Nichtlineare Optimierung ohne Nebenbedingungen

Größe: px
Ab Seite anzeigen:

Download "Nichtlineare Optimierung ohne Nebenbedingungen"

Transkript

1 Nichtlineare Optimierung ohne Nebenbedingungen Mike Hüftle 31. Juli 2006 Inhaltsverzeichnis 1 Einleitung Nichtlineares Modell Methoden Methoden zur eindimensionalen Minimierung Eindimensionale Suche Methode des Goldenen Schnittes Bisektionsmethode Bisektionsmethode Anwendung Klassisches Gradientenverfahren Methodenbeschreibung Methodenbeschreibung Anwendung Konjugierte Gradientenverfahren Hochdimensionale nichtlineare Probleme Methodenbeschreibung Varianten Anwendung Newton-Verfahren Methodenbeschreibung Methodenbeschreibung Varianten Anwendung Quasi-Newton-Verfahren Methodenbeschreibung Varianten

2 7 Literatur und Methodenverzeichnis Literatur zur eindimensionalen Minimierung und zu Gradientenverfahren Literatur zu konjugierten Gradientenverfahren Literatur zu Newton-Verfahren Literatur zu Quasi-Newton-Verfahren Methodenverzeichnis

3 1 Einleitung 1.1 Nichtlineares Modell Das Problem der nichtlinearen Optimierung ohne Nebenbedingungen (NB) kann wie folgt formuliert werden: Modell der nichtlinearen Optimierung min f(x) s.d. x R n Lokale und globale Optimalität wobei f(x) eine nichtlineare Funktion ist, die ausreichend glatt, d.h. differenzierbar sein muss, um das Problem lösen zu können. Gewöhnlich existiert mindestens ein lokales Minimumx* für das Optimierungsproblem; in den meisten praktischen Problemen gibt es jedoch mehrere solcher lokaler Minima. Globale Optimalität ist daher für x* nicht generell gewährleistet, so dass es notwendig ist, die einzelnen lokalen Minima auf globale Optimalität zu untersucht. Hierfür werden meist Metaheuristiken eingesetzt. Notwendige und hinreichende Optimalitätsbedingungen Grundlegend für die im weiteren erläuterten Methoden sind die notwendigen und hinreichenden Optimalitätsbedingungen für einen Optimalpunkt x*. Notwendige Bedingung für ein Optimum ist, dass die Funktion f(x) in einer Umgebung von x* nicht kleinere Werte als f(x*) annimmt bzw. dass die Hesse- Matrix positiv semidefinit ist. Hinreichende Bedingung ist, dass die Funktionswerte in einer Umgebung nur größer als f(x*) sind bzw. die Hesse-Matrix positiv definit ist. 3

4 1.2 Methoden Lösungsansätze Die Methoden der nichtlinearen Optimierung ohne NB unterscheiden sich darin, ob und mit welchem Aufwand der Gradient f(x) und die Hesse-Matrix H(x) berechnet werden können. Im günstigsten Fall sind f(x) und H(x) für jedes x berechenbar. Dann wird eine Methode zweiter Ableitungen angewendet, wie beispielsweise das Newton-Verfahren. Jedoch kann es sehr aufwändig sein für jedes x die Matrix H(x) zu berechnen. In diesem Fall wird eher eine Methode erster Ableitung, ein Gradientenverfahren angewendet werden. Die Methoden der nichtlinearen Optimierung ohne NB sind in der Regel Abstiegsverfahren. Ausgehend von einem Startpunkt x sub 0 /sub generieren sie eine Folge von Lösungen x sub k /sub mit f(x k + 1) < f(x k ) bis ein Abbruchkriterium erfüllt ist. In der Praxis wird diese Iteration abgebrochen, wenn eine ausreichend gute Näherungslösung erreicht ist. Die Anzahl der Iterationen bzw. die Konvergenzgeschwindigkeit des Algorithmus ist neben dem Aufwand zur Berechnung einer Iterierten ein entscheidendes Kriterium für die Effizienz einer solchen Methode. Lösungsverfahren Es haben sich zwei wichtige Klassen von Abstiegsverfahren etabliert: Linesearch- Verfahren und Trust-Region-Verfahren. Bei Linesearch-Verfahren besteht jede Iteration aus zwei Schritten: Der Bestimmung einer Abstiegsrichtung und der Berechnung der Schrittlänge, mit der diese Abstiegsrichtung verfolgt wird. Trust-Region-Verfahren hingegen bestimmen Abstiegsrichtung und Schrittlänge simultan. Im Weiteren werden die Linesearch-Verfahren detailliert erörtert. 4

5 2 Methoden zur eindimensionalen Minimierung 2.1 Eindimensionale Suche Allgemeine Methodenbeschreibung Die eindimensionale Suche ist die Grundlage vieler Verfahren zur Lösung nichtlineare Programme, die meist zuerst eine Abstiegsrichtung bestimmen und dann eine Schrittweite, mit der diese Abstiegsrichtung verfolgt wird. Dies führt zu einem neuen Iterationspunkt. Um eine optimale oder näherungsweise optimale Schrittweite in der k-ten Iteration zu bestimmen wird das eindimensionale Minimierungsproblem min f(x k ) + λ d k mit der Suchrichtung d sub k /sub und dem Parameter λ gelöst. Da dieses Minimierungsproblem oft nichtlinear oder sogar nicht differenzierbar ist, wird der Lösungsaufwand reduziert, indem das Problem numerisch gelöst wird (also ohne die Verwendung von Ableitungen). Hierbei wird auf die Berechnung eines exakten Minimums λ der Abstiegsrichtung verzichtet und lediglich bestimmt, in welchem Intervall [a,b], a λ b der Länge l das Minimum liegen muss. l wird in diesem Zusammenhang auch als Unsicherheit bezeichnet. Methoden der eindimensionalen Minimierung ohne Ableitungen Als Methoden der eindimensionalen Minimierung ohne Verwendung von Ableitungen sind insbesondere die Methode der Einheitlichen Suche, die Dichotome Suchmethode, die Methode des Goldenen Schnittes und die Fibonacci-Suche zu nennen. Im Folgenden wird exemplarisch die Methode des Goldenen Schnittes erläutert. Eine Methode, welche erste Ableitungen verwendet, ist die Bisektionsmethode. 5

6 2.2 Methode des Goldenen Schnittes Minimierung von quasikonvexen Funktionen Die Methode des Goldenen Schnittes ist eine Methode der eindimensionalen Minimierung von strikt quasikonvexen Funktionen. Sie wird mit einem Intervall [a 0, b 0 ]initialisiert, in dem das gesuchte Minimum λ liegt. Weiterhin wird die vom Entscheider akzeptierte Unsicherheit l vorgegeben. Es seinen λ 1, µ 1 zwei Werte innerhalb des Intervalls [a 1, b 1 ]. Sei λ 1 = a 1 + (1 α)(b 1 a 1 ) und µ 1 = a 1 + α(b 1 a 1 ) mit α [0, 1]. Nun wird die Differenz b 1 a 1 berechnet und überprüft ob diese kleiner als die vorgegebene Unsicherheit l ist, d.h. b 1 a 1 < l. Ist dies der Fall, so ist ein näherungsweises Minimum für das eindimensionale Optimierungsproblem bestimmt. Ansonsten wird folgende Schleife durchlaufen: 1. Überprüfe ob. Wenn ja gehe zu 2., ansonsten gehe zu Setze a k+1 = λ k, b k+1 = b k, λ k+1 = µ k und µ k+1 = a k+1 + α(b k+1 a k+1 ). Berechne f(µ k+1 ) und gehe zu Schritt Setze a k+1 = a k, b k+1 = µ k, µ k+1 = λ k, λ k+1 = a k+1 + (1 α)(b k+1 a k+1 ). Berechne f(λ k+1 ) und gehe zu Schritt Überprüfe ob b k+1 a k+1 < l. Wenn ja, dann STOP. Wenn nein gehe zu 1. Mit dieser Vorgehensweise wird das Intervall [a, b] in jedem Schritt um den Faktor 0,618 verkleinert. Die Methode des Goldenen Schnittes ist somit der Bisektionsmethode (Intervallhalbierungsverfahren) überlegen, welche einen Reduktionsfaktor von 0,5 aufweist. Iterationen der Methode des Goldenen Schnittes 6

