Mathematik I. Vorlesung 5

Größe: px
Ab Seite anzeigen:

Download "Mathematik I. Vorlesung 5"

Transkript

1 Prof. Dr. H. Brenner Osnabrüc WS 2009/2010 Mathemati I Vorlesung 5 Für zwei natürliche Zahlen n, m gilt n m genau dann, wenn man n = m+ mit einem N schreiben ann (siehe Aufgabe 4.12). In diesem Fall ist das aufgrund der Abziehregel eindeutig bestimmt und heißt die Differenz von n und m, geschrieben = n m. Bei n < m gibt es innerhalb von N eine Lösung für die Gleichung n = m + x. Innerhalb der ganzen Zahlen gibt es die negative Lösung x = n m. Die ganzen Zahlen Wir wollen die ganzen Zahlen ausgehend von den natürlichen Zahlen onstruieren. Für viele Konstrutionen in der Mathemati ist der Begriff der Äquivalenzrelation entscheidend. Die Strategie ist dabei, zuerst eine ziemlich große Menge zu onstruieren, die alle Elemente der beabsichtigten Menge (in aller Regel mehrfach) repräsentiert, und dann Elemente zu identifizieren, damit jedes Zielobjet einen eindeutigen Repräsentanten beommt. Definition 5.1. Es seien (M 1, 1 ) und (M 2, 2 ) zwei Mengen, auf denen jeweils eine Vernüpfung festgelegt ist. Dann heißt die auf der Produtmenge durch M 1 M 2 (x 1, x 2 ) (y 1, y 2 ) := (x 1 1 y 1, x 2 2 y 2 ) definierte Vernüpfung die Produtvernüpfung (oder omponentenweise Vernüpfung). Dies ist ein einfacher Begriff, bspw. wird auf dem R n die Vetorraumaddition omponentenweise erlärt. Eigenschaften der Einzelvernüpfungen übertragen sich diret auf die Produtvernüpfung. Wenn bspw. beide Vernüpfungen assoziativ sind, so gilt das auch für die Produtvernüpfung. Wir verwenden den Begriff in der folgenden Konstrution. 1

2 2 Beispiel 5.2. Es sei N die Menge der natürlichen Zahlen und M = N N die Produtmenge mit der omponentenweisen Addition. 1 Wir erlären auf M eine Relation durch 2 (a, b) (c, d), falls a + d = b + c. Dies ist bei a c genau dann der Fall, wenn es ein e N (nämlich e = c a) gibt mit (c, d) = (a, b) + (e, e). D.h. die beiden Paare unterscheiden sich um ein Diagonalelement, also um ein Paar, wo beide Komponenten übereinstimmen. Diese Relation ist eine Äquivalenzrelation auf M, siehe Aufgabe 5.1. Wenn man N N als ein quadratisches Gitter anordnet (das ist ein disretes Koordinatensystem ), so sind die Äquivalenzlassen gegeben durch die Punte auf einer zur Diagonalen parallelen disreten Geraden. Die Punte (a, b) mit a b sind äquivalent zu (a b, 0), sie haben also einen Repräsentanten, bei dem die zweite Komponente 0 ist. Die Punte (a, b) mit a b sind äquivalent zu (0, b a), sie haben also einen Repräsentanten, bei dem die erste Komponente 0 ist. Die Punte (a, a) sind zu (0, 0) äquivalent. Den Repräsentanten einer Äquivalenzlasse, bei dem mindestens eine Komponente null ist, nennen wir den Standardvertreter dieser Äquivalenzlasse. Die Standardvertreter sind die disreten Punte des begrenzenden Viertelreuzes; zu einem Punt ergibt sich der Standardvertreter, wenn man parallel zur Diagonalen in Richtung der Halbachsen wandert bis man auf einer der Halbachsen landet. Zwei Punte sind genau dann äquivalent, wenn sie den gleichen Standardvertreter besitzen. Wir bezeichnen nun die Quotientenmenge, also die Menge der Äquivalenzlassen unter dieser Äquivalenzrelation, als Menge der ganzen Zahlen und bezeichnen sie mit Z. Jede ganze Zahl hat dann genau einen Standardvertreter der Form n := (n, 0) mit n N +, der Form 0 := (0, 0) oder der Form n := (0, n) mit n N +. Eine natürliche Zahl n fassen wir von nun an als die ganze Zahl (n, 0) auf. 1 Passende Interpretationen für die Paare in diesem Kontext sind bspw.: Das Paar (a, b) repräsentiert das Ergebnis eines Fußballspieles, wobei a die Toranzahl der Heimmannschaft und b die Toranzahl der Gastmannschaft repräsentiert, oder: Das Paar (a, b) repräsentiert das Alter eines menschlichen Paares, wobei a für das Alter der Frau und b für das Alter des Mannes steht. Der Übergang zu den Äquivalenzlassen bedeutet dann, sich nur noch für die Tordifferenz bzw. den Altersunterschied zu interessieren, nicht mehr für das genaue Ergebnis bzw. das Alter der einzelnen Personen. Man ann auch das Paar als eine Schrittfolge aus a Schritten nach rechts und b Schritten nach lins ansehen. 2 Das Paar (a, b) wird später die Differenz a b repräsentieren.

