5.3.5 Abstiegs & Gradientenverfahren

Größe: px
Ab Seite anzeigen:

Download "5.3.5 Abstiegs & Gradientenverfahren"

Transkript

1 5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme Abstiegs & Gradientenverfahren Die bisher kennengelernten Iterationsverfahren zur Approximation von linearen Gleichungssystemen haben alle den Nachteil, dass die Konstruktion nicht durch einen fundierten Zugang erfolgt, sondern auf Kontraktionsprinzipien beruht, die von Fall zu Fall untersucht werden müssen. In diesem abschließenden Abschnitt werden wir zur Vorbereitung von leistungsfähigeren Verfahren einige Grundlagen entwickeln. Alle bisherigen Fixpunktiterationen lassen sich allgemeiner in folgender Form schreiben x k+1 = x k + d k, k = 1, 2,..., wobei d k in jedem Schritt die Richtung angibt, in der die Lösung verbessert wird. Beim Jacobi-Verfahren bestimmt sich diese Richtung z.b. als d k = D 1 (b Ax k ), beim Gauß- Seidel Verfahren als d k = (D+L) 1 (b Ax k ). Um diese allgemeine Iteration zu verbessern setzen wir an zwei Punkten an: zunächst fügen wir in jedem Schritt der Iteration einen Relaxationsparameter ω k ein x k+1 = x k + ω k d k, k = 1, 2,..., welchen wir Schritt für Schritt optimal bestimmen werden. Anschließen versuchen wir neue Suchrichtungen d k auf eine systematische Art und Weise zu entwickeln. D.h., wir suchen eine Richtung d k, in der die größte Fehlerreduktion zu erwarten ist. In diesem Abschnitt beschränken wir uns auf symmetrisch positiv definite Matrizen A R n n. Zentral für das gesamte Kapitel ist die folgende Charakterisierung zur Lösung eines linearen Gleichungssystems mit symmetrisch, positiv definiter Matrix: Satz 5.36 (Lineares Gleichungssystem und Minimierung). Es sei A R n n eine symmetrische positiv definite Matrix. Das lineare Gleichungssystem Ax = b ist äquivalent zur Minimierungsaufgabe: Q(x) Q(y) y R n, Q(y) = 1 2 (Ay, y) 2 (b, y) 2. Beweis: (i) Zunächst sei x Lösung des linearen Gleichungssystems Ax = b. Dann gilt mit beliebigem y R n : d.h. Q(y) Q(x). 2Q(y) 2Q(x) = (Ay, y) 2 2(b, y) 2 (Ax, x) 2 + 2(b, x) = (Ay, y) 2 2(Ax, y) 2 + (Ax, x) 2 = (A(y x), y x) 2 0, (ii) Umgekehrt sei Q(x) nun Minimum. D.h. x R n ist stationärer Punkt der quadratischen Form Q(x), also: 0! = x i Q(x) = x i { 1 2 (Ax, x) 2 (b, x) 2 } = 2(Ax) i 2b i, i = 1,..., n. 217

2 5 Numerische Iterationsverfahren D.h., x ist Lösung des linearen Gleichungssystems. Anstelle ein lineares Gleichungssystem Ax = b zu lösen betrachten wir die Minimierung des Energiefunktionals Q(x). Dieser Zugang ist Grundlage der im Folgenden diskutieren Verfahren und auch Basis der allgemeinen Klasse von Krylow-Raum-Verfahren. Wir betrachten zunächst nur symmetrisch positiv definite Matrizen, daher ist durch x A := (Ax, x)2 eine Norm, die sogenannte Energienorm gegeben. Die Minimierung des Energiefunktionals Q( ) ist auch äquivalent zur Minimierung des Fehlers x k x in der zugehörigen. Denn, angenommen x R n sei die Lösung und x k R n eine Approximation, dann gilt: x k x 2 A = (A(x k x), x k x) 2 = (Ax k, x k ) 2(Ax k, x) }{{} +(Ax, x) = 2Q(x k )+(Ax, x). =2(Ax,x k )=2(b,x k ) Abstiegsverfahren Wir gehen zunächst davon aus, dass die Suchrichtungen d k durch ein gegebenes Verfahren (etwa Jacobi oder Gauß-Seidel) bestimmt sind und stellen uns der Frage, den nächsten Schritt optimal zu gestalten, also in der Iteration k k + 1 mit x k+1 = x k + ω k d k, den skalaren Faktor ω k möglichst optimal zu bestimmen, so dass die neue Approximation x k+1 eine möglichst geringe Energie Q(x k+1 ) aufweist: ω k = arg min ω R Q(xk + ωd k ). Das gesuchte Minimum ω können wir wieder als Extrempunkt des quadratischen Funktionals bestimmen: 0 =! { 1 } Q(x + ωd) = ω ω 2 (A(x + ωd), x + ωd) 2 (b, x + ωd) 2 = ω(ad, d) 2 + (Ax b, d) 2 Hieraus bestimmt sich ω zu: Wir fassen zusammen: ω = (b Ax, d) 2 (Ad, d) 2. Algorithmus 5.37 (Abstiegsverfahren). Es sei A R n n symmetrisch positiv definit, x 0, b R n sowie für k = 1, 2,... durch d k R n Abstiegsrichtungen gegeben. Iteriere: 1. Bestimme ω k als 2. Berechne ω k = (b Axk, d k ) 2 (Ad k, d k ) 2, x k+1 = x k + ω k d k. 218