7 2.3 Bisektionsmethode Eindimensionale Minimierung mit Ableitungen Ist die zu minimierende Funktion mindestens einmal stetig differenzierbar, so können Methoden eingesetzt werden, welche die ersten Ableitungen zur Optimierung verwenden. Stellvertretend wird hier die Bisektionsmethode erläutert. BisektionsmethodeDie einfachste Methode zur Bestimmung eines Minimums ist eine binäre Suche: Ein Intervall, in dem sich sicher ein Minimum befindet wird so lange geteilt, bis es klein genug ist, und das Minimum somit ausreichend genau bestimmt ist. Bei der Intervallteilung wird dabei diejenige Intervallhälfte verworfen, in der sich die Nullstelle nicht befindet. 7

8 2.4 Bisektionsmethode Bisektion Bei der Bisektionsmethode wird ein Intervall [a k, b k ]- in welchem das Mimimum liegt - in jedem Iterationsschritt in zwei Hälften unterteilt (Bisektion). Die so bestimmte Mitte des Intervalls sei c k. Anschließend wird geprüft, in welcher der beiden Hälften sich das gesuchte Minimum wahrscheinlich befindet. Dies kann entschieden werden, indem die 1. Ableitung an der Stelle c k berechnet wird. Das Minimum muss in der Richtung negativer 1. Ableitungen liegen. Die so bestimmte Intervallhälfte wird neues Intervall [a k+1, b k+1 ] für den nächsten Iterationsschritt k + 1. AbbruchkriteriumDas Intervall wird solange iterativ halbiert, bis das aktuelle Iterationsintervall kleiner einer vorab definierte Unsicherheit l ist und seine Mitte c die tatsächliche Lage der gesuchten Stelle ausreichend genau angibt. Soll z. B. die tatsächliche Lage x der gesuchten Minimalstelle mit einer Genauigkeit von 1 % der Länge des Ausgangsintervalls geschätzt werden, dann gilt: c ɛ x c + ɛ, d.h. ɛ = 0.01 b 0 a 0 Anwendung Typische Anwendungsbereiche für Methoden der eindimensionalen Minimierung sind die iterative Abschätzung der Nullstellen einer Funktion oder des Optimums einer nichtlinearen Funktion innerhalb eines bestimmten Ausgangsintervalls. 8

9 2.5 Anwendung Methoden der eindim. Minimierung im Vergleich Bei einem Vergleich der Einheitlichen Suche, der Dichotomen Suchmethode, der Methode des Goldenen Schnittes und der Fibonacci-Suche zeigt sich, dass die Fibonacci-Suche die wenigsten Iterationen benötigt, um ein näherungsweise optimales Minimum zu bestimmen. Wenn die Anzahl der Iterationen sehr groß ist, so sind die Laufzeiten der Fibonacci-Suche und die der Methode des Goldenen Schnittes fast identisch. Vorteile der eindim. Minimierung Nachteile der eindim. Minimierung Die Methoden konvergieren sehr schnell in die Nähe des Mimimums. Es wird nur ein näherungsweises Minimum bestimmt. Die Methoden sind nur auf strikt quasikonvexefunktionen in einem abgeschlossenen Intervall anwendbar. Anwendung Die oben genannten Methoden der eindimensionalen Minimierung können nur bei strikt quasikonvexen Funktionen eingesetzt werden. Die Eigenschaft der Quasikonvexität ist jedoch in der Praxis für die meisten Funktionen nicht erfüllt. Um diese Beschränkung zu umgehen, wird das Ausgangsintervall in mehrere kleine Intervalle eingeteilt, das lokale Minimum jedes Teilintervalls bestimmt und dann das kleinste dieser Minima ausgewählt. Alternativ hierzu kann auch die Quasikonvexität vorausgesetzt werden und die Berechnung eines lokalen Minimums als ausreichend genau betrachtet werden. Welches Vorgehen angewendet wird, hängt vom Aussehen der zu minimierenden Funktion bzw. den Informationen über die Funktion ab. Weiterhin muss immer zwischen der anzustrebenden Güte der eindimensionalen Minimierung und dem hierfür notwendigen Rechenaufwand abgewogen werden. 9

10 3 Klassisches Gradientenverfahren 3.1 Methodenbeschreibung Das klassische Gradientenverfahren ist eines der ältesten und fundamentalen Verfahren zur Optimierung einer nichtlinearen, differenzierbaren Funktion. Da der hier verwendete Gradient f(x) die Richtung des steilsten Abstiegs der Funktion ist, wird es auch Verfahren des steilsten Abstiegs oder steepest descent genannt. Das Gradientenverfahren wurde in seinen Grundlagen schon 1847 von CAUCHY vorgestellt. Methodenbeschreibung Das klassische Gradientenverfahren nähert sich einem Minimum einer Funktion über eine Folge stetig kleiner werdender Funktionswerte. Der jeweils nächste Iterationspunkt x sup k+1 /sup berechnet sich zu: x k+1 = x k + λ k f(x k ) Als Abstiegsrichtung dient somit in jeder Iteration die Richtung des negativen Gradienten f(x k ) der Zielfunktion im aktuellen Iterationspunkt x sub k /sub. Dies ist tatsächlich die Richtung des steilsten Abstiegs der Zielfunktion, d.h. die Richtung in der die Zielfunktionswerte am schnellsten kleiner werden. Die Schrittlänge λ k mit der die Abstiegsrichtung verfolgt wird, kann über eine eindimensionale Minimierung berechnet werden: min λ f(x k + λ f(x k )) 10

11 3.2 Methodenbeschreibung Armijo-Regel In der Praxis wird aus Effizienzgründen meist keine exakte Minimierung durchgeführt, sondern man begnügt sich mit einer Näherungslösung für λ k, die beispielsweise mit der Armijo-Regel bestimmt werden kann. Diese ist eine einfach zu implementierende Schrittweitenregel. Sie bildet die Basis der meisten, heute verwendeten Schrittweitenregeln und kann für beliebige Abstiegsrichtungen s sub k /sub verwendet werden ([1], S. 281). Terminierung des Gradientenverfahrens Ist der Gradient in einem Punkt x* Null, d.h. f(x ) = 0, bzw. kleiner als ein vorgegebener Wert ɛ, d.h. f(x ) < ɛ, so endet der Algorithmus, da ein lokales Optimum x* oder ein Sattelpunkt erreicht ist. x* kann kein Maximalpunkt sein, da die Iteration nur kleiner werdende Zielfunktionswerte erzeugt. Um einen Sattelpunkt auszuschließen wird die Hesse-Matrix auf positive Definitheit überprüft. 11

12 3.3 Anwendung Vorteile des Steilsten Abstiegs Vorteile Das Verfahren des steilsten Abstiegs konvergiertimmer mindestens linear gegen ein lokales Minimum (oder einen Sattelpunkt). Die ersten Ableitungen sind mit geringem Aufwand berechenbar. Das Verfahren ist stabil, d.h. die eindimensionale Minimierung muss nicht sehr genau sein, sondern kann mit einem Näherungsverfahren durchgeführt werden. Nachteile des steilsten Abstiegs Jede Iteration wird unabhängig von den Vorhergehenden berechnet, d.h. es wird keine Information über das bisherige Vorgehen gespeichert. Die Konvergenz hängt stark vom Aussehen der zu optimierenden Funktion ab. Liegen der größte und der kleinste Eigenwert der Hesse- Matrix weit auseinander, so tritt in der Nähe von x* der so genannte Zigg- Zagging-Effekt auf. D.h. je näher die Iterierten dem Punkt x* kommen, desto schlechter ist die Wahl des negativen Gradienten als Abstiegsrichtung. Für die Berechnung sehr guter Lösungen ist das Gradientenverfahren im Allgemeinen zu langsam. Anwendung Um das Verfahren des steilsten Abstiegs anwenden zu können muss die zu optimierende Funktion mindestens einmal stetig differenzierbar sein. Das Verfahren wird immer dann angewendet, wenn mit relativ wenig Rechenaufwand eine schnelle, gute Näherungslösung bestimmt werden soll. Es dient häufig als einfaches Minimierungsverfahren, welches in anderen Methoden eingesetzt wird (z.b. bei der Minimierung von Fehlerfunktionen). 12