3 Wir wollen nun zwei ganze Zahlen, also zwei solche Äquivalenzlassen [(a, b)] und [(c, d)] miteinander addieren, also eine Vernüpfung auf Z einzuführen. Der naheliegende Ansatz ist, diese Vernüpfung mittels der omponentenweisen Addition als [(a, b)] [(c, d)] := [(a + c, b + d)] zu definieren. Hier tritt das Problem der Wohldefiniertheit auf, denn die Vernüpfung wird erlärt unter Bezug auf Repräsentanten, und es ist nicht von vornherein lar, dass unterschiedliche Repräsentanten zum gleichen Ergebnis führen. Wenn also (a, b) (a, b ) und (c, d) (c, d ) sind, so muss man überprüfen, dass (a + c, b + d) (a + c, b + d ) und damit [(a + c, b + d)] = [(a + c, b + d )] ist. Dies ist der Fall, siehe Aufgabe 5.2. Man ann weiterhin zeigen, dass die so definierte Vernüpfung auf Z assoziativ und ommutativ ist, dass [(0, 0)] das neutrale Element der Vernüpfung ist und dass es zu jedem Element [(a, b)] ein inverses Element gibt, nämlich [(b, a)]. Wir definieren nun eine Multipliation auf Z durch [(a, b)] [(c, d)] := [(ac + bd, ad + bc)]. Dies ist wieder wohldefiniert und man ann zeigen, dass die Multipliation assoziativ und ommutativ ist mit 1 = [(1, 0)] als neutralem Element und dass das Distributivgesetz gilt. Um die Eigenschaften der Vernüpfungen, die wir auf den ganzen Zahlen haben, prägnant beschreiben zu önnen, dient der Begriff des ommutativen Ringes. Definition 5.3. Ein ommutativer Ring R ist eine Menge mit zwei Vernüpfungen + und (genannt Addition und Multipliation) und mit zwei ausgezeichneten Elementen 0 und 1 derart, dass folgende Bedingungen erfüllt sind: (1) (R, +, 0) ist eine ommutative Gruppe. (2) Die Multipliation ist eine assoziative und ommutative Vernüpfung und 1 ist das neutrale Element der Multipliation. (3) Es gilt das Distributivgesetz, also für alle a, b, c R. a (b + c) = (a b) + (a c) Lemma 5.4. Die Menge der ganzen Zahlen Z bilden einen ommutativen Ring. 3 Beweis. Siehe Aufgabe 5.14.

4 4 Von nun an stellen wir uns Z als eine beidseitige disrete Zahlengerade vor. Körper Wir werden von nun an den axiomatischen Aufbau der reellen Zahlen besprechen. Diese Axiome gliedern sich in algebraische Axiome, Anordnungsaxiome und das Vollständigeitsaxiom. Die algebraischen Axiome werden im Begriff des Körpers zusammengefasst. Ein Körper ist ein ommutativer Ring mit 0 1, bei dem zusätzlich jedes Element x 0 ein Inverses bzgl. der Multipliation bestizt. In der folgenden Definition werden alle Eigenschaften eines Körpers aufgeführt. Definition 5.5. Eine Menge K heißt ein Körper, wenn es zwei Vernüpfungen (genannt Addition und Multipliation) + : K K K und K K K und zwei verschiedene Elemente 0, 1 K gibt, die die folgenden Eigenschaften erfüllen. (1) Axiome der Addition (a) Assoziativgesetz: Für alle a, b, c K gilt: (a+b)+c = a+(b+c). (b) Kommutativgesetz: Für alle a, b K gilt a + b = b + a. (c) 0 ist das neutrale Element, d.h. für alle a K ist a + 0 = a. (d) Existenz des Negativen: Zu jedem a K gibt es ein Element b K mit a + b = 0. (2) Axiome der Multipliation (a) Assoziativgesetz: Für alle a, b, c K gilt: (a b) c = a (b c). (b) Kommutativgesetz: Für alle a, b K gilt a b = b a. (c) 1 ist das neutrale Element der Multipliation, d.h. für alle a K ist a 1 = a. (d) Existenz des Inversen: Zu jedem a K mit a 0 gibt es ein Element c K mit a c = 1. (3) Distributivgesetz: Für alle a, b, c K gilt a (b+c) = (a b)+(a c). In einem Körper gilt die Klammeronvention, dass die Multipliation stärer bindet als die Addition. Man ann daher a b + c d statt (a b) + (c d) schreiben. Zur weiteren Notationsvereinfachung wird das Produtzeichen häufig weggelassen. Die besonderen Elemente 0 und 1 in einem Körper werden als Nullelement und als Einselement bezeichnet. Nach der Definition müssen sie verschieden sein. Die wichtigsten Beispiele für einen Körper sind für uns die rationalen Zahlen und die reellen Zahlen. Die additiven Körperaxiome ann man so lesen, dass die Menge K zusammen mit dem ausgezeichneten Element 0 und der Addition + als Vernüpfung eine Gruppe bildet, die zusätzlich ommutativ ist. Ebenso bildet die Menge

5 K \{0} (also ganz K ohne die 0) mit dem neutralen Element 1 (das wegen der expliziten Voraussetzung der Körperaxiome von 0 verschieden ist und daher zu K \ {0} gehört) und der Multipliation eine (ebenfalls ommutative) Gruppe. Wenn ein Körper K vorliegt, so hat man also zugleich zwei Gruppen vorliegen, es ist aber falsch zu sagen, dass K auf zweifache Weise eine Gruppe ist, da einerseits K mit der Addition und andererseits K\{0} (und eben nicht K) eine Gruppe mit der Multipliation bildet. Lemma 5.6. In einem Körper K ist zu einem Element x K das Element y mit x + y = 0 eindeutig bestimmt. Bei x 0 ist auch das Element z mit xz = 1 eindeutig bestimmt. Beweis. Dies folgt aus der allgemeinen Eindeutigeitsaussage für inverse Elemente in jeder Gruppe, siehe die letzte Vorlesung. Zu einem Element a K nennt man das nach diesem Lemma eindeutig bestimmte Element b mit a + b = 0 das Negative von a und bezeichnet es mit a. Statt b + ( a) schreibt man abürzend b a und spricht von der Differenz. Die Differenz ist also eine grundlegende Vernüpfung, sondern wird auf die Addition mit Negativen zurücgeführt. Das zu a K, a 0, nach diesem Lemma eindeutig bestimmte Element c mit ac = 1 nennt man das Inverse von a und bezeichnet es mit a 1. Für a, b K, b 0, schreibt man auch abürzend a/b := a b := ab 1. Die beiden linen Ausdrüce sind also eine Abürzung für den rechten Ausdruc. In jedem Körper findet man die natürlichen Zahlen und auch die ganzen Zahlen wieder, und zwar wird die natürliche Zahl n als die n-fache Summe von 1 K mit sich selbst in K interpretiert. Entsprechend wird die negative Zahl n als die n-fache Summe von 1 K interpretiert, siehe die Aufgaben. Zu einem Körperelement a K und n N wird a n als das n-fache Produt von a mit sich selbst definiert, und bei a 0 wird a n als (a 1 ) n interpretiert. Beispiel 5.7. Wir wollen ausgehend von der Menge der ganzen Zahlen Z, die einen ommutativen Ring bildet, die Menge der rationalen Zahlen onstruieren. Wir gehen dabei wieder ähnlich wie bei der Konstrution der ganzen Zahlen aus den natürlichen Zahlen vor, indem wir auf einer zu großen Menge eine Äquivalenzrelation einführen, so dass die Quotientenmenge ein Modell für die rationalen Zahlen sind. Wir starten mit der Produtmenge P = Z N + = {(a, b) : a Z und b N + }. 5