3 5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme Jacobi Gauss-Seidel Abstiegs-Jacobi Abstiegs-Gauss-Seidel Jacobi Abstiegsverfahren e Abbildung 5.2: Links: Konvergenz von Jacobi-, Gauß-Seidel- sowie den entsprechenden Abstiegsverfahren. Rechts: Vergleich der Annäherung bei Jacobi- und Jacobi-Abstiegs-Verfahren an die Lösung x = (1, 0, 2) T. Ein konkretes Verfahren entsteht durch Wahl der Abstiegsrichtungen d k. Es zeigt sich, dass die Kombination des Abstiegsverfahrens mit den bisher eingeführten Methoden wie Jacobi und Gauß-Seidel nicht zu wesentlichen Verbesserungen in der Konvergenzgeschwindigkeit führt. Wir betrachten hierzu ein Beispiel: Beispiel 5.38 (Abstiegsverfahren, Jacobi & Gauß-Seidel). Es sei Ax = b mit A = 1 2 1, b = 3, x = Mit dem Startvektor x 0 = 0 führen wir jeweils 10 Schritte mit Jacobi-, Gauß-Seidel- Verfahren sowie jeweils mit den entsprechenden Kombinationen unter Verwendung des optimalen Abstiegs-Schritts ω k. In Abbildung 5.2 links fassen wir für alle Verfahren die Fehler zusammen. Auf der rechten Seite der Abbildung stellen wir den Approximationsverlauf x k R 3 für Jacobi- sowie Jacobi-Abstiegsverfahren graphisch dar. Obwohl der Verlauf des Jacobi-Abstiegsverfahrens wesentlich gradliniger scheint, konvergiert dieses Verfahren ebenso langsam wie das Jacobi-Verfahren selbst. Nur im Falle des Gauß-Seidel- Verfahrens wird die Konvergenz durch Wahl optimaler Schrittweite ω k wesentlich beschleunigt. Gradientenverfahren Abschließend werden wir ein erstes Verfahren entwickeln, welches die neue Suchrichtung d k R n systematisch so bestimmt, dass das quadratische Funktional Q(x) möglichst stark minimiert werden kann. Wir suchen also die Richtung des stärksten Abfalls. Zu einem Punkt x R n ist dies gerade die Richtung d R n, die normal auf den Niveaumenge N(x) steht: N(x) := {y R n : Q(y) = Q(x)} 219

4 5 Numerische Iterationsverfahren In einem Punkt x ist die Niveaumenge aufgespannt durch alle Richtungen δx R n mit: 0! = Q (x) δx = ( Q(x), δx) = (b Ax, δx). Die Vektoren δx, welche die Niveaumenge aufspannen stehen orthogonal auf dem Defekt b Ax, dieser zeigt daher in Richtung der stärksten Änderung von Q( ). Wir wählen d k := b Ax k. Die so gefundene Suchrichtung wird dann mit dem Abstiegsverfahren kombiniert, d.h. wir iterieren: d k := b Ax k, ω k := dk 2 2 (Ad k, d k ) 2, x k+1 := x k + ω k d k. Wir definieren das Gradientenverfahren: Algorithmus 5.39 (Gradientenverfahren). Es sei A R n n symmetrisch positiv definit, b R n. Es sei x 0 R n beliebig und d 0 := b Ax 0. Iteriere für k = 0, 1, 2, r k := Ad k 2. ω k = d k 2 2 (r k,d k ) 2 3. x k+1 = x k + ω k d k. 4. d k+1 = d k ω k r k. Durch Einführen eines zweiten Hilfsvektors r k R n kann in jeder Iteration ein Matrix- Vektor-Produkt gespart werden. Für Matrizen mit Diagonalanteil D = αi ist das Gradientenverfahren gerade das Jacobi-Verfahren in Verbindung mit dem Abstiegsverfahren. Daher kann für dieses Verfahren im Allgemeinen auch keine verbesserte Konvergenzaussage erreicht werden. Es stellt jedoch den Einstieg in eine ganze Klasse von fortgeschrittenen Verfahren, die Krylow-Unterraum-Verfahren dar. Wir zeigen: Satz 5.40 (Gradientenverfahren). Es sei A R n n symmetrisch positiv definit. Dann konvergiert das Gradientenverfahren für jeden Startvektor x 0 R n gegen die Lösung des Gleichungssystems Ax = b. Beweis: Es sei x k R n eine gegebene Approximation. Weiter sei d := b Ax k. Dann berechnet sich ein Schritt des Gradientenverfahrens als: x k+1 = x k + (d, d) (Ad, d) d. 220

