(log n)

20 Skip Lists - Performance Erwartete Komplexität Speicherplatz: O(n) Suchen: O(log n) Einfügen, Löschen: O(log n)

21 Skip Lists - Performance Erwartete Komplexität Speicherplatz: O(n) Suchen: O(log n) Einfügen, Löschen: O(log n) Achtung! Kein Worst-Case!

22 Amortisierte Analyse Die Idee Viele schnelle Operationen, wenig langsame Umverteilen der Laufzeit

23 Amortisierte Analyse Die Idee Viele schnelle Operationen, wenig langsame Umverteilen der Laufzeit

24 Amortisierte Analyse Die Idee Viele schnelle Operationen, wenig langsame Umverteilen der Laufzeit

25 Amortisierte Analyse Die Idee Viele schnelle Operationen, wenig langsame Umverteilen der Laufzeit

26 Amortisierte Analyse Die Idee Viele schnelle Operationen, wenig langsame Umverteilen der Laufzeit

27 Amortisierte Analyse - Beispiel Das Ziel Skip List mit Worst-Case-Garantien

28 Amortisierte Analyse - Beispiel Das Ziel Skip List mit Worst-Case-Garantien Annahme: Bei n Elementen nur log n Anfragen

29 Amortisierte Analyse - Beispiel Das Ziel Skip List mit Worst-Case-Garantien Annahme: Bei n Elementen nur log n Anfragen Wir wollen: Einfügen, Anfrage in O ( log 2 n ) (amortisiert!)

30 Amortisierte Analyse - Beispiel Das Ziel Skip List mit Worst-Case-Garantien Annahme: Bei n Elementen nur log n Anfragen Wir wollen: Einfügen, Anfrage in O ( log 2 n ) (amortisiert!) Zur Erinnerung... Einfügen: O(log n) Suchen in optimaler Skip List: O(log n) Aufräumen: O(n log n)

31 Amortisierte Analyse - Beispiel Idee Beim Einfügen keine Mühe geben Vor jeder Anfrage aufräumen

32 Amortisierte Analyse - Beispiel Idee Beim Einfügen keine Mühe geben Vor jeder Anfrage aufräumen Komplexität insgesamt: n c 1 log n + log n c 2 n log n

33 Amortisierte Analyse - Beispiel Idee Beim Einfügen keine Mühe geben Vor jeder Anfrage aufräumen Komplexität insgesamt: n c 1 + log n c 2 n log n

34 Amortisierte Analyse - Erinnerung Achtung, verkürzt! A Op : amortisierte Kosten von Operation Op O T Op : tatsächliche Kosten von Operation Op O Op Berechnung: s 1 Op 0 2 Op s1 3 Op s2 n sn Die angenommenen amortisierten Kosten sind korrekt, wenn c + 1 i n T Opi }{{} tatsächliche Gesamtkosten für eine Konstante c 1 i n A Opi }{{} amortisierte Gesamtkosten

35 Amortisierte Analyse - Beispiel 1 i n T Opi =n c 1 + log n c 2 n log n

36 Amortisierte Analyse - Beispiel 1 i n T Opi =n c 1 + log n c 2 n log n c 1 n log 2 n + c 2 n log 2 n

37 Amortisierte Analyse - Beispiel 1 i n T Opi =n c 1 + log n c 2 n log n c 1 n log 2 n + c 2 n log 2 n =(c 1 + c 2 ) n log 2 n

38 Amortisierte Analyse - Beispiel 1 i n T Opi =n c 1 + log n c 2 n log n c 1 n log 2 n + c 2 n log 2 n =(c 1 + c 2 ) n log 2 n A Opi = n log 2 n + log n log 2 n 1 i n

39 Amortisierte Analyse - Beispiel 1 i n T Opi =n c 1 + log n c 2 n log n c 1 n log 2 n + c 2 n log 2 n =(c 1 + c 2 ) n log 2 n ( ) c 3 A Opi = c 3 (n log 2 n + log n log 2 n ) 1 i n

40 Amortisierte Analyse - Beispiel 1 i n T Opi =n c 1 + log n c 2 n log n c 1 n log 2 n + c 2 n log 2 n =(c 1 + c 2 ) n log 2 n ( ) c 3 A Opi = c 3 (n log 2 n + log n log 2 n ) 1 i n c 3 n log 2 n

41 Hotlist Operationen insert(key k, Data d) lookup(key k) : Data delete(key k) Ziel: jede Operation in amortisiert O( n) Zeit