13 4 Konjugierte Gradientenverfahren 4.1 Hochdimensionale nichtlineare Probleme Lösung hochdimensionaler Probleme Konjugierte Gradientenverfahren haben eine große praktische Bedeutung, da sie der einzig praktikable Ansatz sind, hochdimensionale nichtlineare Probleme ohne Nebenbedingungen effizient zu lösen. Da sie zur Berechnung der Iterierten nur wenige Vektoren benötigen, ist der Speicherbedarf und der Aufwand zur Generierung neuer Iterationen im Vergleich zu Newton-Verfahren und Quasi-Newton-Verfahren sehr gering. Sie wurden erstmals 1952 von HESTENES und STIEFEL [4] zur Lösung von linearen Problemen vorgestellt. FLETCHER und REEVES [3] wendeten sie 1964 auf nichtlineare Optimierungsprobleme ohne Nebenbedingungen an. Dies war das erste Verfahren der nichtlinearen Optimierung, dass auch für große Probleme praktikabel war. 13

14 4.2 Methodenbeschreibung Konjugierte Abstiegsrichtungen Konjugierte Gradientenverfahren nähert sich einem Minimum der Zielfunktion über eine Folge von stetig absteigenden Funktionswerten. Der jeweils nächste Iterationspunkt x k+1 berechnet sich zu: x k+1 = x k λ k s k Die Abstiegsrichtungen s k werden als Linearkombination aus dem aktuellen negativen Gradienten der Zielfunktion f(x) und der Vorgängerrichtung s k 1 so bestimmt, dass die resultierenden Abstiegsrichtungen zueinander konjugierte Vektoren sind. Durch die Konjugiertheit wird die Richtung des negativen Gradienten in Richtung des Optimalpunktes korrigiert. Die mit der die Abstiegsrichtung verfolgt wird, kann über eine eindimensionale Minimierung bestimmt werden. Die k + 1-te Abstiegsrichtung s k+1 (x) ist allgemein gegeben durch: s 1 (x) = f(x 1 ) s k+1 (x) = f(x k+1 ) + β k+1 s k k > 1 wobei β k ein Parameter ist, welcher die Konjugiertheit der aktuellen mit der vorherigen Abstiegsrichtung herstellt und für eine bestimmte konjugierte Gradientenmethode charakteristisch ist. Bestimmung der optimalen Schrittweite Entlang der Abstiegsrichtung wird eine Minimierung durchgeführt, um die optimale Schrittweite λ k mittels einer exakten, eindimensionalen Minimierung zu bestimmen. In der Praxis werden hierfür jedoch meist Näherungsverfahren wie die Armijo-Regel oder die Bisektionsmethode verwendet, mit denen eine näherungsweise optimale Schrittweite bestimmt werden kann. Unter bestimmten Vorraussetzungen ist die globale Konvergenz gewährleistet, d.h. die Methode konvergiert von jedem Startpunkt aus gegen den Minimalpunkt [8]. NichtquadratischeIst eine nichtquadratische Funktion zu minimieren, so wird das Verfahren periodisch abgebrochen und vom letzten Punkt aus erneut gestartet. Gibt es in einer Funktionen nxn-matrix eine Anzahl m relativ großer Eigenwerte, so wird das konjugierte Gradientenverfahren nach m+1 Schritten abgebrochen und mit dem negativen Gradienten neu initialisiert. So bleibt die Konjugiertheit der Abstiegsrichtungen gesichert. Diese Vorgehensweise wird auch als partielle konjugierte Gradientenmethode bezeichnet (vgl. z.b. [10]). 14

15 4.3 Varianten Die einzelnen Varianten dieser Methode unterscheiden sich im wesentlichen darin, wie β k berechnet wird. Fletcher und Reeves/Polak und Ribire FLETCHER und REEVES [3] bestimmten β k zu: β k = f(xk+1 ) T f(x k+1 ) f(x k ) T f(x k ) POLAK und RIBIRE [9] formulieren ein Verfahren mit: β k = f(xk+1 ) T ( f(x k+1 ) f(x k )) f(x k ) T f(x k ) Nach empirischen Studien arbeitet die Methode von POLAK und RIBIRE effizienter als die von FLETCHER und REEVES. Dies liegt möglicherweise daran, dass FLETCHER-REEVES am Anfang kleinere Schritte macht. PrekonditioniertePrekonditionierte, konjugierte Gradientenverfahren (PCG) multiplizieren den aktuellen, negativen Gradienten bei jeder Iteration mit einer konstanten, konjugierte Gradientenverfahren Bei quadratischen Funktionen ergeben sich die gleichen Iterierten wie bei der symmetrischen und positiv-definiten Matrix. BFGS-Methode (vgl. [3]). Wird ein höherer Speicherverbrauch für die Berechnung der Iterierten zugelassen, so stehen weitere Methoden zur Verfügung. Mit einigen Methoden kann die Effizienz des Verfahrens in Abhängigkeit vom verfügbaren Speicher beeinflusst werden. Beispiele sind die von NOCEDALE [7] veröffentlichte Methode oder die im Code CONMIN eingesetzte Methode von SHANNO und PHUA [6]. 15

16 4.4 Anwendung Vorteile von konjugierten Gradientenverfahren Konjugierte Gradientenverfahren benötigen sehr wenig Speicherplatz und weniger Rechenzeit als Newton-Verfahren. Sie sind im Gegensatz zu Quasi-Newton-Verfahren auch auf hochdimensionale (mehr als 100 Variablen) Probleme anwendbar. Beispielsweise erläutert FLETCHER [3] eine Anwendung mit Variablen. Sie konvergieren in der Nähe von x* linear in meist weniger als 2n Schritten (wobei n die Anzahl der Variablen ist). Teilweise ist eine effiziente Implementierung auf Multiprozessor-Rechnern möglich. Unter bestimmten Vorraussetzungen ist die globale Konvergenz gewährleistet. Nachteile von konjugierten Gradientenverfahren Konjugierte Gradientenverfahren sind weniger robust als Quasi-Newton- Verfahren. Sie sind geringfügig weniger recheneffizient als Quasi-Newton-Verfahren. Anwendung Konjugierte Gradientenverfahren setzen voraus, dass die Funktion mindestens einmal stetig differenzierbar ist. Einige Varianten erfordern auch die zweiten Ableitungen. Die Verfahren werden zur Lösung nichtlinearer Probleme mit einer großen Anzahl an Variablen (100 bis mehrere Tausend) eingesetzt. Auch finden sie bei der Minimierung der Fehlerfunktion in Neuronalen Netzen Anwendung (vgl. z.b. [5]) 16

17 5 Newton-Verfahren 5.1 Methodenbeschreibung Allgemeines Beim Newton-Verfahren nähert man sich einem Minimum iterativ mit mindestens superlinearer Konvergenz. Um dies zu erreichen wird der negative Gradient der Zielfunktion (die Richtung des steilsten Abstiegs) abgelenkt, indem er mit der inversen Matrix der Hesse-Matrix multipliziert wird. Mit dieser Vorgehensweise wird eine Abstiegsrichtung der quadratisch approximierten Funktion gesucht, anstatt der linear approximierten Funktion wie bei der Gradientenmethode. Taylor- Entwicklung Das Newton-Verfahren löst nichtlineare, mindestens einmal stetig differenzierbaregleichungssysteme der Form F(x)=0. Ausgehend von einem Punkt x 0, kann das Gleichungssystem gelöst werden, indem eine Folge von Punkten x k erzeugt wird, die sich der Lösung x des Gleichungssystems F (x) = 0 nähern. Die Idee des Newton-Verfahrens ist, dass diese Folge durch Taylor-Entwicklungen 1. Ordnung in den Punkten x k approximiert wird. Der k-te Newton-Schritt s k wird durch Lösen des folgenden Gleichungssystems bestimmt: s k = F (xk ) F (x k ) mit der Jacobi-Matrix F (x k ). Der nächsten Iterationspunkt x k+1 wird dann zu x k+1 = x k + s k berechnet. 17