5 5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme Für das Energiefunktional gilt: Q(x k+1 ) = 1 2 (Axk+1, x k+1 ) (b, x k+1 ) Also folgt: = 1 2 (Axk, x k ) + 1 (d, d) 2 (d, d) (Ad, d) + 2 (Ad, d) 2 (Ad, d) (Axk, d) (b, x k (d, d) ) (b, d) (Ad, d) { = Q(x k (d, d) 1 ) + (Ad, d) 2 (d, d) + (Axk, d) (b, d)} = Q(x k (d, d) 1 ) + (Ad, d) 2 (d, d) + (Axk b, d) }{{} = d Q(x k+1 ) = Q(x k ) (d, d)2 2(Ad, d). Wegen der positiven Definitheit von A gilt λ min (A)(d, d) (Ad, d) λ max (A)(d, d) und schließlich ist mit Q(x k+1 ) Q(x k (d, d) ), 2λ }{{ max } 0 die Folge Q(x k ) monoton fallend. Weiter ist Q(x k ) nach unten durch Q(x) beschränkt. Also konvergiert die Folge Q(x k ) c R n. Im Grenzwert muss gelten 0 = (d, d) = b Ax 2, also Ax = b. Schließlich zitieren wir noch zur Abschätzung der Konvergenzgeschwindigkeit die folgende Fehlerabschätzung: Satz 5.41 (Konvergenz des Gradientenverfahrens). Es sei A R n n eine symmetrisch positiv definite Matrix. Dann gilt für das Gradientenverfahren zur Lösung von Ax = b die Fehlerabschätzung Beweis: Siehe [9] x k x A ( ) 1 1/κ k, κ := cond 2 (A) = λ max(a) 1 + 1/κ λ min (A). Die asymptotische Konvergenzrate des Gradientenverfahrens wir durch die Kondition der Matrix bestimmt. Für die Modellmatrix gilt κ = O(n 2 ), siehe Beispiel Also gilt: ρ = 1 1 n = 1 2 ( ) 1 n n 2 + O n 4. 2 Die Konvergenz ist demnach ebenso langsam wie die des Jacobi-Verfahrens (wir haben bereits diskutiert, dass es für die Modellmatrix mit dem Jacobi-Abstiegsverfahren übereinstimmt). Für das Gradientenverfahren gilt jedoch der folgende Zusammenhang, der Basis des CG-Verfahrens ist: 221

6 5 Numerische Iterationsverfahren Satz 5.42 (Abstiegsrichtungen im Gradientenverfahren). Es sei A R n n symmetrisch positiv definit. Dann stehen je zwei aufeinanderfolgende Abstiegsrichtungen d k und d k+1 des Gradientenverfahren orthogonal aufeinander. Beweis: Zum Beweis, siehe Algorithmus Es gilt: Also gilt: d k+1 = d k ω k r k = d k (dk, d k ) (Ad k, d k ) Adk. (d k+1, d k ) = (d k, d k ) (dk, d k ) (Ad k, d k ) (Adk, d k ) = (d k, d k ) (d k, d k ) =

Der CG-Algorithmus (Zusammenfassung)

Der CG-Algorithmus (Zusammenfassung) Der CG-Algorithmus (Zusammenfassung) Michael Karow Juli 2008 1 Zweck, Herkunft, Terminologie des CG-Algorithmus Zweck: Numerische Berechnung der Lösung x des linearen Gleichungssystems Ax = b für eine

Mehr

4 Iterative Lösung Linearer Gleichungssysteme 4.1 Fixpunktiteration und Konvergenzsätze.

4 Iterative Lösung Linearer Gleichungssysteme 4.1 Fixpunktiteration und Konvergenzsätze. 4 Iterative Lösung Linearer Gleichungssysteme 4.1 Fixpunktiteration und Konvergenzsätze. Wir betrachten das lineare Gleichungssystem der Form Ax = b; (4.1.1) mit A R n n reguläre Matrix und b R n gegeben,

Mehr

38 Iterative Verfahren für lineare Gleichungssysteme

38 Iterative Verfahren für lineare Gleichungssysteme 38 Iterative Verfahren für lineare Gleichungssysteme 38.1 Motivation Viele praktische Probleme führen auf sehr große lineare Gleichungssysteme, bei denen die Systemmatrix dünn besetzt ist, d. h. nur wenige

