Iterative Lösung Linearer Gleichungssysteme

Größe: px
Ab Seite anzeigen:

Download "Iterative Lösung Linearer Gleichungssysteme"

Transkript

1 Iterative Lösung Linearer Gleichungssysteme E. Olszewski, H. Röck, M. Watzl 1. Jänner 00

2 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 1 Vorwort C.F.Gauß in einem Brief vom an Gerling: << Ich empfehle Ihnen diesen Modus zur Nachahmung. Schwerlich werden Sie je wieder direct elimineren, wenigstens nicht wenn Sie mehr als Unbekannte haben. Das indirecte Verfahren lässt sich halb im Schlafe ausführen, oder man kann während desselben an andere Dinge denken.>>

3 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) Was ist iteratives Lösen linearer Gleichungssysteme? Iteratives Lösen linearer Gleichungssysteme ist ein Approximationsverfahren zum bestimmen der Lösung eines Gleichungssystems. Bisher uns bekannte Verfahren zum Lösen linearer Gleichungssysteme: Direkte Verfahren (z.b: Gaußsches Eliminationsverfahren). Bei den direkten Verfahren kommt man nach endlich vielen Schritten zur genauen Lösung des Gleichungssystems. Bei den iterativen Verfahren nähert man sich in jedem Schritt der Lösung.

4 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) Historische Bemerkungen zu Iterationsverafhren Iterationsverfahren sind ca. 180 Jahre alt. Das erste Iterationsverfahren für lineare Gleichungssysteme stammt von Carl Friedrich Gauß. Während seinen Berechnungen stieß Gauß immer wieder auf Gleichungssysteme die zu groß waren, als daß er sie mit der direkten Methode der Gauß-Elimination berechnen konnte. Darum entwickelte er um 180 das erste Iterationsverfahren: Das Gauß-Seidel Verfahren (auch bekannt als Einzelschrittverfahren). Ein sehr ähnliches Verfahren entwickelte Carl Gustav Jacobi 185. Das sogenannte Jacobi Verfahren (auch bekannt als Gesamtschrittverfahren).

5 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) Historische Bemerkungen zu Iterationsverafhren (cont d) Durch den Einzug von elektronischen Rechnern stieg die Anzahl der Gleichungen um eine weitere Größenordnung, und die oben genannten Verfahren erwiesen sich als zu langsam. Nach 100 Jahren Stillstand in der Entwicklung der iterativen Verfahren wurde das Gauß-Seidel Verfahren von Southwell etwas verbessert (Relaxationsverfahren) gelang Young ein Durchbruch mit einer wesentlichen Verbesserung (Beschleunigung) des Gauß-Seidel Verfahrens. Dieses Verfahren wird SOR-Methode genannt (Successive Overrelaxation Method). In der Folgezeit entstanden noch viele weitere noch effektivere Verfahren. z.b.: Verfahren der konjugierten Gradienten, Mehrgitterverfahren,etc.

6 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 5 Warum wurden Iterationsverfahren entwickelt? In Zeiten ohne Rechner war es so gut wie unmöglich, mit dem direkten Verfahren größere Gleichungssysteme zu lösen, da diese enorm viel Rechenaufwand erfordern. Es war also notwendig ein Verfahren zu entwickeln, mit dem man schneller an die Lösung kam. Direkte Verfahren sind zwar für jede Dimension anwendbar, der benötigte Rechenaufwand ((O)n ) steigt aber mit der Dimension so stark an, dass man zur Lösung von 10, 10 oder noch größeren Gleichungen so manchen Rechner ins schwitzen bringt. Ein wichtiges Beispiel für das Auftreten großer Gleichungssysteme ist die Diskretiserung partieller Differentialgleichungen. In diesem Fall sind die Matrizen schwach besetzt (d.h sie enthalten viele Nullen), und eingnen sich besonders gut zur iterativen Lösung.

7 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 6 Vorteile von Iterationsverfahren gegenüber direkter Verfahren Je größer die Dimension des Gleichungssystems, desto schneller ist das Iterationsverfahren im Vergleich zu den direkten Verfahren. Schon nach wenigen Schritten erhält man eine ziemlich genaue Lösung. Durch die Rundungsfehler im Rechner liefert das Iterationsverfahren sogar meist genauere Ergebnisse als das direkte Verfahren. Darum wurde auch die Methode der Nachiteration entwickelt (auf das Ergebnis des direkten Verfahrens wird ein iteratives Verfahren angewandt). Bei den direkten Verfahren zur Lösung eines linearen Gleichungssystems Ax = b wird die Koeffizientenmatrix A im Laufe der Rechnung verändert. Ist die Dimension von A sehr gross, so ist A im allgemeinen nicht im Hauptspeicher darstellbar. Direkte Verfahren oft nicht mehr möglich bzw. sehr aufwendige Datentransfers nötig. Iterative Verfahren verändern nicht die Koeffizientenmatrix, sondern berechnen sukkzessiv Näherungsvektoren für die Lösung und benötigen daher weniger Speicherplatz.