18 5.2 Methodenbeschreibung Quadratische Approximation Das Newton-Verfahren lässt sich auf die Lösung von Optimierungsproblemen anwenden, indem eine quadratische Approximation der zu minimierenden, mindestens zweimal stetig differenzierbaren Funktion f(x) mit einer Taylorentwicklung 2. Ordnung um den Punkt x k durchgeführt wird: q(x k ) = f(x k ) + f(x k ) T (x x k ) (x xk ) T H(x k )(x x k ) mit H(x k ) als Hesse-Matrix von f(x) in x k. Notwendiges und hinreichendes Optimalitätskriterium Ein notweniges Kriterium für ein Minimum der quadratischen Approximation von f(x) ist, dass die erste Ableitung der Funktion q(x) im Minimum Null ist: q(x) = f(x k ) + H(x k )(x x k ) = 0 Hinreichendes Kriterium für ein Minimum ist die positive Definitheit der Hessematrix H(x) im Minimalpunkt. Der nächste Iterationspunkt x k+1 des Newton-Verfahrens kann wie folgt berechnet werden: x k+1 = x k H(x k ) 1 f(x k ) Konvergenzeigenschaften Die Ursache der Beliebtheit des Newton-Verfahrens sind seine guten Konvergenzeigenschaften. Das Verfahren garantiert mindestens superlineare Konvergenz; des Newton- Verfahrens ist die 1. Ableitung Lipschitz-stetig, so ist die Konvergenz sogar quadratisch. Jedoch gelten diese Konvergenzeigenschaften nur in der Nähe eines Optimalpunktes, d.h. eine globale Konvergenz ist nicht gewährleistet. 18

19 5.3 Varianten Gradientenverfahren Um für das Newton-Verfahren globale Konvergenz zu gewährleisten, kann dieses als Grundlage der Schrittberechnung in einem Gradientenverfahren eingesetzt werden. In jedem Schritt des Gradientenverfahrens wird überprüft, ob die hinreichende Bedingung für ein Minimum erfüllt ist. Ist dies der Fall, so kann als nächster Schritt ein Newton-Schritt durchgeführt werden [5]. Inexakte Newton- Verfahren Bei großen Problemen (Richtwert: Anzahl der Variablen ) ist die exakte Lösung der Newton-Gleichung oft zu aufwändig. Selbst wenn die Jacobi- Matrix F (x k ) dünn besetzt sein sollte, ist eine direkte Lösung der Newton- Gleichung oft nicht praktikabel. Als Ausweg verwendet man in der Praxis iterative Löser (z.b. Prekonditionierte konjugierte Gradientenverfahren), um die Newton-Gleichung näherungsweise zu lösen. Solche Verfahren werden auch inexakte Newton-Verfahren genannt [2]. Diskrete Newton- Verfahren Diskrete Newton-Verfahren sind eine Erweiterung der inexakten Newton- Verfahren und kommen ohne die Berechnung der Hesse-Matrix aus, da das untergeordnete konjugierte Gradientenverfahren nicht die Hesse-Matrix selbst, sondern nur eine Näherung an die Hesse-Matrix und einen Verschiebungsvektor benötigt [4]. Diese Verfahren haben jedoch den Nachteil, dass die Genauigkeit, mit der die Näherungen durchgeführt werden müssen, um eine ausreichende Konvergenzgeschwindigkeit zu erzielen, nur sehr schwierig abzuschätzen sind. Gauß-Newton- Verfahren Das Gauß-Newton-Verfahren (nach Carl Friedrich Gauß und Isaac Newton) löst nichtlineare Minimierungsprobleme, die bei der Anwendung der Kleinste Quadrate-Methode (z.b. bei der Regressionsanalyse) entstehen. Das Verfahren erzeugt aus einem nichtlinearen Ausgangsproblem eine Folge von linearen Problemen, die mit einer linearen Optimierungsmethode relativ einfach gelöst werden können. Vorlinearisierungsverfahren Vorlinearisierungsverfahren sind eine weitere Möglichkeit, um das Konvergenzverhalten des Newton-Verfahrens zu verbessern [1]. Die Anwendung des Newton-Verfahrens bei nichtdifferenzierbaren Funktionen erörtert KUMMER [3]. 19

20 5.4 Anwendung Vorteile des Newton- Verfahrens Das Newton-Verfahren konvergiertmindestens superlinear (bzw. quadratisch wenn die 1. Ableitung Lipschitz-stetig ist). Das Verfahren ist sehr anschaulich für den Anwender nachvollziehbar. Nachteile des Newton- Verfahrens Das klassische Newton-Verfahren erfordert eine aufwändige Berechnung der inversen Matrix in jeder Iteration. Dies ist vor allem bei hochdimensionalen Problemen problematisch. Die globale Konvergenz ist nicht garantiert, d.h. das Verfahren konvergiert nur in der Nähe der optimalen Lösung. Verschiedene Varianten des Newton-Verfahrens beheben diese Nachteile durch Erweiterungen oder durch die Kombination mit anderen Methoden der nichtlinearen Optimierung. Dies ist jedoch mit einer aufwändigeren Implementierung und einem Verlust an Recheneffizienz verbunden. Anwendungsvoraussetzungen Voraussetzungen für die Anwendung des Newton-Verfahrens sind in der Regel eine zwei Mal stetig differenzierbarefunktion und die Existenz der Hesse- Matrix. Für einige Varianten des Newton-Verfahrens oder zur Lösung nichtlinearer Gleichungssysteme ist die einmal stetige Differenzierbarkeit und die Existenz der Jacobi-Matrix ausreichend. Anwendung Das Newton-Verfahren ist eines der wichtigsten Verfahren der Numerik, da es die Basis von schnelllokal konvergenten Verfahren bildet. Das Newton-Verfahren kann sowohl zur Lösung linearer Gleichungssysteme als auch zur Minimierung nichtlinearer Funktionen verwendet werden. Häufig wird es auch als untergeordnetes Hilfsverfahren für andere Methoden eingesetzt, beispielsweise zur eindimensionalen Minimierung und in Innere-Punkte-Methoden. 20

21 6 Quasi-Newton-Verfahren 6.1 Allgemeines Die Grundlagen für die Entwicklung der Quasi-Newton-Verfahren, auch Verfahren mit variabler Metrik genannt, wurden Ende der 50er/Anfang der 60er Jahre von Davidon bzw. Fletcher und Powell gelegt. Quasi-Newton-Verfahren sind mit den Verfahren der konjugierter Gradienten die erfolgreichsten Methoden auf dem Gebiet der nichtlinearen Optimierung ohne Nebenbedingungen, da sie auch große Probleme der Praxis effizient mit superlinearer Konvergenz lösen. Dies ist möglich, da die Hesse-Matrix nicht in jedem Schritt berechnet wird, wie dies beim Newton-Verfahren der Fall ist, sondern eine Näherung der inversen Hesse-Matrix bestimmt und in jedem Schritt mit möglichst geringem Aufwand aktualisiert wird. 21

22 6.2 Methodenbeschreibung Approximation der Hesse-Matrix Bei Quasi-Newton-Verfahren werden ausgehend von einer symmetrischen, positiv definiten Approximation B 0 der Hesse-Matrix H(x) (meist wird hierfür die Einheitsmatrix verwendet) iterativ bessere Approximationen B k erzeugt. In jeder Iteration wird die Matrix mit den Informationen aus der Krümmung der Funktion entlang des jeweiligen Schrittes aktualisiert, so dass die folgende Quasi-Newton-Gleichung gilt: B k+1 = (x k+1 x k ) = f(x k+1 ) f(x k ) Die in jeder Iteration garantierte positive Definitheit der Matrix B k gewährleistet, dass das Verfahren immer Abstiegsrichtungen erzeugt. Diese werden in jedem Schritt eines Quasi-Newton-Verfahrens über die Gleichung B k s k = f(x k ) bestimmt. Mit der Richtung s k kann der nächste Iterationspunkt x k+1 = x k + λ k s k berechnet werden. Matrix- Update Dann kann die Matrix B k mittels einer Updateformel aktualisiert werden. Eine gute Updateformel sollte die positive Definitheit und die Symmetrie von B k erhalten, die Quasi-Newton-Bedingung erfüllen, nur einen geringen Rechenaufwand erfordern und gute Konvergenzeigenschaften besitzen. Konvergenzeigenschaften Im Falle einer konvexen Zielfunktion kann die superlineare Konvergenz der Quasi-Newton-Verfahren bewiesen werden. Für den Fall allgemeiner nichtlinearer Funktionen steht dieser Beweis noch aus. Jedoch belegen die praktischen Erfahrungen, dass insbesondere das BFGS-Verfahren bei allen differenzierbaren, nichtlinearen Funktionen von jedem Startpunkt aus superlinear konvergiert. 22