42 Hotlist n (Unsortierte) Liste der Größe n Sortiertes Array der Größe n n

43 Hotlist - Operationen Lookup lookup(key k) : Data Vorgehen: n durchsuche geordnetes Array mit binärer Suche durchsuche Hotlist komplett n Laufzeit: O ( log n + n ) = O ( n )

44 Hotlist - Operationen insert insert(key k, Data d) n Fall A: in Hotlist ist Platz nächste freie Position in Hotlist n Laufzeit: O(1)

45 Hotlist - Operationen insert insert(key k, Data d) Fall B: in Hotlist ist kein Platz sortiere Hotlist merge: führe sortierte Listen zusammen k erstes Element in neuer Hotlist n n n + n

46 Hotlist - Operationen insert insert(key k, Data d) Fall B: in Hotlist ist kein Platz sortiere Hotlist merge: führe sortierte Listen zusammen k erstes Element in neuer Hotlist Laufzeit: n ) O( 2 + n = O(n) n n n + n

47 Hotlist - Operationen insert insert(key k, Data d) Fall B: in Hotlist ist kein Platz sortiere Hotlist merge: führe sortierte Listen zusammen k erstes Element in neuer Hotlist Pingo Time! Wie schnell sortieren wir n Elemente? n n Laufzeit: n ) O( 2 + n = O(n) n + n

48 Hotlist - Operationen insert insert(key k, Data d) Fall B: in Hotlist ist kein Platz sortiere Hotlist merge: führe sortierte Listen zusammen k erstes Element in neuer Hotlist Laufzeit: O ( n log( n) + n ) = O(n) n n n + n

49 Hotlist - Amortisierung Amortisierung von insert nach Zusammenführung: n 1 Positionen in der Hotlist frei n insert-operationen bis zur nächsten Zusammenführung Zusammenführung hat Aufwand cn Also: spare bei jeder einfachen insert-operation c n an bezahle bei der letzten Operation cn

50 Hotlist - Operationen delete delete(key k): Wenn bisher weniger als O ( n ) Löschoperationen: n n

51 Hotlist - Operationen delete delete(key k): Wenn bisher weniger als O ( n ) Löschoperationen: n jedes Element bekommt valid -Bit lookup: suche k setze valid -Bit auf 0 n Laufzeit: O ( n + log n ) = O ( n )

52 Hotlist - Operationen delete delete(key k): bei mehr als O ( n ) Lösch-Operationen zwischen zwei Zusammenführungen n Vorgehen ähnlich zu insert Reorganisation nach O ( n ) Lösch-Operationen n Laufzeit: Analyse wie bei insert

53 Hotlist - Operationen delete Warum überhaupt löschen?

54 Hotlist - Operationen delete Warum überhaupt löschen? n ist hier: Maximale Anzahl von Elementen in der Hotlist nicht Anzahl Operationen nicht Anzahl gesehene Elemente Ohne Löschen: Datenstruktur wächst unbegrenzt! Laufzeiten gingen kaputt

55 Hotlist - Zusammenfassung insert(key k): Aufwand amortisiert in O ( n ) lookup(key k): Aufwand in O ( n ) delete(key k): Aufwand amortisiert in O ( n )

56 Verkettete Listen

57 Verkettete Listen Einzelner Speicherblock? Allokation dauert Liste über ganzen Speicher verstreut?

58 Verkettete Listen - Drei Arrays key next prev

59 Verkettete Listen - Ein Array

60 Variablenwechsel T (n) = T ( n) + 1 für n = 2 2i, T (4) = 1

61 Variablenwechsel Wie löst man Rekurrenzen der Form T (n) = T ( n) + 1?

62 Variablenwechsel Wie löst man Rekurrenzen der Form T (n) = T ( n) + 1? Setze m = log n, also n = 2 m. Dann: T (2 m ) = T (2 m 2 ) + 1

63 Variablenwechsel T (2 m ) = T (2 m 2 ) + 1

64 Variablenwechsel T (2 m ) = T (2 m 2 ) + 1 Trick: setze S(m) := T (2 m ) liefert: ( m ) S(m) = S + 1 2

65 Variablenwechsel T (2 m ) = T (2 m 2 ) + 1 Trick: setze S(m) := T (2 m ) liefert: ( m ) S(m) = S S(m) O(?)

66 Variablenwechsel T (2 m ) = T (2 m 2 ) + 1 Trick: setze S(m) := T (2 m ) liefert: ( m ) S(m) = S S(m) O( log m)

67 Variablenwechsel T (n) = T ( n) + 1 m = log n S(m) = S( m 2 ) + 1 S(m) O(log m) liefert für n = 2 2i : T (n) = T (2 m ) = S(m) O(log m) = O(log log n).