8 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) Nachteile von Iterationsverfahren gegenüber direkter Verfahren Es stellt sich natürlich die Frage ob iterative Verfahren für alle Gleichungssysteme eine Lösung bringen. (d.h: ob sie konvergieren). Dies festzustellen ist keine leichte Aufgabe und erfordert Rechenaufwand. Falls das Vefahren nicht konvergiert kann es natürlich nicht angewandt werden.in diesen Fällen muss man dann doch wieder auf das altbewährte direkte Verfahren zurückgreifen, dass ja nach endlich vielen Schritten terminiert.

9 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 8 Allgemeines Iterationsverfahren allgemeine Form eines linearen Gleichungssystems Ax = y (1) speziell für: A eine reguläre (n,n) Matrix x,y V n (R) durch Zerlegung von A = N P herleiten in die Form x = Cx + d () wobei gilt: C eine reguläre (n,n) Matrix x,d V n (R)

10 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 9 Allgemeines Iterationsverfahren durch die Herleitung erhalten wir C = E N 1 A d = N 1 y aus obiger Gleichung erhält man folgende Iterationsvorschrift x n+1 = Cx n + d () nach dem BANACHschen Fixpunktsatz folgt die Konvergenz für jeden beliebigen Startvektor x 0, sofern C < 1 gilt. Die verschiedenen Verfahren unterscheiden sich nur durch die Wahl von N

11 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 10 Zerlegung Zur Beschreibung der einzelnen Verfahren verwenden wir folgende Zerlegung A = A L + D + A R mit A L = und A R = a a n1 a n,n a 1 a 1n a n 1,n 0 0, D =, a a a nn Durch die Wahl von N lassen sich folgende Iterationsverfahren kennzeichnen: N = D D + A L 1 ω D + A L Verfahren Gesamtschrittverfahren(Jacobiverfahren) Einzelschrittverfahren(Gauß-Seidel-Verfahren) Relaxationsverfahren

12 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 11 Gesamtschrittverfahren wurde 185 von Carl Gustav Jacobi entwickelt wird beschrieben durch die Gleichung: x n+1 = D 1 (A L + A R )x n + D 1 y () wobei gilt: Diagonalelemente von A sind ungleich 0 damit D 1 existiert

13 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 1 Algorithmus Gegeben sei das Gleichungssystem Ax = y mit einer (p, p)-matrix A und y V (K). Die Matrix A erfülle eine der hinreichenden Bedingungen für die Konvergenz des Gesamtschrittverfahrens 1. Schritt: Bringe das Gleichungssystem auf die Form Gl. dh. c i j := { 0 i = j i j a i j a ii (5) b i := y i a ii (6). Schritt: Wähle einen Startvektor x 0, o.b.d.a x 0 = 0. Wähle eine Fehlerschranke ε > 0 sowie eine maximale Schrittzahl N.. Schritt: Berechne ausgehend vom Startvektor x 0, für n = 1,,... x i,n = p c i j x j,n 1 + b i () j=1. Schritt: Es wird solange iteriert, bis eines der Abbruchkriterien erfüllt ist.

14 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 1 Einzelschrittverfahren wurde von Gauß um 180 entwickelt lässt sich einfach vom Gesamtschrittverfahren ableiten beim Gesamtschrittverfahren wird zunächst x 1,n berechnet, danach x,n mit dem alten Wert von x 1,n 1 usw. obwohl bei der Berechnung von x,n bereits der bessere Näherungswert von x 1,n verwendet werden könnte nutzt man die verbesserten Werte systematisch, sobald sie zur Verfügung stehen, kommt man zum Einzelschrittverfahren. Entscheidende Verbesserung zum vorherigen Algorithmus. Anstelle von Gl. wird folgende verwendet: x i,n := i 1 c i j x j,n + j=1 p c i j x j,n 1 + b i (8) j=i+1

15 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 1 Rechenbeispiel Lineares Gleichungssystem: x 1 + x + x = x 1 + x + x = x + x = In Matrizenform Ax = b: 1 1 x 1 x = 0 1 x. Matrizen, die beim Iterativen Vorgehen benötigt werden: C = , d =, x 0 = 0.