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 11 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 2010 Prof. Dr. Klaus Höllig

Mehr

Lineare Iterationsverfahren: Definitionen

Lineare Iterationsverfahren: Definitionen Lineare Iterationsverfahren: Definitionen 1. Ein Lösungsverfahren zur Berechnung von Ax = b heißt iterativ, falls ausgehend von einem Startwert x eine Folge x k von Iterierten bestimmt wird. 2. Ein Iterationsverfahren

Mehr

KAPITEL 1. Einleitung

KAPITEL 1. Einleitung KAPITEL 1 Einleitung Wir beschäftigen uns in dieser Vorlesung mit Verfahren aus der Numerischen linearen Algebra und insbesondere dem sogenannten Mehrgitterverfahren zur Lösung linearer Gleichungssysteme

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

7. Iterative Lösung. linearer Gleichungssysteme

7. Iterative Lösung. linearer Gleichungssysteme 7. Iterative Lösung linearer Gleichungssysteme 1 Grundlagen (1) Zur Erinnerung: Gesucht ist die Lösung eines linearen Gleichungssystems a 0,0 x 0 +a 0,1 x 1 + a 0,n 1 x n 1 = b 0 a 1,0 x 0 +a 1,1 x 1 +

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische lineare Iterationsverfahren Typeset by FoilTEX 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung einer linearen

Mehr

Das Subgradientenverfahren

Das Subgradientenverfahren Das Subgradientenverfahren Seminar Optimierung WS 05/06 Betreuer: Prof. F. Jarre von Jalo Liljo Das Subgradientenverfahren Das Ziel dieses Vortrags ist die Berechnung einer Lösung des unrestringierten

Mehr

3. Lineare Gleichungssysteme

3. Lineare Gleichungssysteme 3. Lineare Gleichungssysteme 1 3.1. Problemstellung 2 3.2. Direkte Verfahren 3 3.3. Normen und Fehleranalyse 4 3.4. Iterative Verfahren 5 3.5. Konvergenz von linearen Iterationsverfahren 6 3.6. Gradienten-Verfahren

Mehr

5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme

5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme 5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme Als zweite Hauptanwendung des Banachschen Fixpunktsatzes besprechen wir in diesem Kapitel die iterative Lösung linearer Gleichungssysteme. Die

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

Iterative Methoden zur Lösung von linearen Gleichungssystemen

Iterative Methoden zur Lösung von linearen Gleichungssystemen Iterative Methoden zur Lösung von linearen Gleichungssystemen (13.12.2011) Ziel Können wir wir die zeitabhängige Schrödinger-Gleichung lösen? φ(t) = e iht ψ(0) Typischerweise sind die Matrizen, die das

Mehr

Das Gradientenverfahren

Das Gradientenverfahren Das Gradientenverfahren - Proseminar: Algorithmen der Nichtlinearen Optimierung - David Beisel December 10, 2012 David Beisel Das Gradientenverfahren December 10, 2012 1 / 28 Gliederung 0 Einführung 1

Mehr

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen Kapitel 2: Lineare Gleichungssysteme 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen B(n, m) : Ω {0,...,255}, n = 1,...,N, m = 1,...,M. dig. Camera Realisierung

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

18.4 Das Newton-Verfahren

18.4 Das Newton-Verfahren 18.4 Das Newton-Verfahren Ziel: Wir suchen die Nullstellen einer Funktion f : D R n, D R n : f(x) = 0 Wir kennen bereits die Fixpunktiteration x k+1 := Φ(x k ) mit Startwert x 0 und Iterationsvorschrift

Mehr

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x)

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x) 9 Ausgleichsrechnung 9.1 Problemstelllung Eine Reihe von Experimenten soll durchgeführt werden unter bekannten Versuchsbedingungen z Ê m. Es sollen Größen x Ê n bestimmt werden, für die ein Gesetz gelten

Mehr

Das Trust-Region-Verfahren

Das Trust-Region-Verfahren Das Trust-Region-Verfahren Nadine Erath 13. Mai 2013... ist eine Methode der Nichtlinearen Optimierung Ziel ist es, das Minimum der Funktion f : R n R zu bestimmen. 1 Prinzip 1. Ersetzen f(x) durch ein

Mehr

Numerische Mathematik für Ingenieure (SoSe 2013)

Numerische Mathematik für Ingenieure (SoSe 2013) Numerische Mathematik für Ingenieure (SoSe 2013) PD Dr(USA) Maria Charina Auszüge aus Vorlesungsfolien von Prof Joachim Stöckler werden verwendet Für die Bereitstellung dieses Materials und der Tex-Files