68 Zusammenfassung Listen Array-Speicherung Skip List Randomisierte Datenstruktur Erwarteter Aufwand O(log n) Aggregat-Methode Hotlist Mischung aus Array und Liste Einfügen, Löschen und Suchen (amortisiert) in O ( n ) Token-Methode

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I 10.5.17 Sascha Witt sascha.witt@kit.edu (Mit Folien von Lukas Barth, Julian Arz, Timo Bingmann, Sebastian Schlag und Christoph Striecks) Roadmap Listen Skip List Hotlist Amortisierte

Mehr

3. Übung Algorithmen I

3. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

7. Übung zu Algorithmen I 1. Juni 2016

7. Übung zu Algorithmen I 1. Juni 2016 7. Übung zu Algorithmen I 1. Juni 2016 Lukas Barth lukas.barth@kit.edu (mit Folien von Lisa Kohl) Roadmap Ganzzahliges Sortieren mit reellen Zahlen Schnellere Priority Queues Bucket Queue Radix Heap Organisatorisches

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I.6.5 Christoph Striecks Christoph.Striecks@kit.edu (Mit Folien von Julian Arz, Timo Bingmann und Sebastian Schlag.) Roadmap Hinweise zur Übungsklausur (Weitere) Traversierungen von Binärbäumen

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 7 (21.5.2014) Binäre Suche, Hashtabellen I Algorithmen und Komplexität Abstrakte Datentypen : Dictionary Dictionary: (auch: Maps, assoziative

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I 18.5.16 Lukas Barth lukas.barth@kit.edu (Mit Folien von Julian Arz, Timo Bingmann, Sebastian Schlag und Christoph Striecks) Roadmap Sortieren Kleine Wiederholung Visualisierungen Adaptives

Mehr

ContainerDatenstrukturen. Große Übung 4

ContainerDatenstrukturen. Große Übung 4 ContainerDatenstrukturen Große Übung 4 Aufgabenstellung Verwalte Kollektion S von n Objekten Grundaufgaben: Iterieren/Auflistung Suche nach Objekt x mit Wert/Schlüssel k Füge ein Objekt x hinzu Entferne

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 10, Donnerstag 8.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 10, Donnerstag 8. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 10, Donnerstag 8. Januar 2015 (Verkettete Listen, Binäre Suchbäume) Junior-Prof. Dr.

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 11 (4.6.2014) Binäre Suchbäume II Algorithmen und Komplexität Binäre Suchbäume Binäre Suchbäume müssen nicht immer so schön symmetrisch sein

Mehr

3. Übungsblatt zu Algorithmen I im SoSe 2017

3. Übungsblatt zu Algorithmen I im SoSe 2017 Karlsruher Institut für Technologie Prof. Dr. Jörn Müller-Quade Institut für Theoretische Informatik Björn Kaidel, Sebastian Schlag, Sascha Witt 3. Übungsblatt zu Algorithmen I im SoSe 2017 http://crypto.iti.kit.edu/index.php?id=799

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

Abstrakter Datentyp (ADT): Besteht aus einer Menge von Objekten, sowie Operationen, die auf diesen Objekten wirken.

Abstrakter Datentyp (ADT): Besteht aus einer Menge von Objekten, sowie Operationen, die auf diesen Objekten wirken. Abstrakte Datentypen und Datenstrukturen/ Einfache Beispiele Abstrakter Datentyp (ADT): Besteht aus einer Menge von Objekten, sowie Operationen, die auf diesen Objekten wirken. Datenstruktur (DS): Realisierung

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I 20.5.15 Christoph Striecks Christoph.Striecks@kit.edu (Mit Folien von Julian Arz, Timo Bingmann und Sebastian Schlag.) Roadmap Organisation Mergesort, Quicksort Dual Pivot Quicksort

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Kürzeste Wege, Heaps, Hashing Heute: Kürzeste Wege: Dijkstra Heaps: Binäre Min-Heaps Hashing:

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 10 (27.5.2016) Binäre Suchbäume II Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 9 (28.5.2014) Hashtabellen III Algorithmen und Komplexität Offene Adressierung : Zusammenfassung Offene Adressierung: Alle Schlüssel/Werte

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales

Mehr

Übungsklausur Algorithmen I

Übungsklausur Algorithmen I Universität Karlsruhe, Institut für Theoretische Informatik Prof. Dr. P. Sanders 26.5.2010 svorschlag Übungsklausur Algorithmen I Hiermit bestätige ich, dass ich die Klausur selbständig bearbeitet habe:

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2016/17 13. Vorlesung Binäre Suchbäume Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Dynamische Menge verwaltet Elemente einer sich ändernden Menge

Mehr

13. Hashing. AVL-Bäume: Frage: Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n)

13. Hashing. AVL-Bäume: Frage: Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n) AVL-Bäume: Ausgabe aller Elemente in O(n) Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n) Frage: Kann man Einfügen, Löschen und Suchen in O(1) Zeit? 1 Hashing einfache Methode

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales

Mehr

8 Elementare Datenstrukturen

8 Elementare Datenstrukturen Algorithmen und Datenstrukturen 186 8 Elementare Datenstrukturen In diesem und dem folgenden Kapitel werden grundlegende Techniken der Darstellung und Manipulation dynamischer Mengen auf Computern vorgestellt.

Mehr

Doppelt verkettete Listen (1)

Doppelt verkettete Listen (1) Doppelt verkettete Listen (1) Verkettete Listen bestehen aus einer Menge linear angeordneter Objekte. Anordnung realisiert durch Verweise. Unterstützen Operationen Insert, Delete, Search, usw. (nicht unbedingt

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

ADS: Algorithmen und Datenstrukturen

ADS: Algorithmen und Datenstrukturen ADS: Algorithmen und Datenstrukturen Teil π Peter F. Stadler & Konstantin Klemm Bioinformatics Group, Dept. of Computer Science & Interdisciplinary Center for Bioinformatics, University of Leipzig Oct

Mehr

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 Robert Elsässer Paderborn, den 15. Mai 2008 u.v.a. Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 AUFGABE 1 (6 Punkte): Nehmen wir an, Anfang bezeichne in einer normalen

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (07 - Skiplisten) Prof. Dr. Susanne Albers

Vorlesung Informatik 2 Algorithmen und Datenstrukturen. (07 - Skiplisten) Prof. Dr. Susanne Albers Vorlesung Informatik 2 Algorithmen und Datenstrukturen (07 - Skiplisten) Prof. Dr. Susanne Albers Skiplisten. Perfekte Skiplisten 2. Randomisierte Skiplisten 3. Verhalten von randomisierten Skiplisten

Mehr

Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung

Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung Gliederung 1. Motivation / Einordnung / Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs

Mehr

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Heaps. Vorlesung 8: Heapsort (K6) Joost-Pieter Katoen. 7. Mai 2015

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Heaps. Vorlesung 8: Heapsort (K6) Joost-Pieter Katoen. 7. Mai 2015 Datenstrukturen und Algorithmen Vorlesung 8: (K6) 1 Joost-Pieter Katoen Lehrstuhl für Informatik Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-15/dsal/ 7. Mai 015 3 Joost-Pieter

Mehr

12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete.

12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete. Worst-case Zeit für Search: Θ(n). In der Praxis jedoch sehr gut. Unter gewissen

Mehr

3. Übungsblatt zu Algorithmen I im SS 2010

3. Übungsblatt zu Algorithmen I im SS 2010 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders G.V. Batz, C. Schulz, J. Speck 3. Übungsblatt zu Algorithmen I im SS 2010 http://algo2.iti.kit.edu/algorithmeni.php

Mehr

Algorithmen I. Tutorium 1-3. Sitzung. Dennis Felsing

Algorithmen I. Tutorium 1-3. Sitzung. Dennis Felsing Algorithmen I Tutorium 1-3. Sitzung Dennis Felsing dennis.felsing@student.kit.edu www.stud.uni-karlsruhe.de/~ubcqr/algo 2011-05-02 Überblick 1 Sortieren und Suchen 2 Mastertheorem 3 Datenstrukturen 4 Kreativaufgabe

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 202/3 24. Vorlesung Amortisierte Analyse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Hash-Tabellen Frage: Ziel: Problem: Lösung: Wie groß macht man

Mehr

11. Elementare Datenstrukturen

11. Elementare Datenstrukturen 11. Elementare Datenstrukturen Definition 11.1: Eine dynamische Menge ist gegeben durch eine oder mehrer Mengen von Objekten sowie Operationen auf diesen Mengen und den Objekten der Mengen. Dynamische

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12 1. Kapitel 11. Listen. Listen

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12 1. Kapitel 11. Listen. Listen Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12 1 Kapitel 11 Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12 2 Ziele Implementierungen für