16 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 15 Berechnung mit Jacobi-Verfahren Erste Iteration: x 1 = Cx 0 + d x 1 = = Zweite Iteration: x = Cx 1 + d x = x = =

17 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 16 Berechnung mit Jacobi-Verfahren (cont d) Dritte Iteration: x = Cx + d x = x = = Vierte Iteration: x = Cx + d x = x = =

18 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 1 Berechnung mit Gauß-Seidelschem Verfahren Die Matrizen C, d und a 0 von zuvor: C = 1 0 1, d = 0 1 0, x 0 = 0. Allgemeines Vorgehen: x 1,n = 1 x,n 1 1 x,n 1 + x,n = 1 x 1,n 1 x,n 1 + x,n = 1 x,n +

19 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 18 Berechnung Gauß-Seidelsches Verfahren (cont d) Erste Iteration: x 1,1 = 1 x,0 1 x,0 + x,1 = 1 x 1,1 1 x,0 + x,1 = 1 x,1 + x 1,1 = x,1 = 1 x,1 = 8 + x,1 = 1 x,1 =

20 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 19 Berechnung Gauß-Seidelsches Verfahren (cont d) Zweite Iteration: x 1, = 1 x,1 1 x,1 + x, = 1 x 1, 1 x,1 + x, = 1 x, + x 1, = x 1, = x, = 1 1 x, = x, = 1 6 x, =

Institut für Geometrie und Praktische Mathematik Mathematisches Praktikum (MaPra) Wintersemester Aufgabe 4

Institut für Geometrie und Praktische Mathematik Mathematisches Praktikum (MaPra) Wintersemester Aufgabe 4 Rheinisch-Westfälische Technische Hochschule Institut für Geometrie und Praktische Mathematik Mathematisches Praktikum (MaPra) Wintersemester 2007 Prof. Dr. Wolfgang Dahmen Dr. Karl-Heinz Brakhage Aufgabe

Mehr

38 Iterative Verfahren für lineare Gleichungssysteme

38 Iterative Verfahren für lineare Gleichungssysteme 38 Iterative Verfahren für lineare Gleichungssysteme 38.1 Motivation Viele praktische Probleme führen auf sehr große lineare Gleichungssysteme, bei denen die Systemmatrix dünn besetzt ist, d. h. nur wenige

Mehr

Lineare Iterationsverfahren: Definitionen

Lineare Iterationsverfahren: Definitionen Lineare Iterationsverfahren: Definitionen 1. Ein Lösungsverfahren zur Berechnung von Ax = b heißt iterativ, falls ausgehend von einem Startwert x eine Folge x k von Iterierten bestimmt wird. 2. Ein Iterationsverfahren

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische lineare Iterationsverfahren Typeset by FoilTEX 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung einer linearen

Mehr

Einführung in die numerische Mathematik

Einführung in die numerische Mathematik Prof. Dr. M. Günther K. Gausling, M.Sc. C. Hendricks, M.Sc. Sommersemester 4 Bergische Universität Wuppertal Fachbereich C Mathematik und Naturwissenschaften Angewandte Mathematik / Numerische Analysis

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 4. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 17. März 2016 Lineare Gleichungssysteme 1 Wiederholung: Normen, Jacobi-Matrix,

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

KAPITEL 1. Einleitung

KAPITEL 1. Einleitung KAPITEL 1 Einleitung Wir beschäftigen uns in dieser Vorlesung mit Verfahren aus der Numerischen linearen Algebra und insbesondere dem sogenannten Mehrgitterverfahren zur Lösung linearer Gleichungssysteme

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

Numerische Mathematik für Ingenieure (SoSe 2013)

Numerische Mathematik für Ingenieure (SoSe 2013) Numerische Mathematik für Ingenieure (SoSe 2013) PD Dr(USA) Maria Charina Auszüge aus Vorlesungsfolien von Prof Joachim Stöckler werden verwendet Für die Bereitstellung dieses Materials und der Tex-Files

Mehr

7. Iterative Lösung. linearer Gleichungssysteme

7. Iterative Lösung. linearer Gleichungssysteme 7. Iterative Lösung linearer Gleichungssysteme 1 Grundlagen (1) Zur Erinnerung: Gesucht ist die Lösung eines linearen Gleichungssystems a 0,0 x 0 +a 0,1 x 1 + a 0,n 1 x n 1 = b 0 a 1,0 x 0 +a 1,1 x 1 +