23 6.3 Varianten Es existieren zahlreiche Implementierungen von Quasi-Newton-Verfahren. Zum einen gibt es vielfältige Möglichkeiten, die Näherungen der Hesse-Matrix B k zu berechnen und zum anderen existieren zahlreiche Erweiterungen und Kombinationen mit anderen Methoden. DFP- und BFGS-Update Zu den wichtigsten Update-Formeln zur Bestimmung der Approximationen der Hesse-Matrix gehören die DFP-Formel (Davidson-Fletcher-Powell) und die BFGS-Formel (Broyden-Fletcher-Goldfarb-Shanno). Unter den Gesichtspunkten der Berechenbarkeit und der Effizienz ist die BFGS-Formel für die meisten Problemstellungen eine gute Wahl (zu weiterreichenden Vergleichen verschiedener Update Formeln (vgl. z.b. [5]). PSB-Update Für große, strukturierte Probleme, wenn beispielsweise die Hesse-Matrix nur dünn besetzt ist, können spezielle Update-Formeln eingesetzt werden. Als Vertreter dieser Familie sei hier die PSB-Formel von Powell [4] genannt. Partitionierende Verfahren Eine Erweiterung der Quasi-Newton-Verfahren für große Probleme sind partitionierende Verfahren [2] und Verfahren mit begrenztem Speicherbedarf [3]. Letztere kombinieren die guten Speicher- und Laufzeiteigenschaften der konjugierten Gradientenverfahren mit der superlinearen Konvergenz der Quasi- Newton-Verfahren. Für eine Übersicht über Quasi-Newton-Verfahren für große Optimierungsprobleme sei auf [5] verwiesen. 23

24 7 Literatur und Methodenverzeichnis 7.1 Literatur zur eindimensionalen Minimierung und zu Gradientenverfahren Literaturverzeichnis Literatur zur eindimensionalen Minimierung Bazaraa, M./Sherali, H.D./Shetty, C.M. : Nonlinear Programming - Theory and Algorithms. 2nd edition, John Wiley & Sons, New York Chichester 1993, pp Wilde, D.J.: Optimum Seeking Methods, Prentice Hall, Englewood Cliffs, Literaturverzeichnis Einführende Literatur zu klassischen Gradientenverfahren Bazaraa, M./Sherali, H.D./Shetty, C.M. : Nonlinear Programming - Theory and Algorithms. 2nd edition, John Wiley & Sons, New York Chichester 1993, pp Fiacco, A.V./McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. John Wiley & Sons, New York Chichester 1968, pp Literaturverzeichnis Weiterführende Literatur zu klassischen Gradientenverfahren Battiti, R.: First- and Second-Order Methods for Learning: Between Steepest Descent and Newton s Method, in: Neural Computation, Vol. 4, 1992, auf URL: Friedman, J. H.: Greedy Function Approximation: a Gradient Boosting Machine. Technical report, Dept. of Statistics, Stanford University1999, auf URL: Literatur zu konjugierten Gradientenverfahren Literaturverzeichnis Einführende Literatur Bazaraa, M./Sherali, H.D./Shetty, C.M. : Nonlinear Programming - 24

25 Theory and Algorithms. 2nd ed., John Wiley & Sons, New York Chichester 1993, pp Dennis, J.E./Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs Fletcher, R.: Practical Methods of Optimization, 2nd ed., John Wiley, Chichester Hestenes, M.: Conjugate Direction Methods in Optimization, Springer, New York Literaturverzeichnis Weiterführende Literatur Al-Baali, M.: Descent property and global convergence of the Fletcher- Reeves method with inexact line search, in: Journal Inst. Maths. Applications, Vol. 5, 1985, pp Crowder, H.P./Wolfe, P.: Linear convergence of the conjugate gradient method, in: IBM Journal Research and Development, Vol. 16, 1972, pp Fletcher, R./Reeves, C.M.: Function minimization by conjugate gradients, in: Computer Journal, Vol. 7, 1964, pp Hestenes, M./Stiefel, E.: Methods of Conjugate Gradients for Solving Linear Systems, in: Journal Research National Bureau of Standards, Vol. 49, 1952, pp Johansson, E.M./Dowla, F.U./Goodman, D.M.: Backpropagation Learning for Multi-Layer Feed-Forward Neural Networks Using the Conjugate Gradient Method, International Journal of Neural Systems, Vol.2, 1992, pp Shanno, D.F./Phua, K.H.: Remark on algorithm 500: minimization of unconstrained multivariate functions, in: ACM Transactions on Mathematical Software, Vol. 6, 1980, pp Nocedale, J.: Updating quasi-newton matrices with limited storage, in: Mathematics of Computation, Vol. 35, 1980, pp Nocedale, J.: Theory of algorithms for Unconstrained Optimization, in: Acta Numerica 1992, pp Polak, E./Ribire, G.: Note sur la convergence de methods de directions conjuges, in : Rev. Franaise Informatique Recherche Operat., 16, 1969, p Powell, M.J.D. : Restart procedures for the conjugate gradient method, in : Mathematical Programming, Vol. 12, 1977, pp Shanno, D.F.: Conjugate Gradient Methods with Inexact Searches, in: Math. Operations Research 3, 1978, pp Literatur zu Newton-Verfahren Literaturverzeichnis Einführende Literatur Allgower, E.L./Georg, K.: Numerical Continuation Methods, Springer Series in Computational Mathematics No. 13, Springer, Berlin 25

26 Heidelberg New York Bazaraa, M./Sherali, H.D./Shetty, C.M. : Nonlinear Programming - Theory and Algorithms. 2nd ed., John Wiley & Sons, New York Chichester Horst, R.: Nichtlineare Optimierung, in: Gal, T. (Hrsg.): Grundlagen des Operations Research Band 1, 2. Aufl., Springer, Berlin Heidelberg New York 1989, S. 255 ff. Mor, J./Sorensen, D.C.: Newtons method, in Golub, G.H. (ed.): Studies in Numerical Analysis, 1984, pp Ulbrich, S.: Nichtlineare Optimierung. Vorlesungsskriptum, Zentrum Mathematik, Technische Universität München Literaturverzeichnis Weiterführende Literatur Dehlwisch, M.: Ein Vorlinearisierungsprinzip zur Konvergenzverbesserung des Newton-Verfahrens, GMD Research Services No. 5(98), GMD-Forschungszentrum Informationstechnik GmbH, Sankt Augustin Dembo, R.S./Eisenstat, S.C./Steihaug, T.: Inexact Newton methods, in: SIAM Journal on Numerical Analysis, Vol. 19, 1982, pp Kummer, B.: Newtons method for non-differentiable functions, in: Guddat, J./Bank, B./Hollatz, H./Kall, P./Klatte, D./Kummer, B./Lommatzsch, K./Tammer, L./Vlach, M./Zimmermann, K. (eds.): Advances in Mathematical Optimization, Akademie-Verlag, Berlin 1988, pp OLeary, D.P.: A discrete Newton algorithm for minimizing a function of many variables, in: Mathematical Programming Vol. 23, 1982, pp Ostrowski, A.M.: Solution of Equations and Systems of Equations, Academic Press, New York, London Rall, L.: Convergence of the Newton Process to Multiple Solutions, Journal of Numerical Mathematics, Vol. 9, Literatur zu Quasi-Newton-Verfahren Literaturverzeichnis Einführende Literatur Bazaraa, M./Sherali, H.D./Shetty, C.M.: Nonlinear Programming, 2nd ed., John Wiley, New York Chichester 1993, pp Broyden, C.G.: Quasi-Newton methods and their application to function minimization, in: Mathematics of Computation, Vol. 21, 1967, pp Fletcher, R.: An overview of unconstrained optimization, in Spedicato, E. (ed.): Algorithms for Continuous Optimization: The State of the Art. Kluwer Academic Publishers, Boston 1994, pp Auf URL: 26