6 6 Zur Orientierung sei schon jetzt gesagt, dass das Paar (a, b) später den Bruch a/b repräsentieren soll. 3 Auf P wollen wir eine Äquivalenzrelation definieren, wobei zwei Paare als äquivalent gelten sollen, wenn sie den gleichen Bruch repräsentieren (den es noch nicht gibt). Wir definieren (a, b) (c, d), falls ad = bc ist. Diese Relation wird also unter Bezug auf die Gleichheit in Z erlärt. Es handelt sich dabei um eine Äquivalenzrelation, wie man diret nachrechnen ann, siehe Aufgabe 5.7. Die Quotientenmenge unter dieser Äquivalenzrelation nennen wir Q. Für die Elemente in Q schreiben wir vorläufig noch [(a, b)]. Es ist hilfreich, sich diese Situation zu veranschaulichen, indem man die disrete obere Halbebene 4 Z N + Z N betrachtet. Ein Paar (a, b) ist dann ein Gitterpunt, wobei wir uns die ganzen Zahlen Z als die Punte (n, 1), n Z, vorstellen. Die zugehörige durchgezogene Zahlengerade (wo also die zweite Komponente onstant 1 ist) bezeichnen wir mit G. Ein jeder Punt (a, b) Z N + definiert eine eindeutige Gerade, die durch diesen Punt und durch den Nullpunt (0, 0) verläuft. In dieser geometrischen Interpretation sind zwei Punte (a, b) und (c, d) genau dann äquivalent, wenn sie die gleiche Gerade definieren, und dies ist genau dann der Fall, wenn ihre Steigungen übereinstimmen. Zwei Punte liegen ja auf der gleichen Geraden genau dann, wenn sie, wenn man durch Strecung ihre zweite Koordinate zur Übereinstimmung bringt, dann auch die erste Koordinate übereinstimmt. Wenn man den ersten Punt mit d strect (multipliziert) und den zweiten Punt mit b, so erhält man die beiden Punte (da, db) und (bc, bd), und die Gleichheit vorne war die Definition für die Relation. Auch die Identifizierungsabbildung zu dieser Äquivalenzrelation ann man sich gut vorstellen. Der Schnittpunt der durch einen Punt (a, b) definierten Geraden H mit der Zahlengeraden G ist ein Punt, der dem Bruch a/b entspricht. Wir wollen nun auf Q eine Addition und eine Multipliation definieren. Wir setzen 5 [(a, b)] + [(c, d)] := [(ad + bc, bd)] und [(a, b)] [(c, d)] = [(ac, bd)]. Man muss jetzt zeigen, dass diese Vernüpfungen wohldefiniert sind, also unabhängig von der Wahl des Repräsentanten, siehe Aufgabe Sodann 3 Man ann sich vorstellen, dass in (a, b) die erste Zahl eine Anzahl an Kuchen und die zweite Zahl eine Anzahl von Personen bedeutet. 4 Man önnte auch Z (Z \ {0}) nehmen. 5 Die Definition der Addition ann man als Addition der Steigung sehen.

7 ann man mit einigem Aufwand nachweisen, dass Q mit diesen Vernüpfungen und mit den ausgezeichneten Elementen 0 := [(0, 1)] und 1 := [(1, 1)] einen Körper bilden, siehe Aufgabe Das Negative eines Elementes [(a, b)] ist [( a, b)] und das Inverse eines von null verschiedenen Elementes [(a, b)] ist [(b, a)] (bzw. [( b, a)], falls a negativ ist). Aufgrund von dieser Konstrution önnen wir uns die rationalen Zahlen als Punte auf einer Zahlgeraden vorstellen (in der Konstrution die Geraden mit y = 1) Beispiel 5.8. Wir suchen nach einer Körperstrutur auf der Menge {0, 1}. Wenn 0 das neutrale Element einer Addition und 1 das neutrale Element der Multipliation sein soll, so ist dadurch schon alles festgelegt, da = 0 sein muss, da 1 ein inverses Element bzgl. der Addition besitzen muss, und da in jedem Körper 0 0 = 0 gelten muss. Die Operationstafeln sehen also wie folgt aus. und Durch etwas aufwändiges Nachrechnen stellt man fest, dass es sich in der Tat um einen Körper handelt. Lemma 5.9. Es sei K ein Körper und seien a, b, c, a i, b Elemente aus K. Dann gelten folgende Aussagen Beweis. (1) a0 = 0 ( Annullationsregel), (2) a( b) = ab = ( a)b (3) ( a)( b) = ab ( Vorzeichenregel), (4) a(b c) = ab ac, (5) ( r i=1 a i )( s =1 b ) = 1 i r, 1 s a i b (allgemeines Distributivgesetz). (6) Aus a b = 0 folgt a = 0 oder b = 0. (2) (1) Es ist a0 = a(0 + 0) = a0 + a0. Durch beidseitiges Abziehen von a0 ergibt sich die Behauptung. ( a)b + ab = ( a + a)b = 0b= 0 nach Teil (1). Daher ist ( a)b das (eindeutig bestimmte) Negative von ab. 7

8 8 (3) Nach (2) ist ( a)( b) = ( ( a))b und wegen ( a) = a (dies gilt in jeder Gruppe) folgt die Behauptung. (4) Dies folgt auch aus dem bisher Bewiesenen. (5) Dies folgt aus einer Doppelindution, siehe Aufgabe (6) Wenn a und b von null verschieden sind, so gibt es dazu inverse Elemente a 1 und b 1. Wenn ab = 0 wäre, so ergibt sich daraus durch Multipliation mit b 1 a 1 die Gleichung 1 = 0 (wegen Teil (1)), was aber in einem Körper nicht sein ann. Die Binomialoeffizienten Definition Es seien und n natürliche Zahlen mit n. 6 Dann nennt man n n! =!(n )! den Binomialoeffizienten n über. Von dieser Definition her ist es nicht sofort lar, dass es sich dabei um natürliche Zahlen handelt. Dies folgt aus der folgenden Beziehung. Lemma Die Binomialoeffizienten erfüllen die reursive Bedingung n + 1 n n = +. 1 Beweis. Siehe Aufgabe 5.9. Die folgende Formel bringt die Addition und die Multipliation miteinander in Beziehung. 6 Bei > n setzen wir die Binomialoeffizienten gleich 0.