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 10 (3.6.2014) Binäre Suchbäume I Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus sind viele Teile direkt aus der Vorlesung

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 11, Donnerstag, 15.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 11, Donnerstag, 15. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 11, Donnerstag, 15. Januar 2015 (Balancierte Suchbäume) Junior-Prof. Dr. Olaf Ronneberger

Mehr

1. Übungsblatt zu Algorithmen II im WS 2011/2012

1. Übungsblatt zu Algorithmen II im WS 2011/2012 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter Sanders Moritz Kobitzsch, Dennis Schieferdecker. Übungsblatt zu Algorithmen II im WS 0/0 http://algo.iti.kit.edu/algorithmenii.php

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2015 Marc Bux, Humboldt-Universität zu Berlin Agenda Schreibtischtest zu Suchverfahren Amortisierte Analyse Max-Heaps und HeapSort 2 Agenda Schreibtischtest

Mehr

Übung: Algorithmen und Datenstrukturen SS 2007

Übung: Algorithmen und Datenstrukturen SS 2007 Übung: Algorithmen und Datenstrukturen SS 2007 Prof. Lengauer Sven Apel, Michael Claÿen, Christoph Zengler, Christof König Blatt 5 Votierung in der Woche vom 04.06.0708.06.07 Aufgabe 12 Manuelle Sortierung

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (12 Hashverfahren: Verkettung der Überläufer) Prof. Dr. Susanne Albers Möglichkeiten der Kollisionsbehandlung Kollisionsbehandlung: Die Behandlung

Mehr

6/23/06. Universelles Hashing. Nutzen des Universellen Hashing. Problem: h fest gewählt es gibt ein S U mit vielen Kollisionen

6/23/06. Universelles Hashing. Nutzen des Universellen Hashing. Problem: h fest gewählt es gibt ein S U mit vielen Kollisionen Universelles Hashing Problem: h fest gewählt es gibt ein S U mit vielen Kollisionen wir können nicht annehmen, daß die Keys gleichverteilt im Universum liegen (z.b. Identifier im Programm) könnte also

Mehr

Amortisierte Analyse

Amortisierte Analyse Amortisierte Analyse Amortisierung Betrachte eine Folge a 1, a 2,..., a n von n Operation auf Datenstruktur D T i = Ausführungszeit von a i T = T 1 + T 2 +... + T n, Gesamtlaufzeit Oft kann die Laufzeit

Mehr

Hash-Verfahren. Prof. Dr. T. Kudraß 1

Hash-Verfahren. Prof. Dr. T. Kudraß 1 Hash-Verfahren Prof. Dr. T. Kudraß 1 Einführung Drei Alternativen, wie Dateneinträge k* im Index aussehen können: 1. Datensatz mit Schlüsselwert k.

Mehr

Algorithmische Geometrie 3. Schnitte von Liniensegmenten

Algorithmische Geometrie 3. Schnitte von Liniensegmenten Algorithmische Geometrie 3. Schnitte von Liniensegmenten JProf. Dr. Heike Leitte Computergraphik und Visualisierung Inhaltsverzeichnis 1. Einführung 2. Konvexe Hülle 3. Schnitte von Liniensegmenten 4.

Mehr

Informatik II Skip-Lists & selbstorganisierende Listen (als Bsp. für randomisierte Algos und selbstorganisierende Datenstrukturen)

Informatik II Skip-Lists & selbstorganisierende Listen (als Bsp. für randomisierte Algos und selbstorganisierende Datenstrukturen) lausthal Informatik II Skip-Lists & selbstorganisierende Listen (als Bsp. für randomisierte Algos und selbstorganisierende Datenstrukturen). Zachmann lausthal University, ermany zach@in.tu-clausthal.de

Mehr

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510 Konvexe Hülle Definition konvexe Menge: Für je zwei beliebige Punkte, die zur Menge gehören, liegt auch stets deren Verbindungsstrecke ganz in der Menge. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links),

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen 11. Übung Verkettete Listen, Sortieren Insertionsort, Mergesort, Radixsort, Quicksort Clemens Lang Übungen zu AuD 19. Januar 2010 Clemens Lang (Übungen zu AuD) Algorithmen

Mehr

Suchen und Sortieren

Suchen und Sortieren Ideen und Konzepte der Informatik Suchen und Sortieren Ordnung ist das halbe Leben Antonios Antoniadis (Basierend auf Folien von Kurt Mehlhorn und Konstantinos Panagiotou) 6. November 2017 6. November

Mehr

12. Dynamische Datenstrukturen

12. Dynamische Datenstrukturen Motivation: Stapel. Dynamische Datenstrukturen Verkettete Listen, Abstrakte Datentypen Stapel, Warteschlange, Implementationsvarianten der verketteten Liste 0 04 Motivation: Stapel ( push, pop, top, empty

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum

Mehr

Wiederholung. Bäume sind zyklenfrei. Rekursive Definition: Baum = Wurzelknoten + disjunkte Menge von Kindbäumen.