27 Nocedal, J.: Theory of algorithms for unconstrained optimization, in: Acta Numerica, Vol.1, 1991, pp Auf URL: Nocedal, J.: Large Scale Unconstrained Optimization, in Watson, A./ Duff, I. (eds.): The State of the Art in Numerical Analysis, Oxford University Press 1997, pp Auf URL: Literaturverzeichnis Weiterführende Literatur Fletcher, R./Powell, M.J.D.: A rapidly convergent descent method for minimization, in: Computer Journal, Vol. 6, 1963, pp Griewank, A./Toint, Ph.L.: Numerical experiments with partially separable optimization problems, in: Griffiths, D.F. (ed.): Numerical Analysis: Proceedings Dundee 1983, Springer, Berlin 1984, pp Liu, D.C./Nocedal, J.: On the limited memory BFGS method for large scale optimization, in: Mathematical Programming Vol. 45, 1989, pp Powell, M.J.D.: A new algorithm for unconstrained optimization, in: Rosen, J.B./Mangasarian, O.L./Ritter, K.(eds.): Nonlinear Programming. Academic Press, New York Powell, M.J.D.: How bad are the BFGS and DFP methods when the objective function is quadratic?, in: Mathematical Programming, Vol. 34, 1986, pp Shanno, D.F.: Conditioning of quasi-newton methods for function minimization, in: Mathematics of Computation, Vol. 24, 1970, pp Zoutendijk, G.: Nonlinear Programming, Computational Methods, in Abadie, J. (ed.): Integer and Nonlinear Programming, North-Holland, Amsterdam 1970, pp Methodenverzeichnis Verzeichnis der erläuterten Methoden Armijo-Regel Bisektionsmethode Diskrete Newton-Verfahren Methode von Fletcher-Reeves Gauß-Newton-Verfahren Methode des Goldenen Schnittes Inexakte Newton-Verfahren Konjugierte Gradientenverfahren Methode von Polak-Ribire Prekonditionierte konjugierte Gradientenverfahren 27

28 Quasi-Newton-Verfahren Verfahren des Steilsten Abstiegs (Steepest Descent) Vorlinearisierungsverfahren 28

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Newton- und und Quasi-Newton-Methoden in der Optimierung. János Mayer

Newton- und und Quasi-Newton-Methoden in der Optimierung. János Mayer Newton- und und Quasi-Newton-Methoden in der Optimierung János Mayer 1 GLIEDERUNG Newton-Methode für nichtlineare Gleichungen nichtlineare Gleichungssysteme freie Minimierung. Quasi-Newton-Methoden für

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren

Mehr

Optimierung. Optimierung. Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 1 Newton Verfahren Taylor Approximation 1. Ordnung von Newton Verfahren! 0 Setze 0und berechne Löse lineares Gleichungssystem für : 2

Mehr

Optimale Steuerung 1

Optimale Steuerung 1 Optimale Steuerung 1 Kapitel 6: Nichtlineare Optimierung unbeschränkter Probleme Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Beispiel: Parameteranpassung für Phasengleichgewicht

Mehr

NICHTRESTRINGIERTE OPTIMIERUNG

NICHTRESTRINGIERTE OPTIMIERUNG 3 NICHTRESTRINGIERTE OPTIMIERUNG Die Aufgabe, mit der wir uns im Folgen beschäftigen werden, ist die Lösung von Minimierungsproblemen der Form minimiere f(x) in R n, (3.1) wobei f : R n R eine gegebene

Mehr

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren Ergänzungen zu dem Buch Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben von Carl Geiger und Christian Kanzow (Springer Verlag, 1999) Eine kurze Einführung in Quasi Newton Verfahren

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren

Mehr

Kontinuierliche Optimierung

Kontinuierliche Optimierung Kontinuierliche Optimierung Markus Herrich Wintersemester 2018/19 ii Inhaltsverzeichnis 2 Optimalitäts- und Regularitätsbedingungen 1 2.1 Einleitung und Wiederholung.................... 1 2.2 Optimalitätsbedingungen

Mehr

Das Gradientenverfahren

Das Gradientenverfahren Das Gradientenverfahren - Proseminar: Algorithmen der Nichtlinearen Optimierung - David Beisel December 10, 2012 David Beisel Das Gradientenverfahren December 10, 2012 1 / 28 Gliederung 0 Einführung 1

Mehr

6.8 Newton Verfahren und Varianten

6.8 Newton Verfahren und Varianten 6. Numerische Optimierung 6.8 Newton Verfahren und Varianten In den vorherigen Kapiteln haben wir grundlegende Gradienten-basierte Verfahren kennen gelernt, die man zur numerischen Optimierung von (unbeschränkten)

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Grundlagen der Nichtlinearen Optimierung. Klausur zur Vorlesung WS 2008/09

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Grundlagen der Nichtlinearen Optimierung. Klausur zur Vorlesung WS 2008/09 ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Obige Angaben sind richtig: Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT

Mehr

Das Trust-Region-Verfahren

Das Trust-Region-Verfahren Das Trust-Region-Verfahren Nadine Erath 13. Mai 2013... ist eine Methode der Nichtlinearen Optimierung Ziel ist es, das Minimum der Funktion f : R n R zu bestimmen. 1 Prinzip 1. Ersetzen f(x) durch ein

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

12. Potentialflächen und Optimierung

12. Potentialflächen und Optimierung Dr. Jens Döbler Computeranwendung in der Chemie Informatik für Chemiker(innen) 12. Potentialflächen und Optimierung Jens Döbler 2004 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL12 Folie

Mehr

Seminarvortrag: Trust-Region-Verfahren

Seminarvortrag: Trust-Region-Verfahren Seminarvortrag: Trust-Region-Verfahren Helena Klump Universität Paderborn Dezember 2012 Helena Klump 1 / 22 Trust-Region-Verfahren Problemstellung Sei die Funktion f : R n R gegeben. Betrachtet wird das

Mehr

Bemerkung 2.1: Das Newtonverahren kann auch als sequential quad. minimization verstanden werden: 2.1 Ein globalisiertes Newtonverfahren

Bemerkung 2.1: Das Newtonverahren kann auch als sequential quad. minimization verstanden werden: 2.1 Ein globalisiertes Newtonverfahren Kapitel 2 Newtonverfahren Ziel: Bestimmung von Nullstellen von f (=stationärer Punkt). Dies geschieht mit dem Newtonverfahren. x k+1 = x k ( 2 f (x k )) 1 f (x k ) (2.1) Bemerkung 2.1: Das Newtonverahren

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

Methoden der nichtlinearen Optimierung unter Nebenbedingungen

Methoden der nichtlinearen Optimierung unter Nebenbedingungen Methoden der nichtlinearen Optimierung unter Nebenbedingungen Mike Hüftle 31. Juli 2006 Inhaltsverzeichnis 1 Allgemeines 2 1.1 Nichtlineare Optimierung unter Nebenbedingunegn........ 2 2 Methoden der quadratischen

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Numerische Verfahren der nicht-linearen Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Line

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Freie Nichtlineare Optimierung Orakel, lineares/quadratisches Modell Optimalitätsbedingungen Das Newton-Verfahren Line-Search-Verfahren Inhaltsübersicht für heute: Freie Nichtlineare

Mehr

18.4 Das Newton-Verfahren

18.4 Das Newton-Verfahren 18.4 Das Newton-Verfahren Ziel: Wir suchen die Nullstellen einer Funktion f : D R n, D R n : f(x) = 0 Wir kennen bereits die Fixpunktiteration x k+1 := Φ(x k ) mit Startwert x 0 und Iterationsvorschrift

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

Newton-Verfahren für ein Skalarfunktion

Newton-Verfahren für ein Skalarfunktion Newton-Verfahren für ein Skalarfunktion Für eine Näherungsberechnung von Nullstellen einer reellen Funktion f(x) : R R benutzt man das Newton-Verfahren: x (n+1) = x (n) f(x (n) )/f (x (n) ). Das Newton-Verfahren

Mehr

Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen

Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen Wir betrachten das System f() = 0 von n skalaren Gleichungen f i ( 1,..., n ) = 0, i = 1,..., n. Gesucht: Nullstelle von f() = 0. Es sei (0) eine