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Lineare Gleichungssysteme: direkte Verfahren

Lineare Gleichungssysteme: direkte Verfahren Sechste Vorlesung, 24. April 2008, Inhalt Lineare Gleichungssysteme: direkte Verfahren Dreiecksmatrizen Gauß-Elimination LR-Zerlegung Anwendungen: Determinante, Inverse 1 Lösungsverfahren für lineare Gleichungssysteme

Mehr

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen Kapitel 2: Lineare Gleichungssysteme 21 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen B(n, m) : Ω {0,,255}, n = 1,,N, m = 1,,M dig Camera Realisierung von B η ist

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Beispiel: Feder Masse System festes Ende Feder k 1 Masse m 1 k 2 m 2 k 3 m 3 k 4 festes Ende u 0 = 0 Federkraft y 1 Verschiebung u 1 y 2 u 2 y 3 u 3 y 4 u 4 = 0 Grundlagen der

Mehr

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen Kapitel 2: Lineare Gleichungssysteme 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen B(n, m) : Ω {0,...,255}, n = 1,...,N, m = 1,...,M. dig. Camera Realisierung

Mehr

5.1 Iterative Lösung linearer Gleichungssysteme

5.1 Iterative Lösung linearer Gleichungssysteme 5.1 Iterative Lösung linearer Gleichungssysteme à Gegeben: A Œ Ñ n,n regulär, b Œ Ñ n Gesucht: x èè Œ Ñ n : Ax èè = b bzw. Iterationsverfahren: x H0L Œ Ñ n, x Hm+1L := GHx HmL L, m=0,1,..., mit x HmL ô

Mehr

Kapitel 8. Lineare Gleichungssysteme III: iterative Verfahren

Kapitel 8. Lineare Gleichungssysteme III: iterative Verfahren Kapitel 8. Lineare Gleichungssysteme III: iterative Verfahren Inhalt: 8.1 Fixpunkt-Iteration 8.2 Verfahren der konjugierten Gradienten 8.3 Anwendungsbeispiel Numerische Mathematik I 323 Kap. 8: Lineare

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

Übungen zur Mathematik Blatt 1

Übungen zur Mathematik Blatt 1 Blatt 1 Aufgabe 1: Bestimmen Sie die Fourier-Reihe der im Bild skizzierten periodischen Funktion, die im Periodenintervall [ π, π] durch die Gleichung f(x) = x beschrieben wird. Zeichnen Sie die ersten

Mehr

5.3.5 Abstiegs & Gradientenverfahren

5.3.5 Abstiegs & Gradientenverfahren 5.3 Iterative Lösungsverfahren für lineare Gleichungssysteme 5.3.5 Abstiegs & Gradientenverfahren Die bisher kennengelernten Iterationsverfahren zur Approximation von linearen Gleichungssystemen haben

Mehr

Kapitel 3. Iterative Verfahren für LGS. 3.1 Der Banach sche Fixpunktsatz. Definition 3.1:

Kapitel 3. Iterative Verfahren für LGS. 3.1 Der Banach sche Fixpunktsatz. Definition 3.1: Kapitel 3 Iterative Verfahren für LGS 3 Der Banach sche Fixpunktsatz Sei A R n n invertierbar und das LGS A x b gegeben Ein iteratives Verfahren besteht aus einer Berechnungsvorschrift x (j+) F ( x (j))

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 11 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 2010 Prof. Dr. Klaus Höllig

Mehr

Iterative Löser: Einführung

Iterative Löser: Einführung Iterative Löser: Einführung Im vergangenen Semester wurden folgende Löser für LGS betrachtet: LU-Zerlegung (mit und ohne Pivotisierung) QR-Zerlegung (Householder und Givens) Lösung beliebiger, regulärer,

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische Iterationsverfahren Kapitel III (0) 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung einer linearen PDGL 2. Ordnung

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Beispiellösung Serie 7

Beispiellösung Serie 7 D-MAVT FS 2014 K. Nipp A. Hiltebrand NUMERISCHE MATHEMATIK Beispiellösung Serie 7 1. a) Exakt: 0.005 1 1 1 0.005 1 ( 1 0 200-199 L = 200 1 Rückwärts einsetzen Lz = b : z 1 = 0.5, z 2 = 1 100 = 99 Rx =

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 1 Einführung Lineare Gleichungen Definition

Mehr

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren Ergänzungen zu dem Buch Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben von Carl Geiger und Christian Kanzow (Springer Verlag, 1999) Eine kurze Einführung in Quasi Newton Verfahren