9 Satz (Binomi) Es seien a, b Elemente in einem Körper. Ferner sei n eine natürliche Zahl. Dann gilt (a + b) n = n =0 n a b n. Beweis. Wir führen Indution nach n. Für n = 0 steht einerseits (a+b) 0 = 1 und andererseits a 0 b 0 = 1. Bei n = 1 hat man einerseits (a + b) 1 = a + b und andererseits a 1 b 0 + a 0 b 1 = a + b. Sei die Aussage bereits für n bewiesen. Dann ist (a + b) n+1 = (a + b)(a + ( b) ) n n n = (a + b) a b n =0 n n n n = a( a b n ) + b( a b n ) =0 =0 n n n n = a +1 b n + a b n +1 =0 =0 n+1 n n+1 = a b n +1 n + a b n +1 1 =0 =0 n+1 n n = ( + )a b n+1 =0 1 n+1 n + 1 = a b n+1. =0 9

10

11 Abbildungsverzeichnis Quelle = Pascal triangle.svg, Autor = Benutzer Kazuioumura auf Commons, Lizenz = CC-by-sa Quelle = Yanghui triangle.gif, Autor = Benutzer Noe auf Commons, Lizenz = PD 8 Quelle = TrianguloPascal.jpg, Autor = Pascal (= Benutzer Drini auf Commons), Lizenz = PD 8 Quelle = A plus b au carre.svg, Autor = Benutzer Alarex auf Commons, Lizenz = CC-by-sa Quelle = Binomio al cubo.svg, Autor = Drini, Lizenz = PD 9 11

Mathematik I. Vorlesung 5

Mathematik I. Vorlesung 5 Prof. Dr. H. Brenner Osnabrüc WS 2009/2010 Mathemati I Vorlesung 5 Für zwei natürliche Zahlen n, m gilt n m genau dann, wenn man n = m+ mit einem N schreiben ann (siehe Aufgabe 4.12). In diesem Fall ist

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrüc SS 2009 Einführung in die Algebra Vorlesung 12 Ringe Wir beginnen einen neuen Abschnitt dieser Vorlesung, in dem es um Ringe geht. Definition 12.1. Ein Ring R ist eine Menge

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrüc SS 2015 Elemente der Algebra Vorlesung 2 Ringe Die wichtigsten mathematischen Struturen wie Z, Q, R besitzen nicht nur eine, sondern zwei Vernüpfungen. Definition 2.1. Ein

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren

Mehr

Vorkurs Mathematik. Vorlesung 5. Verknüpfungen

Vorkurs Mathematik. Vorlesung 5. Verknüpfungen Prof. Dr. H. Brenner Osnabrüc WS 2009/2010 Vorurs Mathemati Vorlesung 5 Vernüpfungen Die Addition und die Multipliation auf den natürlichen Zahlen und die Hintereinanderschaltung von Abbildungen auf einer

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 3 Gruppen In der linearen Algebra wird im Allgemeinen ein Grundkörper K zugrunde gelegt, über den sich

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 2 Körper Wir werden nun die Eigenschaften der reellen Zahlen besprechen. Grundlegende Eigenschaften von mathematischen Strukuren

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 19 Kommutative Ringe Wir erfassen die in der letzten Vorlesung etablierten algebraischen Eigenschaften der ganzen Zahlen mit

Mehr

Vorkurs Mathematik. Arbeitsblatt 5. Verknüpfungen

Vorkurs Mathematik. Arbeitsblatt 5. Verknüpfungen Prof Dr H Brenner Osnabrüc WS 2009/2010 Vorurs Mathemati Arbeitsblatt 5 Vernüpfungen Aufgabe 51 Betrachte die ganzen Zahlen Z mit der Differenz als Vernüpfung, also die Abbildung Z Z Z, (a, b) a b Besitzt

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrüc WS 2011/2012 Mathemati für Anwender I Vorlesung 3 Bernoullische Ungleichung Die Bernoulli sche Ungleichung für n = 3. Die folgende Aussage heißt Bernoulli Ungleichung. Satz

Mehr

Analysis I. Vorlesung 4. Angeordnete Körper

Analysis I. Vorlesung 4. Angeordnete Körper Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analysis I Vorlesung 4 Angeordnete Körper Zwei reelle Zahlen kann man ihrer Größe nach vergleichen, d.h. die eine ist größer als die andere oder es handelt sich

Mehr

Vorkurs Mathematik. Vorlesung 8. Angeordnete Körper

Vorkurs Mathematik. Vorlesung 8. Angeordnete Körper Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Vorkurs Mathematik Vorlesung 8 Angeordnete Körper Definition 8.1. Ein Körper K heißt angeordnet, wenn es eine totale Ordnung auf K gibt, die die beiden Eigenschaften

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 3 In dieser Vorlesung besprechen wir Körper, das sind kommutative Ringe, in denen jedes von 0 verschiedene Element ein Inverses (bezüglich

Mehr

Kapitel II. Algebraische Grundbegriffe

Kapitel II. Algebraische Grundbegriffe Kapitel II. Algebraische Grundbegriffe 1 Ringe und Körper Für das Rechnen in Z haben wir in Kap. I, 1 Regeln aufgestellt, welche auch in Q und R gelten. Damit werden Z, Q und R zu Ringen im folgenden Sinn:

Mehr

Über die so definierten Potenzen beweisen wir nun einige einfache Aussagen. = a m+n a Def.

