5.1 Iterative Lösung linearer Gleichungssysteme

Größe: px
Ab Seite anzeigen:

Download "5.1 Iterative Lösung linearer Gleichungssysteme"

Transkript

1 5.1 Iterative Lösung linearer Gleichungssysteme à Gegeben: A Œ Ñ n,n regulär, b Œ Ñ n Gesucht: x èè Œ Ñ n : Ax èè = b bzw. Iterationsverfahren: x H0L Œ Ñ n, x Hm+1L := GHx HmL L, m=0,1,..., mit x HmL ô x èè für mô. Ansatz: (5.1) G(x) := Tx + r mit T Œ Ñ n,n und r Œ Ñ n G affin linear, da das Problem auch linear ist. Lemma 5.1 Voraussetzung: (T) < 1 Behauptungen: Die sukzessive Substitution mit G gemäß (5.1) konvergiert für jeden Startwert x H0L Œ Ñ n gegen den eindeutig bestimmten Fixpunkt von G und es gelten die Fehlerabschätzungen aus dem Banachschen Fixpunktsatz mit q := (T). Beweis: (T) < 1 ï (Lemma 4.3) $ Norm auf dem Ñ n : T < 1. G (x) = T ï (Lemma 4.1) G ist bezüglich dieser Norm Kontraktion auf ganz Ñ n. Satz 4.2 liefert dann die Behauptungen mit M := Ñ n.

2 2 numerik5.nb Folgerung: T < 1 mit irgendeiner Norm ï globale Konvergenz der sukzessiven Substitution mit G aus (5.1). Andererseits: T 1 in einer Norm aber (T) < 1 ï globale Konvergenz der sukzessiven Substitution mit G aus (5.1), obwohl G bezüglich dieser Norm keine Kontraktion ist. Bemerkungen: (i) Globale Konvergenz der sukzessiven Substitution mit G aus (5.1) impliziert umgekehrt auch, dass (T) < 1 gilt. ( x H0L := êê x - Eigenvektor ï êê x - x HmL = T m Hx êê - x H0L L = l m Hx êê - x H0L L. Wegen der globalen Konvergenz gilt êê x - x HmL ö 0. Deshalb muss l <1 sein ). (ii) Nach Satz 2.2 (Störungssatz) folgt aus (T) < 1 auch die Regularität von I - T. Daher ist der Fixpunkt êê x = HI - TL -1 r. Ziel daher: T = T(A, b) und r = r(a, b) so festlegen, dass HTL < 1 und êê x = A -1 b = HI - TL -1 r. 1. Möglichkeit: T = 0 ï (T) = 0 à und r = x êê = A -1 b Œ 2. Möglichkeit: Statt A -1 eine Näherungsinverse B -1 verwenden: r := B -1 b ï êê x = A -1 b = HI - TL -1 B -1 b ï ( b beliebig ) T = I - B -1 A = B -1 H B - AL ï x H0L Œ Ñ n, (5.2) x Hm+1L = HI - B -1 A L x HmL + B -1 b, m=0,1,2,... Bemerkungen: (i) Dieses Verfahren konvergiert für jeden Startwert x H0L œ Ñ n, wenn ( I - B -1 A ) < 1. (ii) (5.2) kann man auch so schreiben: x Hm+1L = x HmL - B Ax HmL - bd : Newton-Verfahren für F(x) := Ax - b mit Näherungsinverser B -1. (Mit A -1 wäre natürlich schon x H1L = x êê ). Wie soll man B wählen? aber (i) B -1 soll möglichst einfach zu berechnen sein (ii) ( I - B -1 A ) soll möglichst klein sein, auf jeden Fall kleiner als 1, d.h. B soll A möglichst gut approximieren.