Mehr

Das Subgradientenverfahren

Das Subgradientenverfahren Das Subgradientenverfahren Seminar Optimierung WS 05/06 Betreuer: Prof. F. Jarre von Jalo Liljo Das Subgradientenverfahren Das Ziel dieses Vortrags ist die Berechnung einer Lösung des unrestringierten

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

5.3.5 Abstiegs & Gradientenverfahren

5.3.5 Abstiegs & Gradientenverfahren 5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme 5.3.5 Abstiegs & Gradientenverfahren Die bisher kennengelernten Iterationsverfahren zur Approximation von linearen Gleichungssystemen haben

Mehr

38 Iterative Verfahren für lineare Gleichungssysteme

38 Iterative Verfahren für lineare Gleichungssysteme 38 Iterative Verfahren für lineare Gleichungssysteme 38.1 Motivation Viele praktische Probleme führen auf sehr große lineare Gleichungssysteme, bei denen die Systemmatrix dünn besetzt ist, d. h. nur wenige

Mehr

VIII Inhaltsverzeichnis 4 Innere - Punkte - Methoden für Lineare Programme Exkurs: Newton -Verfahren,Konvergenzraten Anwendung:

VIII Inhaltsverzeichnis 4 Innere - Punkte - Methoden für Lineare Programme Exkurs: Newton -Verfahren,Konvergenzraten Anwendung: Inhaltsverzeichnis 1 Einleitung... 1 1.1 Modellbildung,mathematische Formulierung............... 1 1.2 Nichtlineare Programme................................. 2 1.3 Einteilung von nichtlinearen Programmen...

Mehr

Inexakte Newton Verfahren

Inexakte Newton Verfahren Kapitel 3 Inexakte Newton Verfahren 3.1 Idee inexakter Newton Verfahren Wir betrachten weiterhin das nichtlineare Gleichungssystem F (x) = mit einer zumindest stetig differenzierbaren Funktion F : R n

Mehr

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems Kapitel 2 Newton Verfahren 2.1 Das lokale Newton Verfahren Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems F (x) = 0 (2.1) mit einer zumindest

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/4) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

Nullstellen von algebraischen Gleichungen

Nullstellen von algebraischen Gleichungen Kapitel 2 Nullstellen von algebraischen Gleichungen 2.1 Vorbemerkungen Suche Lösung der Gleichung f(x) = 0 (2.1) Dies ist die Standardform für eine Dimension. - typisch nichtlineare Gleichung, sonst elementar

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung

Mehr

Numerische Optimierung

Numerische Optimierung Numerische Optimierung 6 In den ersten fünf Kapiteln dieses Skriptes haben wir Grundaufgaben der biomedizinischen Bildgebung eingeführt, im Sinne von Variationsmethoden modelliert und ihre Analyse in geeigneten

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Einführung in Softwaretools zur Nichtlinearen Optimierung

Einführung in Softwaretools zur Nichtlinearen Optimierung Einführung in Softwaretools zur Nichtlinearen Optimierung 3. April 2017 5. April 2017 Sebastian Garreis, M. Sc. (hons) Johannes Haubner, M. Sc. Technische Universität München Fakultät für Mathematik Lehrstuhl

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

Rechnerpraktikum zur Nichtlinearen Optimierung

Rechnerpraktikum zur Nichtlinearen Optimierung Rechnerpraktikum zur Nichtlinearen Optimierung 9. März 2016 11. März 2016 Sebastian Garreis, B. Sc. Philipp Jarde, M. Sc. Technische Universität München Fakultät für Mathematik Lehrstuhl für Mathematische

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Gliederung 1 : Einführung 2 Differenzieren 2 3 Deskriptive 4 Wahrscheinlichkeitstheorie

Mehr

Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung

Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung Rechnerpraktikum zu Grundlagen der Nichtlinearen Optimierung 18.3.14-20.3.14 Dr. Florian Lindemann Moritz Keuthen, M.Sc. Technische Universität München Garching, 19.3.2014 Kursplan Dienstag, 18.3.2014

Mehr

Es wird vor allem auf die wesentlichen Ideen der Verfahren eingegangen und weniger auf Details.

Es wird vor allem auf die wesentlichen Ideen der Verfahren eingegangen und weniger auf Details. Kapitel 5 Lösungsverfahren Dieses Kapitel gibt einen Überblick über Lösungsverfahren für nichtlineare Optimierungsprobleme. Es wird vor allem auf die wesentlichen Ideen der Verfahren eingegangen und weniger

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar

Mehr

Problem lokaler Minima

Problem lokaler Minima Optimierung Optimierung Häufige Aufgabe bei Parameterschätzung: Minimierung der negativen log-likelihood-funktion F(a) oder der Summe der quadratischen Abweichungen S(a) und Berechnung der Unsicherheit

Mehr

Praktische Optimierung

Praktische Optimierung Praktische Optimierung Dozent: Günter Rudolph Vertretung: Nicola Beume Wintersemester 2007/08 Universität Dortmund Fachbereich Informatik Lehrstuhl für Algorithm Engineering (LS11) Fachgebiet Computational

Mehr

Iterative Methoden zur Lösung von linearen Gleichungssystemen

Iterative Methoden zur Lösung von linearen Gleichungssystemen Iterative Methoden zur Lösung von linearen Gleichungssystemen (13.12.2011) Ziel Können wir wir die zeitabhängige Schrödinger-Gleichung lösen? φ(t) = e iht ψ(0) Typischerweise sind die Matrizen, die das

Mehr

Der CG-Algorithmus (Zusammenfassung)

Der CG-Algorithmus (Zusammenfassung) Der CG-Algorithmus (Zusammenfassung) Michael Karow Juli 2008 1 Zweck, Herkunft, Terminologie des CG-Algorithmus Zweck: Numerische Berechnung der Lösung x des linearen Gleichungssystems Ax = b für eine

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

2 Statische Optimierung: Unbeschränkter Fall

2 Statische Optimierung: Unbeschränkter Fall 2 Statische Optimierung: Unbeschränkter Fall 2. Optimalitätsbedingungen Bevor in den Abschnitten 2.2 2.6 die numerischen Verfahren zur Lösung statischer Optimierungsprobleme ohne Beschränkungen behandelt

Mehr

Inhaltsverzeichnis. Teil I Lineare Programmierung

Inhaltsverzeichnis. Teil I Lineare Programmierung Inhaltsverzeichnis 1 Einleitung................................................ 1 1.1 Modellbildung, mathematische Formulierung............... 1 1.2 Nichtlineare Programme.................................

Mehr

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion

Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt

Mehr

Berechnung von Extrema

Berechnung von Extrema KAPITEL 2 Berechnung von Extrema 1. Partielle Ableitungen Definition 2.1 (partielle Ableitung). Sei U R n offen und e j der j-te Einheitsvektor. Eine Funktion f : U R ist in x u partiell differenzierbar

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man:

AM3: Differenzial- und Integralrechnung im R n. 1 Begriffe. 2 Norm, Konvergenz und Stetigkeit. x 1. x 2. f : x n. aus Platzgründen schreibt man: AM3: Differenzial- und Integralrechnung im R n 1 Begriffe f : x 1 f 1 x 1, x 2,..., x n ) x 2... f 2 x 1, x 2,..., x n )... x n f m x 1, x 2,..., x n ) }{{}}{{} R n R m aus Platzgründen schreibt man: f

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

Praktische Optimierung

Praktische Optimierung Grundlagen klassischer Optimiertechniken Praktische Optimierung Wintersemester 2008/09 Prof Dr Günter Rudolph Lehrstuhl für Algorithm Engineering Fakultät für Informatik TU Dortmund Themen der heutigen

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 4 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum. Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 11.12.2008 Numerische Methoden und Algorithmen in der Physik Hartmut Stadie 1/ 18 Einführung Einführung Verfahren für

Mehr

KAPITEL 3. Konvexe Funktionen

KAPITEL 3. Konvexe Funktionen KAPITEL 3 Konvexe Funktionen Sei F R n ein Definitionsbereich und f : F R eine Funktion. Unter dem Epigraphen von f versteht man die Menge epif = {(x, z) R n+1 x F, z R, z f(x)}. Man nennt f konvex, wenn

Mehr

Teil 6. Differentialrechnung mehrerer Veränderlicher

Teil 6. Differentialrechnung mehrerer Veränderlicher Teil 6 Differentialrechnung mehrerer Veränderlicher 95 96 6.1 Topologie von Mengen Umgebung ε-umgebung eines Punktes x R n : B ε (x) = {y : y x < ε} Umgebung U von x: Menge, die eine ε-umgebung von x enthält

Mehr

Dynamische Optimierung

Dynamische Optimierung Dynamische Optimierung Mike Hüftle 28. Juli 2006 Inhaltsverzeichnis 1 Einleitung 2 1.1.................................... 2 2 Dynamisches Optimierungmodell 3 2.1 Grundmodell der dynamischen Optimierung............