Über die so definierten Potenzen beweisen wir nun einige einfache Aussagen. = a m+n a Def. 4 NATÜRLICHE ZAHLEN UND VOLLSTÄNDIGE INDUKTION 15 der Eigenschaften von N streng begründen, was hier aber nicht geschehen soll. (Statt Zahlen önnen die a n auch Elemente irgendwelcher Mengen sein.) Über

Mehr

Körperaxiome und Anordnungsaxiome. Analysis I. Guofang Wang. Universität Freiburg

Körperaxiome und Anordnungsaxiome. Analysis I. Guofang Wang. Universität Freiburg Universität Freiburg 25.10.2011 Körperaxiome Wir setzen in dieser Vorlesung die reellen Zaheln als gegeben aus. Mit R bezeichnen wir die Menge aller reellen Zahlen, auf der folgende Strukturen gegeben

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrüc SS 2009 Einführung in die Algebra Vorlesung 15 Der Hauptsatz der elementaren Zahlentheorie Wir beweisen nun, dass sich jede natürliche Zahl in eindeutiger Weise als Produt

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr

Elemente der Algebra

Elemente der Algebra Prof. Dr. H. Brenner Osnabrück SS 2015 Elemente der Algebra Vorlesung 1 Der Gruppenbegriff Definition 1.1. Eine Verknüpfung auf einer Menge M ist eine Abbildung : M M M, (x,y) (x,y) = x y. Statt (x,y)

Mehr

Mathematik I. Vorlesung 8. Cauchy-Folgen

Mathematik I. Vorlesung 8. Cauchy-Folgen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 8 Cauchy-Folgen Ein Problem des Konvergenzbegriffes ist, dass zur Formulierung der Grenzwert verwendet wird, den man unter Umständen noch

Mehr

4. Übung zur Mathematik für Physiker, Informatiker und Ingenieure I Lösungshinweise

4. Übung zur Mathematik für Physiker, Informatiker und Ingenieure I Lösungshinweise Universität Würzburg Institut für Mathemati Dr. G. Dirr PD Dr. K. Hüper, S. Mutzbauer Winterersemester 2009/2010 Würzburg, den 12.11.2009 4. Übung zur Mathemati für Physier, Informatier und Ingenieure

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2016 Prof. Manfred Einsiedler Philipp Wirth. Lösung 3

D-MATH, D-PHYS, D-CHAB Analysis I HS 2016 Prof. Manfred Einsiedler Philipp Wirth. Lösung 3 D-MATH, D-PHYS, D-CHAB Analsis I HS 016 Prof Manfred Einsiedler Philipp Wirth Lösung 3 Diese Woche werden nur Lösungen zu den Aufgaben 4, 5 und 6 zur Verfügung gestellt 4 a Nach Folgerung (i aus den Axiomen

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 18 Drei Schritte vor und zwei zurück, so kommt der Mensch voran Petra Pascal Die ganzen Zahlen Wir haben in der letzten Vorlesung

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 11 Kultur ist Reichtum an Problemen. Egon Friedell Axiomatik Wir haben schon für die intuitiv bekannten natürlichen Zahlen ein

Mehr

Vorkurs Mathematik. Vorlesung 5. Cauchy-Folgen

Vorkurs Mathematik. Vorlesung 5. Cauchy-Folgen Prof. Dr. H. Brenner Osnabrück WS 2014/2015 Vorkurs Mathematik Vorlesung 5 Cauchy-Folgen Ein Problem des Konvergenzbegriffes ist, dass zur Formulierung der Grenzwert verwendet wird, den man unter Umständen

Mehr

$Id: reell.tex,v /11/15 13:12:24 hk Exp $

$Id: reell.tex,v /11/15 13:12:24 hk Exp $ $Id: reell.tex,v.8 200//5 3:2:24 h Exp $ 4 Die reellen Zahlen 4.3 Das Vollständigeitsaxiom Wir hatten das Supremum einer Menge M R als die leinste obere Schrane von M definiert, sofern eine solche überhaupt

Mehr

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen

Da diese Zahlenmenge nicht unter Subtraktion abgeschlossen ist, erweitert man sie zur Menge der ganzen Zahlen Kapitel 2 Die reellen Zahlen Die reellen Zahlen werden zunächst und vorübergehend als Dezimalzahlen eingeführt. Die wichtigsten Eigenschaften werden aus dieser Darstellung hergeleitet, mit denen dann die

Mehr

Die natürlichen Zahlen

Die natürlichen Zahlen Mathematik I für Informatiker Zahlen p. 1 Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}. Damit kann man, beginnend mit der leeren Menge Ø, eine unendliche

Mehr

2 Vollständige Induktion

2 Vollständige Induktion Vollständige Indution Wir unterbrechen jetzt die Disussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Indution ennenzulernen. Wir setzen voraus, dass die natürlichen Zahlen

Mehr

Mathematik I. Vorlesung 9. Die eulersche Zahl e

Mathematik I. Vorlesung 9. Die eulersche Zahl e Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 9 Die eulersche Zahl e Wir besprechen eine Beschreibung der sogenannten eulerschen Zahl e. Lemma 9.1. Die Intervalle I n = [a n,b n ],

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 45 Relationen Definition 45.1. Seien X und Y Mengen. Eine Relation zwischen X und Y ist eine Teilmenge R X

Mehr

Die Zahlbereiche N, Z, Q

Die Zahlbereiche N, Z, Q Die Zahlbereiche N, Z, Q Ausgangspunt: N = {1,, 3...} Menge der natürlichen Zahlen schrittweise Konstrution 1 := { }, := {, { }}, 3 := {, { }, {, { }}}... (also: n + 1 := n {n} J.v. Neumann 193 N wird

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 9 In theory, theory and praxis are the same, in praxis they aren t Die Multiplikation auf den natürlichen Zahlen Zur Definition

Mehr

(das heißt, dass a, b K, a + b K und a b K). (K, +, ) bildet ein Körper wenn die folgenden Axiome gelten:

(das heißt, dass a, b K, a + b K und a b K). (K, +, ) bildet ein Körper wenn die folgenden Axiome gelten: FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 3 Voraussetzungen Körperaxiome Sei K eine Menge, und seien +, zwei Verknüpfungen + :K K K, : K K K (a, b) a + b (a, b) a b (das heißt, dass