Wiederholung. Bäume sind zyklenfrei. Rekursive Definition: Baum = Wurzelknoten + disjunkte Menge von Kindbäumen. Wiederholung Baum: Gerichteter Graph, der die folgenden drei Bedingungen erfüllt: Es gibt einen Knoten, der nicht Endknoten einer Kante ist. (Dieser Knoten heißt Wurzel des Baums.) Jeder andere Knoten

Mehr

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda

Bäume. Text. Prof. Dr. Margarita Esponda SS 2012 O4 O5 O6 O ALP2-Vorlesung, M. Esponda Bäume O1 O2 Text O3 O4 O5 O6 O7 Prof. Dr. Margarita Esponda SS 2012 22. ALP2-Vorlesung, M. Esponda Inhalt 1. Einführung 2. Warum Bäume? 3. Listen und Arrays vs. Bäume 4. Einfach verkettete binäre Suchbäume

Mehr

Grundlagen der Algorithmen und Datenstrukturen Kapitel 4

Grundlagen der Algorithmen und Datenstrukturen Kapitel 4 Grundlagen der Algorithmen und Datenstrukturen Kapitel 4 Christian Scheideler + Helmut Seidl SS 2009 06.05.09 Kapitel 4 1 Wörterbuch-Datenstruktur S: Menge von Elementen Jedes Element e identifiziert über

Mehr

8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften

8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften Heapsort, Quicksort, Mergesort 8. Sortieren II 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 9 210 Heapsort [Max-]Heap 6 Inspiration von Selectsort: Schnelles Einfügen Binärer Baum mit

Mehr

Algorithmen und Datenstrukturen, FS17 Prof Dr Christian Tschudin

Algorithmen und Datenstrukturen, FS17 Prof Dr Christian Tschudin Departement Mathematik und Informatik Algorithmen und Datenstrukturen, FS17 Prof Dr Christian Tschudin 5. April 2017 Suchbäume I Andrew D. Booth Algorithmen und Datenstrukturen, FS17 5. April 2017 2 /

Mehr

Dynamische Mengen. Realisierungen durch Bäume

Dynamische Mengen. Realisierungen durch Bäume Dynamische Mengen Eine dynamische Menge ist eine Datenstruktur, die eine Menge von Objekten verwaltet. Jedes Objekt x trägt einen eindeutigen Schlüssel key[x]. Die Datenstruktur soll mindestens die folgenden

Mehr

Informatik II Prüfungsvorbereitungskurs

Informatik II Prüfungsvorbereitungskurs Informatik II Prüfungsvorbereitungskurs Tag 4, 23.6.2016 Giuseppe Accaputo g@accaputo.ch 1 Programm für heute Repetition Datenstrukturen Unter anderem Fragen von gestern Point-in-Polygon Algorithmus Shortest

Mehr

NAME, VORNAME: Studiennummer: Matrikel:

NAME, VORNAME: Studiennummer: Matrikel: TU Ilmenau, Fakultat IA Institut für Theoretische Informatik FG Komplexitätstheorie und Effiziente Algorithmen Prof. Dr. (USA) M. Dietzfelbinger Klausur Algorithmen und Datenstrukturen SS08, Ing.-Inf.

Mehr

Fibonacci-Heaps und deren Anwendung

Fibonacci-Heaps und deren Anwendung Fibonacci-Heaps und deren Anwendung Alexander Schiffel und Stefan Hurtz 24. Juli 2005 Inhaltsverzeichnis 1 Einleitung und Motivation 2 2 Die Datenstruktur 2 3 Amortisierte Laufzeitanalyse 3 4 Grundoperationen

Mehr

Komplexität von Algorithmen:

Komplexität von Algorithmen: Komplexität von Algorithmen: Ansatz: Beschreiben/erfassen der Komplexität über eine Funktion, zur Abschätzung des Rechenaufwandes abhängig von der Größe der Eingabe n Uns interessiert: (1) Wie sieht eine

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Sortierte Folgen Maike Buchin 30.5., 1.6., 13.6.2017 Sortierte Folgen Häufiges Szenario: in einer Menge von Objekten mit Schlüsseln (aus geordnetem Universum) sollen Elemente