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

Konvexe Optimierungsprobleme

Konvexe Optimierungsprobleme von: Veronika Kühl 1 Konvexe Optimierungsprobleme Betrachtet werden Probleme der Form (P) min x C f(x) wobei f : C R eine auf C konvexe, aber nicht notwendigerweise differenzierbare Funktion ist. Ziel

Mehr

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen Kapitel 2: Lineare Gleichungssysteme 21 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen B(n, m) : Ω {0,,255}, n = 1,,N, m = 1,,M dig Camera Realisierung von B η ist

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

Erweiterungen der LR-Zerlegung

Erweiterungen der LR-Zerlegung Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme Wir betrachten das lineare Gleichungssystem Ax = b mit der n n-koeffizientenmatrix A und der rechten Seite b R n. Wir leiten zuerst eine Variante des Gauss-Algorithmus (LR-Zerlegung)

Mehr

5 Numerische Iterationsverfahren

5 Numerische Iterationsverfahren In diesem Kapitel besprechen wir numerische Iterationsverfahren (insbesondere Fixpunktverfahren) als eine weitere Lösungsmethode zur Lösung von linearen Gleichungssystemen (Kapitel 4) sowie zur Lösung

Mehr

Newton-Verfahren für ein Skalarfunktion

Newton-Verfahren für ein Skalarfunktion Newton-Verfahren für ein Skalarfunktion Für eine Näherungsberechnung von Nullstellen einer reellen Funktion f(x) : R R benutzt man das Newton-Verfahren: x (n+1) = x (n) f(x (n) )/f (x (n) ). Das Newton-Verfahren

Mehr

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Praktikum im Sommersemester 2012 Programmierpraktikum numerische Algorithmen (P2E1) (Numerische Lösung der Wärmeleitungsgleichung)

Mehr

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik 1

Mehr

4.6 Berechnung von Eigenwerten

4.6 Berechnung von Eigenwerten 4.6 Berechnung von Eigenwerten Neben der Festlegung auf den betragsgrößten Eigenwert hat die Potenzmethode den Nachteil sehr langsamer Konvergenz, falls die Eigenwerte nicht hinreichend separiert sind.

Mehr

Zusammenfassung Numerische Mathematik für Elektrotechniker

Zusammenfassung Numerische Mathematik für Elektrotechniker Zusammenfassung Numerische Mathematik für Elektrotechniker RWTH Aachen, SS 2006, Prof. Dr. W. Dahmen c 2006 by Sebastian Strache, Ralf Wilke Korrekturen bitte an Ralf.Wilke@rwth-aachen.de 27. August 2006

Mehr

Kapitel 4: Nichtlineare Nullstellenprobleme

Kapitel 4: Nichtlineare Nullstellenprobleme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 4: Nichtlineare Nullstellenprobleme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 2015 HM: Numerik (SS

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Inexakte Newton Verfahren

Inexakte Newton Verfahren Kapitel 3 Inexakte Newton Verfahren 3.1 Idee inexakter Newton Verfahren Wir betrachten weiterhin das nichtlineare Gleichungssystem F (x) = mit einer zumindest stetig differenzierbaren Funktion F : R n

Mehr

8 Iterationsverfahren zur Lösung von Gleichungssystemen

8 Iterationsverfahren zur Lösung von Gleichungssystemen Numerische Mathematik 378 8 Iterationsverfahren zur Lösung von Gleichungssystemen Nichtlineare Gleichungssysteme (sogar eine nichtlineare Gleichung in einer Unbekannten) müssen fast immer iterativ gelöst

Mehr

d) Produkte orthogonaler Matrizen sind wieder orthogonal.

d) Produkte orthogonaler Matrizen sind wieder orthogonal. Die orthogonale Matrizen Definition: Eine Matrix Q R n n heißt orthogonal, falls QQ T = Q T Q = I gilt. Die Eigenschaften orthogonaler Matrizen: a) det(q) = ±1; b) Qx 2 = x 2 für alle x R n, also Q 2 =

Mehr

5.1 Iterative Lösung linearer Gleichungssysteme

5.1 Iterative Lösung linearer Gleichungssysteme 5.1 Iterative Lösung linearer Gleichungssysteme à Gegeben: A Œ Ñ n,n regulär, b Œ Ñ n Gesucht: x èè Œ Ñ n : Ax èè = b bzw. Iterationsverfahren: x H0L Œ Ñ n, x Hm+1L := GHx HmL L, m=0,1,..., mit x HmL ô

Mehr

A 1 A 2 A 3 A 4 A 5 A 6 A 7

A 1 A 2 A 3 A 4 A 5 A 6 A 7 Institut für Geometrie und Praktische Mathematik Numerisches Rechnen für Informatiker WS 7/8 Prof. Dr. H. Esser J. Grande, Dr. M. Larin Klausur Numerisches Rechnen für Informatiker Hilfsmittel: keine (außer