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten

Mehr

Die natürlichen Zahlen

Die natürlichen Zahlen Die natürlichen Zahlen Damit kann man, beginnend mit der leeren Menge, eine unendliche Folge von Mengen bilden: Mathematik I für Informatiker Zahlen p.1/12 Kürzt man ab so erhält man,,,..., allgemeiner

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 13 Erststufige Peano-Arithmetik - Folgerungen und Ableitungen Die in der zweiten Stufe formulierten Dedekind-Peano-Axiome

Mehr

1 Körper. Wir definieren nun, was wir unter einem Körper verstehen, und sehen dann, dass es noch andere, ganz kleine Körper gibt:

1 Körper. Wir definieren nun, was wir unter einem Körper verstehen, und sehen dann, dass es noch andere, ganz kleine Körper gibt: 1 Körper Sie kennen bereits 2 Beispiele von Zahlkörpern: (Q, +, ) (R, +, ) die rationalen Zahlen mit ihrer Addition und Multiplikation die reellen Zahlen mit ihrer Addition und Multiplikation Vielleicht

Mehr

Komplexe Zahlen. - Konstruktion und einige Eigenschaften. Klaus-R. Lö er

Komplexe Zahlen. - Konstruktion und einige Eigenschaften. Klaus-R. Lö er Komplexe Zahlen - Konstrution und einige Eigenschaften Klaus-R. Lö er Inhaltsverzeichnis Grundlagen. Der geometrische Ansatz zur Beschreibung........................... Umrechnung der Darstellungen Real-/Imaginärteil

Mehr

2 Zahlbereichserweiterungen I

2 Zahlbereichserweiterungen I 2 Zahlbereichserweiterungen I Obwohl wir in den vergangenen Kapiteln schon andere Zahlen als die natürlichen Zahlen benutzt haben, wollen wir auch auf diese noch einmal einen grundsätzlichen Blick werfen.

Mehr

2. Reelle und komplexe Zahlen [Sch-St ]

2. Reelle und komplexe Zahlen [Sch-St ] 7 2. Reelle und komplexe Zahlen [Sch-St 6.4-6.5] 2.1 Körperstruktur und Anordnung von R [Kö 2.1-2.2] Für (beliebige) reelle Zahlen a, b, c R gelten die folgenden (algebraischen) Körperaxiome: (K1) a +

Mehr

ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen

ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen ANALYSIS 1 Kapitel 2: Reelle und komplexe Zahlen MAB.01012UB MAT.101UB Vorlesung im WS 2017/18 Günter LETTL Institut für Mathematik und wissenschaftliches Rechnen Karl-Franzens-Universität Graz 2.1 Körperstruktur

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 7 Nebenklassen Definition 7.1. Sei G eine Gruppe und H G eine Untergruppe. Wir setzen x H y (und sagen, dass x und y äquivalent

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 2 Beispiele für Gruppen Aus der Vorlesung Mathematik I sind schon viele kommutative Gruppen bekannt. Zunächst gibt es die additiven

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 4 Injektive und surjektive Abbildungen Definition 4.1. Es seien L und M Mengen und es sei eine Abbildung. Dann heißt F F

Mehr

Analysis I. Vorlesung 7. Weitere Eigenschaften der reellen Zahlen

Analysis I. Vorlesung 7. Weitere Eigenschaften der reellen Zahlen Prof. Dr. H. Brenner Osnabrück WS 013/014 Analysis I Vorlesung 7 Weitere Eigenschaften der reellen Zahlen Korollar 7.1. Eine beschränkte und monotone Folge in R konvergiert. Beweis. Nach Voraussetzung

Mehr

Kapitel 4. Kapitel 4 Restklassen (die modulo-rechnung)

Kapitel 4. Kapitel 4 Restklassen (die modulo-rechnung) Restklassen (die modulo-rechnung) Inhalt 4.1 4.1 Was Was sind sind Restklassen? [0], [0],[1], [1],...,...,[n 1] 4.2 4.2 Addition von von Restklassen [5] [5] + [7] [7] = [3] [3] 4.3 4.3 Multiplikation von

Mehr

(λ), t P j i = P j i. heißt symmetrisch, wenn t A = A und antisymmetrisch, wenn

(λ), t P j i = P j i. heißt symmetrisch, wenn t A = A und antisymmetrisch, wenn 3. 1 Transposition der Elementarmatrizen aus R n n. Für 1 i, j n und λ G(R) bzw. λ R gilt t S i (λ) S i (λ), t Q j i (λ) Qi j (λ), t P j i P j i. 3. 11 Definition. Eine Matrix A R n n t A A. heißt symmetrisch,

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

1 Aufbau des Zahlensystems

1 Aufbau des Zahlensystems 1 Aufbau des Zahlensystems 1.1 Die Menge N der natürlichen Zahlen 1.1.1 Definition Die mathematischen Eigenschaften dieser durch das Abzählen von Gegenständen motivierten Zahlenmenge lassen sich auf die

Mehr

Konstruktion der reellen Zahlen 1 von Philipp Bischo

Konstruktion der reellen Zahlen 1 von Philipp Bischo Konstruktion der reellen Zahlen 1 von Philipp Bischo 1.Motivation 3 1.1. Konstruktion von R im allgemeine 3 2.Voraussetzung 3 2.1Die Menge Q zusammen mit den beiden Verknüpfungen 3 2.2Die Rationalen Zahlen

Mehr

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Zahlen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Zahlen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Die natürlichen Zahlen Für eine beliebige Menge S definiert man den Nachfolger S + durch S + := S {S}.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathemati Prof. Dr. Oliver Matte Max Lein Zentralübung 15. Abzählbareit Mathemati für Physier 2 Analysis 1) Wintersemester 2010/2011 Lösungsblatt 3 29.10.2009) i)

Mehr

Reelle Zahlen, Gleichungen und Ungleichungen

Reelle Zahlen, Gleichungen und Ungleichungen 9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen

Mehr

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper Prof. Dr. H. Brenner Osnabrück WS 009/010 Mathematik I Vorlesung 7 Folgen in einem angeordneten Körper Wir beginnen mit einem motivierenden Beispiel. Beispiel 7.1. Wir wollen die Quadratwurzel einer natürlichen

Mehr

1 Algebraische Strukturen

1 Algebraische Strukturen Prof. Dr. Rolf Socher, FB Technik 1 1 Algebraische Strukturen In der Mathematik beschäftigt man sich oft mit Mengen, auf denen bestimmte Operationen definiert sind. Es kommt oft vor, dass diese Operationen

Mehr

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 5 In dieser Vorlesung diskutieren wir Normalteiler, das sind Untergruppen, für die Links- und Rechtsnebenklassen übereinstimmen.