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

ALP II Dynamische Datenmengen Datenabstraktion (Teil 2)

ALP II Dynamische Datenmengen Datenabstraktion (Teil 2) ALP II Dynamische Datenmengen Datenabstraktion (Teil 2) O1 O2 O3 O4 SS 2012 Prof. Dr. Margarita Esponda 49 Einfach verkettete Listen O1 O2 O3 50 Einführung Einfach verkettete Listen sind die einfachsten

Mehr

Teil VII. Hashverfahren

Teil VII. Hashverfahren Teil VII Hashverfahren Überblick 1 Hashverfahren: Prinzip 2 Hashfunktionen 3 Kollisionsstrategien 4 Aufwand 5 Hashen in Java Prof. G. Stumme Algorithmen & Datenstrukturen Sommersemester 2009 7 1 Hashverfahren:

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 12

Datenstrukturen & Algorithmen Lösungen zu Blatt 6 FS 12 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 8. März

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 11, Donnerstag, 16.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 11, Donnerstag, 16. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 11, Donnerstag, 16. Januar 2013 (Balancierte Suchbäume) Junior-Prof. Dr. Olaf Ronneberger

Mehr

Kap. 4.7 Skiplisten. 14./15. VO DAP2 SS /16. Juni 2009

Kap. 4.7 Skiplisten. 14./15. VO DAP2 SS /16. Juni 2009 Kap. 4.7 Skiplisten Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 14./15. VO DAP2 SS 2008 9./16. Juni 2009 1 2. Übungstest Termin: Di 16. Juni 2009 im AudiMax,

Mehr

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke Theoretische Informatik 1 WS 2007/2008 Prof. Dr. Rainer Lütticke Inhalt der Vorlesung Grundlagen - Mengen, Relationen, Abbildungen/Funktionen - Datenstrukturen - Aussagenlogik Automatentheorie Formale

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss.

(a, b)-bäume / 1. Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. (a, b)-bäume / 1. Szenario: Datenmenge ist so groß, dass sie auf der Festplatte abgespeichert werden muss. Konsequenz: Kommunikation zwischen Hauptspeicher und Festplatte - geschieht nicht Byte für Byte,

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 5 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 5 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 26. März

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Algorithmen und Datenstrukturen Teil 3 Suchen in Listen Version vom: 15. November 2016

Mehr

Mehrwegbäume Motivation

Mehrwegbäume Motivation Mehrwegbäume Motivation Wir haben gute Strukturen (AVL-Bäume) kennen gelernt, die die Anzahl der Operationen begrenzen Was ist, wenn der Baum zu groß für den Hauptspeicher ist? Externe Datenspeicherung

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO INF.02031UF (2-4)-Bäume robert.legenstein@igi.tugraz.at 1 7. Bäume Bäume als Datenstruktur Binärbäume Balancierte Bäume (2-4)-Bäume Anwendung: Mischbare Warteschlangen

Mehr

6. Sich selbst organisierende Datenstrukturen

6. Sich selbst organisierende Datenstrukturen 6. Sich selbst organisierende Datenstrukturen 6.1 Motivation einfach, wenig Verwaltungsoverhead effizient im amortisierten Sinn EADS 6.1 Motivation 201/598 6.2 Sich selbst organisierende lineare Listen

Mehr

Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Skip-Listen Autor: Sven Schuierer

Algorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Skip-Listen Autor: Sven Schuierer Alorithmen und Datenstrukturen (Th. Ottmann und P. Widmayer) Folien: Skip-Listen Autor: Sven Schuierer Institut für Informatik Geores-Köhler-Allee Albert-Ludwis-Universität Freibur 1 Überblick Überblick

Mehr

Suchstrukturen. Übersicht. 8 Suchstrukturen. Allgemeines. H. Täubig (TUM) GAD SS

Suchstrukturen. Übersicht. 8 Suchstrukturen. Allgemeines. H. Täubig (TUM) GAD SS Übersicht 8 Suchstrukturen Allgemeines Binäre Suchbäume AVL-Bäume H. Täubig (TUM) GAD SS 14 309 Allgemeines Übersicht 8 Suchstrukturen Allgemeines Binäre Suchbäume AVL-Bäume H. Täubig (TUM) GAD SS 14 310

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 16/17. Kapitel 13. Listen. Listen 1

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 16/17. Kapitel 13. Listen. Listen 1 Kapitel 13 Listen Listen 1 Ziele Implementierungen für Listen kennenlernen Einfach verkettete und doppelt verkettete Listen verstehen Listen-Implementierungen in der Java-Bibliothek kennenlernen Durch