Mehr

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015

Finite Elemente. Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 2015 Dr. S.-J. Kimmerle Institut für Mathematik und Rechneranwendung Fakultät für Luft- und Raumfahrttechnik Wintertrimester 5 Aufgabe 8 (Speichertechniken) Finite Elemente Übung 5 a) Stellen Sie die Matrix

Mehr

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems Kapitel 2 Newton Verfahren 2.1 Das lokale Newton Verfahren Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems F (x) = 0 (2.1) mit einer zumindest

Mehr

3.6 Approximationstheorie

3.6 Approximationstheorie 3.6 Approximationstheorie Bisher haben wir uns im Wesentlichen mit der Interpolation beschäftigt. Die Approximation ist weiter gefasst: wir suchen eine einfache Funktion p P (dabei ist der Funktionenraum

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen (für Informatiker) M. Grepl J. Berger & J.T. Frings Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2010/11 Problemstellung Lineare Gleichungssysteme, iterative Verfahren geg.:

Mehr

KAPITEL 5. Nichtlineare Gleichungssysteme

KAPITEL 5. Nichtlineare Gleichungssysteme KAPITEL 5. Nichtlineare Gleichungssysteme Beispiel 5.1. Gravitationskraft zwischen zwei Punktmassen m 1 und m 2 mit gegenseitigem Abstand r: F = G m 1m 2 r 2, wobei G = 6.67 10 11 Nm 2 /kg. Gravitationsfeld

Mehr

Numerische Methoden 2

Numerische Methoden 2 Numerische Methoden 2 von I. S. Beresin und N. P. Shidkow Mit 11 Abbildungen m VEB Deutscher Verlag der Wissenschaften Berlin 1971 INHALT 6. Lösung von linearen algebraischen Gleichungssystemen 9 6.1.

Mehr

Numerische Mathematik für Ingenieure und Physiker

Numerische Mathematik für Ingenieure und Physiker Willi Törnig Peter Spellucci Numerische Mathematik für Ingenieure und Physiker Band 1: Numerische Methoden der Algebra Zweite, überarbeitete und ergänzte Auflage Mit 15 Abbildungen > Springer-Verlag Berlin

Mehr

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung

4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung 4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung In vielen Anwendungen treten lineare Gleichungssysteme auf, die eine unterschiedliche Anzahl von Gleichungen und Unbekannten besitzen: Ax

Mehr

8. Vorlesung, 5. April Numerische Methoden I. Eigenwerte und Eigenvektoren

8. Vorlesung, 5. April Numerische Methoden I. Eigenwerte und Eigenvektoren 8. Vorlesung, 5. April 2017 170 004 Numerische Methoden I Eigenwerte und Eigenvektoren 1 Eigenwerte und Eigenvektoren Gegeben ist eine n n-matrix A. Gesucht sind ein vom Nullvektor verschiedener Vektor

Mehr

Iterative Lösung Linearer Gleichungssysteme

Iterative Lösung Linearer Gleichungssysteme Iterative Lösung Linearer Gleichungssysteme E. Olszewski, H. Röck, M. Watzl 1. Jänner 00 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 1 Vorwort C.F.Gauß in einem Brief vom 6.1.18 an Gerling:

Mehr

Das CG-Verfahren. Sven Wetterauer

Das CG-Verfahren. Sven Wetterauer Das CG-Verfahren Sven Wetterauer 06.07.2010 1 Inhaltsverzeichnis 1 Einführung 3 2 Die quadratische Form 3 3 Methode des steilsten Abstiegs 4 4 Methode der Konjugierten Richtungen 6 4.1 Gram-Schmidt-Konjugation.........................

Mehr

Bemerkung 2.1: Das Newtonverahren kann auch als sequential quad. minimization verstanden werden: 2.1 Ein globalisiertes Newtonverfahren

Bemerkung 2.1: Das Newtonverahren kann auch als sequential quad. minimization verstanden werden: 2.1 Ein globalisiertes Newtonverfahren Kapitel 2 Newtonverfahren Ziel: Bestimmung von Nullstellen von f (=stationärer Punkt). Dies geschieht mit dem Newtonverfahren. x k+1 = x k ( 2 f (x k )) 1 f (x k ) (2.1) Bemerkung 2.1: Das Newtonverahren

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

NICHTRESTRINGIERTE OPTIMIERUNG

NICHTRESTRINGIERTE OPTIMIERUNG 3 NICHTRESTRINGIERTE OPTIMIERUNG Die Aufgabe, mit der wir uns im Folgen beschäftigen werden, ist die Lösung von Minimierungsproblemen der Form minimiere f(x) in R n, (3.1) wobei f : R n R eine gegebene