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 6. Vorlesung 170004 Numerische Methoden I Clemens Brand 25. März 2010 Nachträge Gliederung Nachträge it Nachträge Wichtige Begriffe Eine Zusammenfassung der Folien 8 16 der letzten

Mehr

Lineare Gleichungssysteme. 1-E Ma 1 Lubov Vassilevskaya

Lineare Gleichungssysteme. 1-E Ma 1 Lubov Vassilevskaya Lineare Gleichungssysteme 1-E Ma 1 Lubov Vassilevskaya Systeme linearer Funktionen und Gleichungen y = a 1 a 2... a n lineare Funktion Funktion ersten Grades,,..., unabhängige Variablen y abhängige Variable

Mehr

Horst Niemeyer Edgar Wermuth. Lineare Algebra. Analytische und numerische Behandlung

Horst Niemeyer Edgar Wermuth. Lineare Algebra. Analytische und numerische Behandlung Horst Niemeyer Edgar Wermuth Lineare Algebra Analytische und numerische Behandlung v FriedrVieweg & Sohn Braunschweig/Wiesbaden VIII Inhaltsverzeichnis Symbolverzeichnis XII 1 Die euklidischen Vektorräume

Mehr

3. Lineare Gleichungssysteme

3. Lineare Gleichungssysteme 3. Lineare Gleichungssysteme 1 3.1. Problemstellung 2 3.2. Direkte Verfahren 3 3.3. Normen und Fehleranalyse 4 3.4. Iterative Verfahren 5 3.5. Konvergenz von linearen Iterationsverfahren 6 3.6. Gradienten-Verfahren

Mehr

Newton-Verfahren für ein Skalarfunktion

Newton-Verfahren für ein Skalarfunktion Newton-Verfahren für ein Skalarfunktion Für eine Näherungsberechnung von Nullstellen einer reellen Funktion f(x) : R R benutzt man das Newton-Verfahren: x (n+1) = x (n) f(x (n) )/f (x (n) ). Das Newton-Verfahren

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen (für Informatiker) M. Grepl J. Berger & J.T. Frings Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2010/11 Problemstellung Lineare Gleichungssysteme, iterative Verfahren geg.:

Mehr

7. Nichtlineare Gleichngssysteme. Problem 7: Sei f : R n R n stetig. Löse f(x) = 0.

7. Nichtlineare Gleichngssysteme. Problem 7: Sei f : R n R n stetig. Löse f(x) = 0. 7. Nichtlineare Gleichngssysteme Problem 7: Sei f : R n R n stetig. Löse f(x) = 0. Das Gleichungssystem f(x) = 0 lässt sich in die Fixpunktgleichung x = φ(x) umschreiben, wobei φ : D R n R n. Beispielsweise

Mehr

18.4 Das Newton-Verfahren

18.4 Das Newton-Verfahren 18.4 Das Newton-Verfahren Ziel: Wir suchen die Nullstellen einer Funktion f : D R n, D R n : f(x) = 0 Wir kennen bereits die Fixpunktiteration x k+1 := Φ(x k ) mit Startwert x 0 und Iterationsvorschrift

Mehr

Ausgleichsproblem. Definition (1.0.3)

Ausgleichsproblem. Definition (1.0.3) Ausgleichsproblem Definition (1.0.3) Gegeben sind n Wertepaare (x i, y i ), i = 1,..., n mit x i x j für i j. Gesucht ist eine stetige Funktion f, die die Wertepaare bestmöglich annähert, d.h. dass möglichst

Mehr

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt

Musterlösungen zur Leistungsnachweisklausur vom Studiengang Informatik, Ingenieurinformatik, Lehramt TU ILMENAU Institut für Mathematik Numerische Mathematik PD Dr. W. Neundorf Musterlösungen zur Leistungsnachweisklausur vom.0.006 Studiengang Informatik, Ingenieurinformatik, Lehramt 1. Lineare Algebra

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und

VF-3: Gegeben seien die Daten f(x 0 ), f(x 1 ),..., f(x n ) mit x 0,..., x n paarweise verschiedenen und IGPM RWTH Aachen Verständnisfragen-Teil NumaMB F10 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Aussagen Diese sind mit wahr bzw falsch zu kennzeichnen (hinschreiben) Es müssen alle Fragen mit wahr

Mehr

Zweidimensionales sor-verfahren

Zweidimensionales sor-verfahren Zweidimensionales sor-verfahren erstellt von Kittel Matthias Im Rahmen des Mathematischen Praktikums Sommersemester 000 3/30/00 1. Einleitung.. 1. Mathematische Grundlagen... 1.1. Allgemeines. 1.. Stationäre