Mehr

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6

Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Robert Elsässer u.v.a. Paderborn, 29. Mai 2008 Beispiellösungen zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 6 Aufgabe 1 (6 Punkte): Zunächst sollte klar sein, daß ein vollständiger Binärer

Mehr

Kapitel 3. Speicherhierachie. Beispiel für Cache Effekte. Motivation Externspeicheralgorithmen. Motivation Für Beachtung von Cache Effekten

Kapitel 3. Speicherhierachie. Beispiel für Cache Effekte. Motivation Externspeicheralgorithmen. Motivation Für Beachtung von Cache Effekten Kapitel 3 Algorithmen für große Datenmengen Motivation Externspeicheralgorithmen Es werden immer größere Datenmengen gesammelt (WWW, Medizin, Gentechnik ) Daten müssen auf großen externen Massenspeichern

Mehr

Erinnerung VL vom

Erinnerung VL vom Erinnerung VL vom 09.05.2016 Analyse von Hashtabellen mit verketteten Listen Erwartete Laufzeit O(1) bei zuf. Hashfkt. und falls M O(m) Guter Ersatz (hier) für zuf. Hashfkt.: universelle Hashfunktionen

Mehr

Algorithm Engineering. Amortisierung. Stefan Edelkamp

Algorithm Engineering. Amortisierung. Stefan Edelkamp Algorithm Engineering Amortisierung Stefan Edelkamp Analyse von Algorithmen Best Case Worst Case Average Case Amortisierte Worst Case Was sind die durchschnittlichen Kosten einer schlechtest möglichen

Mehr

Balancierte Bäume. Minimale Knotenanzahl von AVL-Bäumen. AVL-Bäume. Definition für "balanciert":

Balancierte Bäume. Minimale Knotenanzahl von AVL-Bäumen. AVL-Bäume. Definition für balanciert: Balancierte Bäume Aufwand, ein Element zu finden, entspricht der Tiefe des gefundenen Knotens im worst case = Tiefe des Baumes liegt zwischen log N und N Definition für "balanciert": es gibt verschiedene

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Prioritätswarteschlangen Maike Buchin 18. und 23.5.2017 Prioritätswarteschlange Häufiges Szenario: dynamische Menge von Objekten mit Prioritäten, z.b. Aufgaben, Prozesse, in der

Mehr

Bereichsabfragen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Bereichsabfragen. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.05.2011 Geometrie in Datenbanken In einer Personaldatenbank

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Informatik II Vorlesung am D-BAUG der ETH Zürich

Informatik II Vorlesung am D-BAUG der ETH Zürich Informatik II Vorlesung am D-BAUG der ETH Zürich Vorlesung 9, 2.5.2016 [Nachtrag zu Vorlesung : Numerische Integration, Zusammenfassung Objektorientierte Programmierung] Dynamische Datenstrukturen II:

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

Motivation Binäre Suchbäume

Motivation Binäre Suchbäume Kap..: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Zusätzliche Lernraumbetreuung Morteza Monemizadeh: Jeden Montag von :00 Uhr-:00 Uhr in

Mehr

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner Musterlösung Problem : Average-case-Laufzeit vs Worst-case-Laufzeit pt (a) Folgender Algorithmus löst das Problem der

Mehr

7. Sortieren Lernziele. 7. Sortieren

7. Sortieren Lernziele. 7. Sortieren 7. Sortieren Lernziele 7. Sortieren Lernziele: Die wichtigsten Sortierverfahren kennen und einsetzen können, Aufwand und weitere Eigenschaften der Sortierverfahren kennen, das Problemlösungsparadigma Teile-und-herrsche

Mehr

Algorithmische Intelligenz. Amortisierung. Stefan Edelkamp

Algorithmische Intelligenz. Amortisierung. Stefan Edelkamp Algorithmische Intelligenz Amortisierung Stefan Edelkamp Analyse von Algorithmen Best Case Worst Case Average Case Amortisierte Worst Case Was sind die durchschnittlichen Kosten einer schlechtest möglichen

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

5. Übungsblatt zu Algorithmen I im SoSe 2016

5. Übungsblatt zu Algorithmen I im SoSe 2016 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Dennis Hofheinz Lukas Barth, Lisa Kohl 5. Übungsblatt zu Algorithmen I im SoSe 2016 https://crypto.iti.kit.edu/index.php?id=algo-sose16

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr

Mehr