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Mathematik I für Biologen, Geowissenschaftler und Geoökologen 5. Dezember 2007 Definition : Tomographie (Fortsetzung) : Tomographie Definition: Ein lineares Gleichungssystem (LGS) ist ein System von n

Mehr

KAPITEL 7. Berechnung von Eigenwerten. Av = λv

KAPITEL 7. Berechnung von Eigenwerten. Av = λv KAPITEL 7. Berechnung von Eigenwerten Aufgabe: Sei A R n n eine reelle quadratische Matrix. Gesucht λ C und v C n, v 0, die der Eigenwertgleichung Av = λv genügen. Die Zahl λ heißt Eigenwert und der Vektor

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Einführung in die Grundlagen der Numerik

Einführung in die Grundlagen der Numerik Einführung in die Grundlagen der Numerik Institut für Numerische Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Wintersemester 2014/2015 Normierter Vektorraum Sei X ein R-Vektorraum. Dann heißt

Mehr

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren Ergänzungen zu dem Buch Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben von Carl Geiger und Christian Kanzow (Springer Verlag, 1999) Eine kurze Einführung in Quasi Newton Verfahren

Mehr

Invertierung von Sparse Matrizen

Invertierung von Sparse Matrizen Kapitel 8 Invertierung von Sparse Matrizen Im letzten Kapitel haben wir gesehen, wie man Sparse-Matrizen in C++ behandelt. Hier wollen wir diskutieren, wie man die Gleichung Ax = b (8.1) für eine vorgegebene

Mehr

Kapitel 5 Iterative Verfahren für LGS

Kapitel 5 Iterative Verfahren für LGS Kapitel 5 Iterative Verfahren für LGS Einführung Matrixnormen Splitting Verfahren Mehrgitter (Multigrid) Verfahren Gradientenverfahren Vorkonditionierung CG-Verfahren Abbruch von iterativen Verfahren Zusammenfassung

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Numerische Verfahren der nicht-linearen Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Line

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren. III.3 GMRES und CG-Verfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren. III.3 GMRES und CG-Verfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische Iterationsverfahren III.3 GMRES und CG-Verfahren Kapitel III (0) 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik 4 Punkte Es gibt zu jeder der Aufgaben vier Teilaufgaben. Diese sind mit bzw. zu kennzeichnen hinschreiben. Es müssen

Mehr

Begleitmaterial zur Vorlesung Numerik I

Begleitmaterial zur Vorlesung Numerik I Begleitmaterial zur Vorlesung Numerik I Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik I 1 / 49 Inhalte der Numerik

Mehr

1 Singulärwertzerlegung und Pseudoinverse

1 Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Iterative Verfahren zur Lösung von Linearen Gleichungssystemen

Iterative Verfahren zur Lösung von Linearen Gleichungssystemen Kapitel 4 Iterative Verfahren zur Lösung von Linearen Gleichungssystemen Situation: A C n n schwach besetzt, n groß, b C n. Ziel: Bestimme x C n mit Ax = b. 4.1 Spliting-Methoden Die Grundidee ist hier

Mehr

KAPITEL 3. Konvexe Funktionen

KAPITEL 3. Konvexe Funktionen KAPITEL 3 Konvexe Funktionen Sei F R n ein Definitionsbereich und f : F R eine Funktion. Unter dem Epigraphen von f versteht man die Menge epif = {(x, z) R n+1 x F, z R, z f(x)}. Man nennt f konvex, wenn

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Kapitel 6. Iterationsverfahren für lineare Gleichungssysteme

Kapitel 6. Iterationsverfahren für lineare Gleichungssysteme Kapitel 6 Iterationsverfahren für lineare Gleichungssysteme Falls n sehr groß ist und falls die Matrix A dünn besetzt ist (sparse), dann wählt man zur Lösung von Ax = b im Allgemeinen iterative Verfahren.

Mehr

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops 15. DETERMINANTEN 1 Für n Vektoren b 1,..., b n im R n definiert man ihre Determinante det(b 1,..., b n ) Anschaulich gilt det(b 1,..., b n ) = Orientierung der Vektoren b 1,..., b n Volumen des von den

Mehr

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung Operations Research Rainer Schrader Konvexe Funktionen Zentrum für Angewandte Informatik Köln 4. Juni 2007 1 / 84 2 / 84 wir haben uns bereits mit linearen Optimierungsproblemen beschäftigt wir werden

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9

Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Beispiel: Feder Masse System festes Ende Feder k 1 Masse m 1 k 2 m 2 k 3 m 3 k 4 festes Ende u 0 = 0 Federkraft y 1 Verschiebung u 1 y 2 u 2 y 3 u 3 y 4 u 4 = 0 Grundlagen der