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016 Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R. Käppeli L. Herrmann W. Wu Herbstsemester 2016 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6.1 Berechnen Sie die Determinanten der beiden

Mehr

De Gruyter Studium. Numerische Methoden. Bearbeitet von Hermann Friedrich, Frank Pietschmann

De Gruyter Studium. Numerische Methoden. Bearbeitet von Hermann Friedrich, Frank Pietschmann De Gruyter Studium Numerische Methoden Bearbeitet von Hermann Friedrich, Frank Pietschmann 1. Auflage 2010. Buch. 538 S. ISBN 978 3 11 021806 0 Format (B x L): 17 x 24 cm Gewicht: 896 g Weitere Fachgebiete

Mehr

3 Lineare Gleichungen

3 Lineare Gleichungen Aufgabe 3. Man löse die lineare Gleichung a 2 x b 2 a a(b ax) b + b2 a = a, a b nach der Unbekannten x auf und diskutiere die möglichen Fälle. a 2 x b 2 a a(b ax) b + b2 a = a a b a 2 bx b 3 a 2 b + a

Mehr

Numerik II. Roland Pulch

Numerik II. Roland Pulch Numerik II Roland Pulch Institut für Mathematik und Informatik Mathematisch-Naturwissenschaftliche Fakultät Ernst-Moritz-Arndt-Universität Greifswald Skript zu Iterativer Lösung linearer Gleichungssysteme

Mehr

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1

Name: Matr.-Nr.: 2. Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: b a 2 3a 1 Name: Matr.-Nr.: 2 Aufgabe 1. Gegeben sei das folgende lineare Gleichungssystem: 1 1 0 2 b 1 1 2 4 1 1 4 6 x = 1 1. 2 2 2a 2 3a 1 (a) Bringen Sie das lineare Gleichungssystem auf Treppenform. (b) Für welche

Mehr

PS Numerische Mathematik für LAK WS 08/09, LV-Nr.: , HS Übungsblatt (bis )

PS Numerische Mathematik für LAK WS 08/09, LV-Nr.: , HS Übungsblatt (bis ) . Übungsblatt (bis 5.0.2008). Aufgabe. Skizzieren Sie die Einheitskugeln K (0,) im R 2 für die Normen, 2 und. 2. Aufgabe. Beweisen Sie x x 2 n x für alle x R n. 3. Aufgabe. Bestimmen Sie die relative Konditionszahl

Mehr

1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4

1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4 Wirtschaftswissenschaftliches Zentrum 3 Universität Basel Mathematik 2 Dr Thomas Zehrt Lineare Gleichungssysteme Inhaltsverzeichnis Einführung 2 2 Gleichungen und 2 Unbekannte 2 2 3 Gleichungen und 3 Unbekannte

Mehr

Institut für Analysis und Scientific Computing E. Weinmüller WS 2015

Institut für Analysis und Scientific Computing E. Weinmüller WS 2015 Institut für Analysis und Scientific Computing TU Wien E. Weinmüller WS 5 L I N E A R E A L G E B R A F Ü R T P H, U E (3.64). Haupttest (FR,..5) (mit Lösung ) Ein einfacher Taschenrechner ist erlaubt.

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,... Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den

Mehr

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Iterationsverfahren: Konvergenzanalyse und Anwendungen Ulrich Rüde Lehrstuhl für Systemsimulation Sommersemester 2007 U. Rüde,

Mehr

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Praktikum im Sommersemester 2012 Programmierpraktikum numerische Algorithmen (P2E1) (Numerische Lösung der Wärmeleitungsgleichung)

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Iterative Methoden zur Lösung von linearen Gleichungssystemen

Iterative Methoden zur Lösung von linearen Gleichungssystemen Iterative Methoden zur Lösung von linearen Gleichungssystemen (13.12.2011) Ziel Können wir wir die zeitabhängige Schrödinger-Gleichung lösen? φ(t) = e iht ψ(0) Typischerweise sind die Matrizen, die das

Mehr

7. Iterative Lösung. linearer Gleichungssysteme

7. Iterative Lösung. linearer Gleichungssysteme 7. Iterative Lösung linearer Gleichungssysteme 1 Grundlagen und Wiederholung (1) Die Grundlagen decken sich mit dem Stoff, der einen Teil des Kapitels 2 - Numerik ausmacht und bereits in Mathematik behandelt

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Lineare : Einführung Beispiele linearer a) b) c) 2x 1 3x 2 = 1 x 1 +