Mehr

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2

Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2 Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Teil II Optimierung. Modellgestützte Analyse und Optimierung Kap. 5 Einführung Optimierung. Peter Buchholz 2006

Teil II Optimierung. Modellgestützte Analyse und Optimierung Kap. 5 Einführung Optimierung. Peter Buchholz 2006 Teil II Optimierung Gliederung 5 Einführung, Klassifizierung und Grundlagen 6 Lineare Optimierung 7 Nichtlineare Optimierung 8 Dynamische Optimierung (dieses Jahr nur recht kurz) (9 Stochastische Optimierungsmethoden

Mehr

(a), für i = 1,..., n.

(a), für i = 1,..., n. .4 Extremwerte Definition Sei M R n eine Teilmenge, f : M R stetig, a M ein Punkt. f hat in a auf M ein relatives (oder lokales) Maximum bzw. ein relatives (oder lokales) Minimum, wenn es eine offene Umgebung

Mehr

Nichtlineare Gleichungen in einer und mehreren Unbekannten

Nichtlineare Gleichungen in einer und mehreren Unbekannten Gleichungen in einer und mehreren Unbekannten 2. Vorlesung 170004 Numerische Methoden I Clemens Brand 26. Februar 2009, Gliederung,, Gleichungen in einer Variablen Was ist... Wie geht... eine lineare (nichtlineare,

Mehr

3. Approximation von Funktionen und Extremwertprobleme im R n

3. Approximation von Funktionen und Extremwertprobleme im R n 3. Approximation von Funktionen und Extremwertprobleme im R n Wie in D ist es wichtig Funktionen mit mehreren Variablen durch Polynome lokal approximieren zu können. Polynome lassen sich im Gegensatz zu

Mehr

Bestimmung der Wurzeln nichtlinearer Gleichungen. Mária Lukáčová (Uni-Mainz) Nichtlineare Gleichungen June 22, / 10

Bestimmung der Wurzeln nichtlinearer Gleichungen. Mária Lukáčová (Uni-Mainz) Nichtlineare Gleichungen June 22, / 10 Bestimmung der Wurzeln nichtlinearer Gleichungen Mária Lukáčová (Uni-Mainz) Nichtlineare Gleichungen June 22, 2010 1 / 10 Problem Definition Gegeben f : (a, b) R R. Finde α (a, b) : Existiert eine Lösung?

Mehr

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D;

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D; Institut für Geometrie und Praktische Mathematik Höhere Mathematik IV (für Elektrotechniker und Technische Informatiker) - Numerik - SS 2007 Dr. S. Börm, Dr. M. Larin Banach scher Fixpunktsatz Gegeben

Mehr

KAPITEL 1. Einleitung

KAPITEL 1. Einleitung KAPITEL 1 Einleitung Wir beschäftigen uns in dieser Vorlesung mit Verfahren aus der Numerischen linearen Algebra und insbesondere dem sogenannten Mehrgitterverfahren zur Lösung linearer Gleichungssysteme

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt

Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht Partielle Differentialgleichungen, Approximation der Lösung Finite Elemente, lineare und höhere Ansatzfunktionen Dünn

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte

Topologie und Differentialrechnung mehrerer Veränderlicher, SS 2009 Modulprüfung/Abschlussklausur. Aufgabe Punkte Universität München 22. Juli 29 Topologie und Differentialrechnung mehrerer Veränderlicher, SS 29 Modulprüfung/Abschlussklausur Name: Aufgabe 2 3 4 Punkte Gesamtpunktzahl: Gesamturteil: Schreiben Sie unbedingt

Mehr

Anwendung affin invarianter Konvergenzsätze auf newtoneske Verfahren

Anwendung affin invarianter Konvergenzsätze auf newtoneske Verfahren Anwendung affin invarianter Konvergenzsätze auf newtoneske Verfahren im Rahmen des Seminars Newton- und Newton-ähnliche Verfahren unter Leitung von Dr. Ekaterina Kostina und Dr. Moritz Diehl, Wintersemester

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar.

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H13 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

7. Iterative Lösung. linearer Gleichungssysteme

7. Iterative Lösung. linearer Gleichungssysteme 7. Iterative Lösung linearer Gleichungssysteme 1 Grundlagen (1) Zur Erinnerung: Gesucht ist die Lösung eines linearen Gleichungssystems a 0,0 x 0 +a 0,1 x 1 + a 0,n 1 x n 1 = b 0 a 1,0 x 0 +a 1,1 x 1 +

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

NICHTLINEARE OPTIMIERUNG

NICHTLINEARE OPTIMIERUNG NICHTLINEARE OPTIMIERUNG Vorlesungsskript, Wintersemester 2015/16 Christian Clason Stand vom 21. März 2016 Fakultät für Mathematik Universität Duisburg-Essen INHALTSVERZEICHNIS I GRUNDLAGEN 1 grundlagen

Mehr

Gleichungsbasierte Modellierung

Gleichungsbasierte Modellierung 1 Gleichungsbasierte Modellierung Die Benutzung von Gleichungen zur Geometrischen Modellierung wurde bereits von Sutherland eingeführt. Fortgeführt wurde sie durch die Arbeiten von Light und Gossard. Wie

Mehr

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h.

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h. Konvexe Menge Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, dh Kapitel Extrema konvex: h x + h y D für alle h [0, ], und x,

Mehr

II. Nichtlineare Optimierung

II. Nichtlineare Optimierung II. Nichtlineare Optimierung 1. Problemstellungen 2. Grundlagen 3. Probleme ohne Nebenbedingungen 4. Probleme mit Nebenbedingungen Theorie 5. Probleme mit Nebenbedingungen Verfahren H. Weber, FHW, OR SS06,

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 12

Technische Universität München Zentrum Mathematik. Übungsblatt 12 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Sei f : R R gegeben durch f(x 1, x ) = x 3

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Stützvektormethode Katharina Morik LS 8 Informatik 8.11.2011 1 von 38 Gliederung 1 2 Lagrange-Optimierung 2 von 38 Übersicht über die Stützvektormethode (SVM) Eigenschaften

Mehr

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( )

( ) Dann gilt f(x) g(x) in der Nähe von x 0, das heisst. Für den Fehler r(h) dieser Näherung erhält man unter Verwendung von ( ) 64 Die Tangente in x 0 eignet sich also als lokale (lineare) Näherung der Funktion in der Nähe des Punktes P. Oder gibt es eine noch besser approximierende Gerade? Satz 4.9 Unter allen Geraden durch den

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Aufgaben zur nicht-linearen Optimierung Teil II Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Aufgabe 5 Bestimmen

Mehr

Inhaltsverzeichnis. Innere-Punkte-Verfahren 3. Inhaltsverzeichnis 1

Inhaltsverzeichnis. Innere-Punkte-Verfahren 3. Inhaltsverzeichnis 1 Inhaltsverzeichnis 1 Inhaltsverzeichnis Innere-Punkte-Verfahren 3 1 Theoretische Grundlagen 3 1.1 Die KKT-Bedingungen........................... 3 1.2 Der zentrale Pfad.............................. 4

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differenzialgleichungssysteme 5.1-1 1.1 Grundlagen

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016

Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 2016 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden Sommersemester 0 0090 Aufgabe Punkte: Betrachten Sie das lineare Gleichungssystem Ax = b mit A = 0 und b

Mehr

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt TU ILMENAU Institut für Mathematik Numerische Mathematik PD Dr. W. Neundorf Musterlösungen zur Leistungsnachweisklausur vom.0.006 Studiengang Informatik, Ingenieurinformatik, Lehramt 1. Lineare Algebra

Mehr