3 numerik5.nb 3 I.a. widersprechen sich die Ziele (i) und (ii), so dass man beide nur bei einigen Klassen speziell strukturierter Matrizen erreichen kann: (5.3) A = D - E - F mit D := diag ( A ) = i j k a y 0. 0 z regulär, d.h. a ii π a nn { ( A regulär î $ P : HPAL ii π 0 ), i y a E := j k a n1.. a n,n 1 z 0{ i 0 a 12.. a 1 n y. 0..., F := a n 1,n j k z {, L := D -1 E, U := D -1 F. B := D î Gesamtschrittverfahren ( Jacobi-Verfahren 1845 ) x H0L Œ Ñ n, (5.4a) x Hm+1L = HI - D -1 A L x HmL + D -1 b = D -1 ( E + F ) x HmL + D -1 b = ( L + U ) x HmL + D -1 b, m=0,1,2,... Iterationsmatrix J := L + U. 0, falls k = l HJL kl = 9 -a kl ê a kk sonst, J»» 1 = max { n k = k 1 i»a ki» ÅÅÅÅÅÅÅÅÅÅÅ : i=1(1)n },»a kk»

4 4 numerik5.nb J»» = max { n k = k 1 i»a ik» ÅÅÅÅÅÅÅÅÅ : i=1(1)n } und daher gelten»a ii» J»» 1 < 1 ó A T strikt diagonal dominant und J»» < 1 ó A strikt diagonal dominant.. Gesamtschrittverfahren komponentenweise: x H0L Œ Ñ n, (5. 4b) x j Hm+1L = n 1 ÄÄÄÄÄÄÄ { b j - a jj k = 1 k π j a jk x k HmL }, j=1(1)n, m=0,1,2,... Hier sieht man, dass lediglich die j-te Gleichung von Ax = b nach x j aufgelöst wurde und damit iteriert wird. Hm+1L Wenn das Jacobi-Verfahren konvergiert, so ist sicherlich x j eine bessere Näherung für êêê x j als x HmL HmL j. Ersetzt man daher in der rechten Seite von (5.4b) x k überall dort durch x k Hm+1L, wo man diese neue Näherung schon kennt, so kommt man zum Einzelschrittverfahren komponentenweise ( Gauß-Seidel-Verfahren 1823/1871 ): x H0L Œ Ñ n, (5.5b) x j Hm+1L = j ÄÄÄÄÄÄÄ { b j - a jj k=1 n a jk x k Hm+1L - k= j + 1 a jk x k HmL }, j=1(1)n, m=0,1,2,... Gauß schrieb zu diesem Verfahren: Ich empfehle Ihnen diesen Modus zur Nachahmung. Schwerlich werden Sie je wieder direct eliminiren, wenigstens nicht, wenn Sie mehr als 2 Unbekannte haben. Das indirecte Verfahren

5 numerik5.nb 5 lässt sich halb im Schlafe ausführen oder man kann während desselben an andere Dinge denken. Wie sehen B und die Iterationsmatrix I - B -1 A zu (5.5b) aus? (5.5b) ï ( D - E )x Hm+1L = Fx HmL + b ï Einzelschrittverfahren ( Gauß-Seidel-Verfahren ) x H0L Œ Ñ n, (5.5a) x Hm+1L = HD - EL -1 F x HmL + HD - EL -1 b = HI - B -1 A L x HmL + B -1 b ( vgl. (5.2) ), m=0,1,2,... î B = D - E = A + F = DH I - LL î Iterationsmatrix H := I - B -1 A = H D - EL -1 F = H I - LL -1 U = i j k i=0 n-1 L iy z U { Reihe Neumannsche B = i j k a a n1.. a nn y ist eine reguläre Dreiecksmatrix z { (eventuell muss allerdings vorher A durch PA ersetzt werden). Satz 5.1 ( Konvergenzsatz für Einzel- und Gesamtschrittverfahren ) Voraussetzung: A strikt diagonal dominant. Behauptung: H»» J»» < 1, d.h. globale Konvergenz beider Verfahren. Beweis:...