Mehr

8. Vorlesung, 5. April Numerische Methoden I. Eigenwerte und Eigenvektoren

8. Vorlesung, 5. April Numerische Methoden I. Eigenwerte und Eigenvektoren 8. Vorlesung, 5. April 2017 170 004 Numerische Methoden I Eigenwerte und Eigenvektoren 1 Eigenwerte und Eigenvektoren Gegeben ist eine n n-matrix A. Gesucht sind ein vom Nullvektor verschiedener Vektor

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren. III.3 GMRES und CG-Verfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren. III.3 GMRES und CG-Verfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische Iterationsverfahren III.3 GMRES und CG-Verfahren Kapitel III (0) 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung

Mehr

Matrizenoperationen mit FORTRAN

Matrizenoperationen mit FORTRAN Kapitel 2 Matrizenoperationen mit FORTRAN 21 Grundlagen Bei vielen Anwendungen müssen große zusammenhängende Datenmengen gespeichert und verarbeitet werden Deshalb ist es sinnvoll, diese Daten nicht als

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Lineare : Einführung Beispiele linearer a) b) c) 2x 1 3x 2 = 1 x 1 + x 2 =

Mehr

18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus

18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus 18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus Conrad Donau 8. Oktober 2010 Conrad Donau 18. Matrizen 2: Gleichungssysteme, Gauß-Algorithmus 8. Oktober 2010 1 / 7 18.1 Wiederholung: Ebenen in R 3

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

$Id: lgs.tex,v /11/26 08:24:56 hk Exp hk $ Definition 5.1: Ein lineares Gleichungssystem besteht aus m linearen Gleichungen

$Id: lgs.tex,v /11/26 08:24:56 hk Exp hk $ Definition 5.1: Ein lineares Gleichungssystem besteht aus m linearen Gleichungen $Id: lgs.tex,v 1.2 2008/11/26 08:24:56 hk Exp hk $ II. Lineare Algebra 5 Lineare Gleichungssysteme Definition 5.1: Ein lineares Gleichungssystem besteht aus m linearen Gleichungen a 11 x 1 + a 12 x 2 +

Mehr

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar.

eps für alle x D. 4. Die Zahl 256 ist in M(2, 4, 6, 6) exakt darstellbar. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H13 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

4.6 Berechnung von Eigenwerten

4.6 Berechnung von Eigenwerten 4.6 Berechnung von Eigenwerten Neben der Festlegung auf den betragsgrößten Eigenwert hat die Potenzmethode den Nachteil sehr langsamer Konvergenz, falls die Eigenwerte nicht hinreichend separiert sind.

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung: Woche vom (Lin.Alg.

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung: Woche vom (Lin.Alg. Übungsaufgaben 12. Übung: Woche vom 16. 1.-20. 1. 2017 (Lin.Alg. I): Heft Ü 3: 2.1.11; 2.1.8; 2.1.17; 2.2.1; 2.2.3; 1.1.1; 1.1.4; Hinweis 1: 3. Test (Integration, analyt. Geom.) ist seit 9.1. freigeschalten

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme Wir betrachten das lineare Gleichungssystem Ax = b mit der n n-koeffizientenmatrix A und der rechten Seite b R n. Wir leiten zuerst eine Variante des Gauss-Algorithmus (LR-Zerlegung)

Mehr

Numerische Methoden 2

Numerische Methoden 2 Numerische Methoden 2 von I. S. Beresin und N. P. Shidkow Mit 11 Abbildungen m VEB Deutscher Verlag der Wissenschaften Berlin 1971 INHALT 6. Lösung von linearen algebraischen Gleichungssystemen 9 6.1.

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 12 8. Juni 2010 Kapitel 10. Lineare Gleichungssysteme (Fortsetzung) Umformung auf obere Dreiecksgestalt Determinantenberechnung mit dem Gauß-Verfahren

Mehr

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D;

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D; Institut für Geometrie und Praktische Mathematik Höhere Mathematik IV (für Elektrotechniker und Technische Informatiker) - Numerik - SS 2007 Dr. S. Börm, Dr. M. Larin Banach scher Fixpunktsatz Gegeben

Mehr

Kondition linearer Gleichungssysteme Vorlesung vom

Kondition linearer Gleichungssysteme Vorlesung vom Kondition linearer Gleichungssysteme Vorlesung vom 8.1.16 Konvergenz in normierten Räumen Definition: x (ν) x x x (ν) 0, für ν Satz: Die Konvergenz in R n und R n,n ist äquivalent zur komponentenweise

Mehr

Aufgabe 1 (a) Bestimmen Sie die Schnittgerade der beiden Ebenen gegeben durch 3x y 2z 5 = 0 und x y 4z 3 = 0.