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof Dr H Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 11 Rang von Matrizen Definition 111 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von

Mehr

2.2 Konstruktion der rationalen Zahlen

2.2 Konstruktion der rationalen Zahlen 2.2 Konstruktion der rationalen Zahlen Wie wir in Satz 2.6 gesehen haben, kann man die Gleichung a + x = b in Z jetzt immer lösen, allerdings die Gleichung a x = b im allgemeinen immer noch nicht. Wir

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 3

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 3 D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler Lösung 3 Hinweise 1. Verwenden Sie in a) für die ersten beiden Gleichungen die Eindeutigkeit des additiven Inversen (Folgerung (b)) und

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 25 Das Archimedes-Axiom für die rationalen Zahlen Archimedes (ca. 287-212 v. C.) Lemma 25.1. Zu jeder rationalen Zahl q gibt

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2015/16 21. Januar 2016 Definition 8.1 Eine Menge R zusammen mit zwei binären Operationen

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

$Id: reell.tex,v /11/11 12:32:08 hk Exp $

$Id: reell.tex,v /11/11 12:32:08 hk Exp $ Mathemati für Physier I, WS 203/204 Montag. $Id: reell.tex,v.23 203// 2:32:08 h Exp $ Die reellen Zahlen.5 Potenzen mit rationalen Exponenten Wir behandeln gerade die Bernoulli-Ungleichung +x) n +nx gültig

Mehr

2 Die Menge der ganzen Zahlen. von Peter Franzke in Berlin

2 Die Menge der ganzen Zahlen. von Peter Franzke in Berlin Die Menge der ganzen Zahlen von Peter Franzke in Berlin Das System der natürlichen Zahlen weist einen schwerwiegenden Mangel auf: Es gibt Zahlen mn, derart, dass die lineare Gleichung der Form mx n keine

Mehr

Natürliche und ganze Zahlen, vollständige Induktion und Kombinatorik

Natürliche und ganze Zahlen, vollständige Induktion und Kombinatorik Kapitel 2 Natürliche und ganze Zahlen, vollständige Indution und Kombinatori 2.1 N, Z (Gruppe; Ordnungsrelation Jeder hat eine intuitive Vorstellung von der Menge der natürlichen Zahlen N : {1, 2, 3...

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

Übungen zu Geometrie und Lineare Algebra für das Lehramt

Übungen zu Geometrie und Lineare Algebra für das Lehramt Übungen zu Geometrie und Lineare Algebra für das Lehramt zusammengestellt von Stefan Haller Sommersemester 2019 (UE250163) 2. Übungsblatt für die Woche vom 11. bis 15. März 2019 Aufgabe 2.1. Wiederhole

Mehr

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski Die reellen Zahlen als Dedekindsche Schnitte Iwan Otschkowski 14.12.2016 1 1 Einleitung In dieser Ausarbeitung konstruieren wir einen vollständig geordneten Körper aus gewissen Teilmengen von Q, den Dedekindschen

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 8 Wir führen nun die Addition und die Multiplikation von natürlichen Zahlen ein. Dabei müssen wir uns kurz klar machen, um was

Mehr

Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest.

Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest. Analysis, Woche Zahlen A. Elementares Bevor wir mit Analysis anfangen, legen wir erst einige mathematische Symbole fest... Logische Symbole Seien A und B Aussagen. So eine Aussage ist zum Beispiel: Gras

Mehr

Mathematik I. Vorlesung 14. Rang von Matrizen

Mathematik I. Vorlesung 14. Rang von Matrizen Prof Dr H Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 14 Rang von Matrizen Definition 141 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von den Spalten

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I (Wintersemester 2003/2004) Aufgabenblatt 6

Mehr

Mathematik I. Vorlesung 16. Eigentheorie

Mathematik I. Vorlesung 16. Eigentheorie Prof Dr H Brenner Osnabrück WS 009/00 Mathematik I Vorlesung 6 Eigentheorie Unter einer Achsenspiegelung in der Ebene verhalten sich gewisse Vektoren besonders einfach Die Vektoren auf der Spiegelungsachse

Mehr

Stellen Sie diese Operation grafisch durch Pfeile in einem zweidimensionalen Koordinatensystem dar. + R n R n R n. + R R R

Stellen Sie diese Operation grafisch durch Pfeile in einem zweidimensionalen Koordinatensystem dar. + R n R n R n. + R R R Vektoren Aufgabe Berechnen Sie 2 + 0 Aufgabe 2 Beweisen Sie das ausführlich das Assoziativgesetz der Vektoraddition + R n R n R n Sie dürfen dabei alle Gesetze der reellen Addition + R R R verwenden machen

Mehr

01. Gruppen, Ringe, Körper

01. Gruppen, Ringe, Körper 01. Gruppen, Ringe, Körper Gruppen, Ringe bzw. Körper sind wichtige abstrakte algebraische Strukturen. Sie entstehen dadurch, dass auf einer Menge M eine oder mehrere sogenannte Verknüpfungen definiert

Mehr

aus A folgt B ). Sie ist falsch, wenn die Aussage A wahr ist und die Aussage B falsch. Ansonsten ist sie wahr. Wichtig ist auch die Aussage A B (

aus A folgt B ). Sie ist falsch, wenn die Aussage A wahr ist und die Aussage B falsch. Ansonsten ist sie wahr. Wichtig ist auch die Aussage A B ( 3 1. Die reellen Zahlen Die reellen Zahlen sind die Zahlen, mit denen wir gewöhnlich rechnen. Sie enthalten Elemente wie e, π oder 5 3. In diesem Kapitel geht es darum, ihren axiomatischen Aufbau und die