6 6 numerik5.nb... Bemerkung: H»» J»» < 1 impliziert nicht, dass das Gauß-Seidel-Verfahren schneller konvergiert als das Jacobi-Verfahren. Dies würde erst aus (H) < (J) folgen, da der Spektralradius die Konvergenzrate ist. Satz 5.2 ( Konvergenzsatz für das Einzelschrittverfahren ) Voraussetzung: A positiv definit. Behauptung: (H) < 1, d.h. globale Konvergenz des Gauß-Seidel-Verfahrens. Beweis: Hinweis: Das Jacobi-Verfahren konvergiert nicht notwendig bei positiv definitem A, wenn n>2 ist. Z.B. A = 882, 2, 3<, 82, 4, 2<, 83, 2, 8<<;

7 numerik5.nb 7 MatrixForm@AD i 2 2 3y j z k 3 2 8{ Modifikationen und Erweiterungen: Relaxationsverfahren ( G(x) ö G w HxL := wghxl +H1 - wl x, w œ [0,1] ), Mehrgitter-Verfahren,... à Eine ganz andere Idee zur 'iterativen' Lösung von A x = b bei positiv definitem A kommt aus der Optimierung: Betrachte die Aufgabe min xœñ n fhxl mit fhxl := 1 ÄÄÄÄ 2 xt A x - b T x : fhxl = A x - b = Residuum der zu lösenden Gleichung ( f := J ÄÄÄÄÄÄÄÄ x 1 f,, ÄÄÄÄÄÄÄÄ x n fn T ) und 2 fhxl = A ist positiv definit î x opt = A -1 b. Minimiere also f! Wie? Idee: Ausgehend von einem Iterationspunkt x HmL und einer Richtung p HmL 0, in der f kleiner wird, bestimme eine Schrittweite t m, so dass j m HtL := fhx HmL + t p HmL L minimal wird bezüglich t œñ (1-dimensionales Minimierungsproblemproblem!!). Damit erhält man einen neuen Iterationspunkt x Hm+1L := x HmL + t m p HmL und benötigt nun eine neue Richtung p Hm+1L, die unabhängig von den alten Richtungen sein sollte, damit man vorwärts (hier: abwärts) kommt. Schrittweitenbestimmung: j mhtl = f Hx HmL + t p HmL L p HmL = HA x HmL L T p HmL + tha p HmL L T p HmL - b T p HmL = thp HmL L T A p HmL + Hp HmL L T fhx HmL L ï t m = -Hp HmL L T fhx HmL LêHp HmL L T A p HmL ist das globale Minimum der konvexen quadratischen Parabel j m. Offenbar darf die Richtung p HmL nicht orthogonal zum Residuum fhx HmL L gewählt sein, da man sonst mit t m = 0 in x HmL stehen bleibt. Aber dann steht die Richtung p HmL senkrecht auf dem neuen Residuum fhx Hm+1L L : Nachrechnen.