Mehr

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D;

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D; Institut für Geometrie und Praktische Mathematik Höhere Mathematik IV (für Elektrotechniker und Technische Informatiker) - Numerik - SS 2007 Dr. S. Börm, Dr. M. Larin Banach scher Fixpunktsatz Gegeben

Mehr

EINFÜHRUNG IN DIE NUMERISCHE MATHEMATIK II 1. Numerische Lineare Algebra. Prof. Dr. Hans Babovsky. Institut für Mathematik

EINFÜHRUNG IN DIE NUMERISCHE MATHEMATIK II 1. Numerische Lineare Algebra. Prof. Dr. Hans Babovsky. Institut für Mathematik EINFÜHRUNG IN DIE NUMERISCHE MATHEMATIK II 1 Numerische Lineare Algebra Prof. Dr. Hans Babovsky Institut für Mathematik Technische Universität Ilmenau 1 Version vom Sommer 2010 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis

Mehr

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler Prof. Norbert Hungerbühler Serie 5 ETH Zürich - D-MAVT Lineare Algebra II. a) Die Abbildung V n R n, v [v] B, die jedem Vektor seinen Koordinatenvektor bezüglich einer Basis B zuordnet, ist linear. Sei

Mehr

6.8 Newton Verfahren und Varianten

6.8 Newton Verfahren und Varianten 6. Numerische Optimierung 6.8 Newton Verfahren und Varianten In den vorherigen Kapiteln haben wir grundlegende Gradienten-basierte Verfahren kennen gelernt, die man zur numerischen Optimierung von (unbeschränkten)

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Lineare Gleichungssysteme Hierarchische Matrizen

Lineare Gleichungssysteme Hierarchische Matrizen Kompaktkurs Lineare Gleichungssysteme Hierarchische Matrizen M. Bebendorf, O. Steinbach O. Steinbach Lineare Gleichungssysteme SIMNET Kurs 24. 27.4.26 / 6 Numerische Simulation stationäre und instationäre

Mehr

Prof. Dr. L. Diening Dipl. Math. S. Schwarzacher Dipl. Math. C. Warmt. Klausur. Numerik WS 2010/11

Prof. Dr. L. Diening Dipl. Math. S. Schwarzacher Dipl. Math. C. Warmt. Klausur. Numerik WS 2010/11 Prof. Dr. L. Diening 09.02.2011 Dipl. Math. S. Schwarzacher Dipl. Math. C. Warmt Klausur Numerik WS 2010/11 Es ist erlaubt, eine selbst erstellte, einseitig per Hand beschriebene A4 Seite in der Klausur

Mehr

D-INFK Lineare Algebra HS 2014 Roman Glebov Marc Pollefeys. Serie 13

D-INFK Lineare Algebra HS 2014 Roman Glebov Marc Pollefeys. Serie 13 D-INFK Lineare Algebra HS 2014 Roman Glebov Marc Pollefeys Serie 13 1. Um einen Tisch sitzen 7 Zwerge. Vor jedem steht ein Becher mit Milch. Einer der Zwerge verteilt seine Milch gleichmässig auf alle

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

6. Iterative Verfahren: Nullstellen und Optima. Besser, schneller, höher, weiter!

6. Iterative Verfahren: Nullstellen und Optima. Besser, schneller, höher, weiter! 6. Iterative Verfahren: Nullstellen und Optima Besser, schneller, höher, weiter! Page 1 of 27 6.1. Große, schwach besetzte lineare Gleichungssysteme I Relaxationsverfahren Einführung Numerisch zu lösende

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

3. Modalanalyse. Die Ermittlung der Eigenschwingungen wird als Modalanalyse bezeichnet. Die Modalanalyse kann experimentell oder rechnerisch erfolgen.

3. Modalanalyse. Die Ermittlung der Eigenschwingungen wird als Modalanalyse bezeichnet. Die Modalanalyse kann experimentell oder rechnerisch erfolgen. 3. Modalanalyse Die Ermittlung der Eigenschwingungen wird als Modalanalyse bezeichnet. Die Modalanalyse kann experimentell oder rechnerisch erfolgen. Bei der rechnerischen Modalanalyse muss ein Eigenwertproblem

Mehr

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in

Mehr

4 Affine Koordinatensysteme

4 Affine Koordinatensysteme 4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010

Bericht zur Mathematischen Zulassungsprüfung im Mai 2010 Bericht zur Mathematischen Zulassungsprüfung im Mai 2 Heinz-Willi Goelden, Wolfgang Lauf, Martin Pohl Am 5. Mai 2 fand die Mathematische Zulassungsprüfung statt. Die Prüfung bestand aus einer 9-minütigen

Mehr