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 018/019 5.10.018 Höhere Mathemati für die Fachrichtung Physi Lösungsvorschläge zum. Übungsblatt

Mehr

Münchner Volkshochschule. Planung. Tag 02

Münchner Volkshochschule. Planung. Tag 02 Planung Tag 02 Prof.Dr. Nils Mahnke Mathematischer Vorkurs Folie: 45 Mengenlehre VII Mengenoperationen: 1) Vereinigungsmenge: A B { x x A x B} 2) Schnittmenge: A 3) Differenzmenge: B { x x A x B} A \ B

Mehr

a(b + c) = ab + ac und (a, b) (c, d) a + d = b + c definiert. Der Quotientenraum Z := N 2 / ist versehen mit der Addition

a(b + c) = ab + ac und (a, b) (c, d) a + d = b + c definiert. Der Quotientenraum Z := N 2 / ist versehen mit der Addition 4.1 N und Z (8.12.2011) Definition 4.1 (Ring) Eine Menge R, versehen mit zwei Abbildungen + : R R R und R R R heißt Ring, falls folgende Eigenschaften erfüllt sind: 1) (i) Existenz eines neutralen Elementes

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2018/2019 Grundkurs Mathematik I Arbeitsblatt 1 Die Pausenaufgabe Aufgabe 1.1. Zeige, dass man das Multiplizieren von natürlichen Zahlen durch das Quadrieren, Addieren,

Mehr

01. Zahlen und Ungleichungen

01. Zahlen und Ungleichungen 01. Zahlen und Ungleichungen Die natürlichen Zahlen bilden die grundlegendste Zahlenmenge, die durch das einfache Zählen 1, 2, 3,... entsteht. N := {1, 2, 3, 4,...} (bzw. N 0 := {0, 1, 2, 3, 4,...}) Dabei

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

1. Gruppen. 1. Gruppen 7

1. Gruppen. 1. Gruppen 7 1. Gruppen 7 1. Gruppen Wie schon in der Einleitung erläutert wollen wir uns in dieser Vorlesung mit Mengen beschäftigen, auf denen algebraische Verknüpfungen mit gewissen Eigenschaften definiert sind.

Mehr

1.12 Einführung in die Vektorrechung

1.12 Einführung in die Vektorrechung . Einführung in die Vektorrechung Inhaltsverzeichnis Definition des Vektors Skalare Multiplikation und Kehrvektor 3 3 Addition und Subtraktion von Vektoren 3 3. Addition von zwei Vektoren..................................

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 17 Potenzreihen Definition 17.1. Es sei (c n ) n N eine Folge von reellen Zahlen und x eine weitere reelle Zahl. Dann heißt

Mehr

Abschnitt 1.2. Rechnen mit reellen Zahlen

Abschnitt 1.2. Rechnen mit reellen Zahlen Abschnitt 1.2 Rechnen mit reellen Zahlen Addition und Multiplikation Zwei reelle Zahlen a und b kann man zu einander addieren, d. h., den beiden Zahlen wird eine dritte Zahl, a + b, zugeordnet, welche

Mehr

9. Polynom- und Potenzreihenringe

9. Polynom- und Potenzreihenringe 64 Andreas Gathmann 9. Polynom- und Potenzreihenringe Bevor wir mit der allgemeinen Untersuchung von Ringen fortfahren, wollen wir in diesem Kapitel kurz zwei sehr wichtige weitere Beispiele von Ringen

Mehr

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber 14 Wenn man mindestens einen Operator mit einer definierten Menge in Verbindung setzt, dann fällt es unter dem Bereich der Strukturen. Bei der kleinsten möglichen Struktur handelt es sich um eine. Eine

Mehr

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein

Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen. Steven Klein Die reellen Zahlen als Äquivalenzklassen rationaler Cauchy-Folgen Steven Klein 04.01.017 1 In dieser Ausarbeitung konstruieren wir die reellen Zahlen aus den rationalen Zahlen. Hierzu denieren wir zunächst

Mehr

Prof. Dr. Felix Otto - Analysis I (WiSe 2001/2002)

Prof. Dr. Felix Otto - Analysis I (WiSe 2001/2002) Prof. Dr. Felix Otto - Analysis I (WiSe 001/00) John Bieling Babak Haghighat Martin Killmann Oleg Lewagin Julia Nickenig Andreas Orth Martin Sander Maik Schäfer Florian Schuster Michael Strucken Andreas

Mehr

Teil 1. Mathematische Grundlagen

Teil 1. Mathematische Grundlagen Teil 1 Mathematische Grundlagen 5 6 1.1 Aussagenlogi Aussage und Axiom Aussage: sprachlicher Ausdruc mit eindeutigem Wahrheitswert w ( wahr ) bzw. f ( falsch ) A : Beschreibung Axiom: grundlegende nicht

Mehr

Stefan Ruzika. 24. April 2016

Stefan Ruzika. 24. April 2016 Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 2: Körper 24. April 2016 1 / 21 Gliederung 1 1 Schulstoff 2 Körper Definition eines Körpers

Mehr

HM I Tutorium 2. Lucas Kunz. 3. November 2016

HM I Tutorium 2. Lucas Kunz. 3. November 2016 HM I Tutorium 2 Lucas Kunz 3. November 2016 Inhaltsverzeichnis 1 Theorie 2 1.1 Reelle Zahlen.................................. 2 1.2 Intervalle..................................... 2 1.3 Beträge.....................................

Mehr

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0.

= k 0+k 0 ( ). Wir addieren (0 k) zu den Seiten der Gleichung ( ): 0 = k 0. Def 4 Eine Menge K mit zwei Abbildungen + : K K K und : K K K (heißen Addition und Multiplikation; wir werden a b bzw a+b statt (a,b), +(a,b) schreiben) ist ein kommutativer Ring, falls: (R1) (K, +) ist

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 16 Polynomringe Definition 16.1. Der Polynomring über einem kommutativen Ring R besteht aus allen Polynomen P = a 0 +a 1 X +a

Mehr