Aufgabe 1 (a) Bestimmen Sie die Schnittgerade der beiden Ebenen gegeben durch 3x y 2z 5 = 0 und x y 4z 3 = 0. Mathematik I für Naturwissenschaften Dr. Christine Zehrt 22.11.18 Übung 10 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 26. November 2018 in den Übungsstunden Aufgabe 1 (a) Bestimmen Sie die

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

Kapitel 6. Nichtlineare Gleichungen. 6.1 Einführung. Problem: Idee: Beispiel:

Kapitel 6. Nichtlineare Gleichungen. 6.1 Einführung. Problem: Idee: Beispiel: Kapitel 6 Nichtlineare Gleichungen 6. Einführung Problem: Gesucht sind Lösungen nichtlinearer Gleichungen bzw. Systeme, das heißt es geht beispielsweise um die Bestimmung der Nullstellen eines Polynoms

Mehr

Diplom VP Numerik 28. August 2006

Diplom VP Numerik 28. August 2006 Diplom VP Numerik 8. August 6 Multiple-Choice-Test Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese Aufgabe

Mehr

Kapitel 4: Nichtlineare Nullstellenprobleme

Kapitel 4: Nichtlineare Nullstellenprobleme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 4: Nichtlineare Nullstellenprobleme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 2015 HM: Numerik (SS

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Mathematik für Studierende der Biologie und des Lehramtes Chemie Einführung I Mathematik für Studierende der Biologie und des Lehramtes Chemie Dominik Schillo Universität des Saarlandes 007 (Stand: 007, 4:9 Uhr) Wie viel Kilogramm Salzsäure der Konzentration % muss

Mehr

Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren

Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren oder: Wie rechnet eigentlich der TI 84, wenn lineare Gleichungssysteme gelöst werden? Hier wird an einem Beispiel das Gaußsche Verfahren zum

Mehr

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012)

7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Technische Universität München Zentrum Mathematik, M1 Prof. Dr. Boris Vexler Dr. Ira Neitzel Dipl.-Math. Alana Kirchner 7. Übungs-/Wiederholungsblatt zu Einführung in die Numerik (SS 2012) Diese Auswahl

Mehr

Lösungen Test 1 - Lineare Algebra

Lösungen Test 1 - Lineare Algebra Name: Seite: Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Test - Lineare Algebra Dozent: R. Burkhardt Büro: 4. Klasse:. Studienjahr Semester: Datum: HS 8/9 Bemerkung Alle Aufgaben

Mehr

Inexakte Newton Verfahren

Inexakte Newton Verfahren Kapitel 3 Inexakte Newton Verfahren 3.1 Idee inexakter Newton Verfahren Wir betrachten weiterhin das nichtlineare Gleichungssystem F (x) = mit einer zumindest stetig differenzierbaren Funktion F : R n

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Erweiterungen der LR-Zerlegung

Erweiterungen der LR-Zerlegung Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik 4 Punkte Es gibt zu jeder der Aufgaben vier Teilaufgaben. Diese sind mit bzw. zu kennzeichnen hinschreiben. Es müssen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter

Mehr

Leseprobe. Hans-Jochen Bartsch. Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler. ISBN (Buch):

Leseprobe. Hans-Jochen Bartsch. Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler. ISBN (Buch): Leseprobe Hans-Jochen Bartsch Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler ISBN (Buch): 978-3-446-43800-2 ISBN (E-Book): 978-3-446-43735-7 Weitere Informationen oder Bestellungen

Mehr

Numerik I. Universität zu Köln SS 2009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva,

Numerik I. Universität zu Köln SS 2009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva, Universität zu Köln SS 009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva, mselva@math.uni-koeln.de Numerik I Musterlösung 1. praktische Aufgabe, Bandmatrizen Bei der Diskretisierung von

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben).

Mehr

5 Numerische Iterationsverfahren

5 Numerische Iterationsverfahren In diesem Kapitel besprechen wir numerische Iterationsverfahren (insbesondere Fixpunktverfahren) als eine weitere Lösungsmethode zur Lösung von linearen Gleichungssystemen (Kapitel 4) sowie zur Lösung

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Technische Universität München Christoph Niehoff Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 009/00 Die beiden Hauptthemen von diesem Teil des Ferienkurses sind Lineare Gleichungssysteme

Mehr