8 8 numerik5.nb Richtungsbestimmung: Erste Richtung p H0L := - fhx 0 L, denn in dieser Richtung geht es fast immer bergab bei hinreichend kleiner Schrittweite (siehe Taylor). (Ausnahme: p H0L = 0. Dann ist man aber fertig, x H0L ist Optimalpunkt.) Nächste Richtungen? Unter allen Vektoren der Länge 1 (gemessen in der 2-Norm) führt der Vektor p Hm+1L := - fhx Hm+1L Lê»» fhx Hm+1L L»» 2 zum steilsten Abstieg und zum Gradientenverfahren. Der steilste Abstieg ist jedoch (wie auch im wahren Leben) nicht unbedingt zu empfehlen, da er manchmal nur mit sehr, sehr kleinen Schrittweiten möglich ist. Außerdem könnte er eine Richtung liefern, die von bereits vorher verwendeten abhängig ist. Idee daher: Bestimme die neue Richtung in der durch p HmL und r Hm+1L := f Hx Hm+1L L (diese Vektoren sind orthogonal) aufgespannten Ebene. Dabei soll allerdings p Hm+1L nicht senkrecht auf r Hm+1L stehen (s.o.). Daher kommt man zu dem Ansatz p Hm+1L := -r Hm+1L + b m p HmL, wobei b m œñ die quadratische Parabel c m minimiert : c m HbL := fh x Hm+1L + th-r Hm+1L + b p HmL LL = fhx Hm+1L L + t f Hx Hm+1L L H-r Hm+1L + b p HmL L + t2 ÄÄÄÄÄ 2 H-rHm+1L + b p HmL L T 2 fhx Hm+1L L H-r Hm+1L + b p HmL L = fhx Hm+1L L + thr Hm+1L L T H-r Hm+1L + b p HmL L + t2 ÄÄÄÄÄ 2 H-rHm+1L + b p HmL L T AH-r Hm+1L + b p HmL L = const. + b thr Hm+1L L T p HmL - b t 2 p HmL T A r Hm+1L + b 2 t2 ÄÄÄÄÄ 2 phml T A p HmL. Da r Hm+1LT p HmL = 0, ist folglich c m H bl = -t2 p HmL T A r Hm+1L + b t 2 p HmL T A p HmL und b m := p HmL T A r Hm+1L ê p HmL T A p HmL der optimale Parameter. Mit ihm gilt zudem p HmL T A p Hm+1L = p HmL T AH-r Hm+1L + b m p HmL L = 0, d.h. die neue Richtung ist A-orthogonal ("A-konjugiert") zur alten. ( H f, gl A := f T A g ist ein Skalarprodukt,»» f»» A := è!!!!!!!!!!!!!!! f T A f eine Norm!) Definition 5.1 Ist A Œ Ñ n,n positiv definit, so heißen Vektoren p H0L,, p HkL Œ Ñ n A-konjugiert, wenn sie vom Nullvektor verschieden sind und Hp HiL L T A p H jl = 0 für 0 i<j k gilt.

9 numerik5.nb 9 Satz 5.3 ( cg-verfahren von Hestenes und Stiefel, 1952 ) Voraussetzung: A positiv definit. Zur Lösung der Aufgabe min xœñ n fhxl mit fhxl := 1 ÄÄÄÄ 2 xt A x - b T x betrachte folgendes Verfahren: à Wähle x H0L Œ Ñ n, berechne r H0L := A x H0L - b und setze p H0L := -r H0L. àfür m=0,1,... : Falls r H0L = 0, dann setze k:=m, STOP, x HkL löst die Aufgabe. Berechne t m := -Hr HmL L T p HmL êhp HmL L T A p HmL, x Hm+1L := x HmL + t m p HmL, r Hm+1L := r HmL + t m A p HmL, b m :=»» r Hm+1L»» 2 2 ê»» r HmL»» 2 2, p Hm+1L := -r Hm+1L + b m p HmL. Behauptungen: (1) Das Verfahren bricht nach k n Schritten ab. (2) Es ist Hp HiL L T r HmL = 0 für 0 i<m k. (3) Es ist Hp HmL L T r HmL = -»» r HmL»» 2 2 für 0 m k. (4) Es ist Hr HiL L T r HmL = 0 für 0 i<m k. Die Residuen (=Gradienten) sind also orthogonal oder I-konjugiert oder konjugiert. Daher der Name des Verfahrens: cg = conjugate gradients (5) Die Richtungen p H0L,, p Hk-1L sind A-konjugiert.

10 10 numerik5.nb (6) Es ist span 8p H0L,, p HmL < = span 8r H0L,, r HmL < für 0 m<k. Beweis:... Bemerkungen:... (1) Die optimale Schrittweite t m kann im Verfahren auch durch t m :=»» r HmL»» 2 2 êhp HmL L T A p HmL berechnet werden ( siehe Behauptung (3) im Satz 5.3 ). (2) Im Unterschied zu Eliminationsverfahren wird die Matrix A nicht verändert, lediglich ihre Wirkung auf die aktuelle Richtung p HmL ist zu bestimmen : A p HmL. Bei schwach und unregelmäßig besetztem A ist dies schnell zu berechnen. (Bei vollbesetzten Matrizen oder Bandmatrizen bringt das Verfahren keinen Vorteil). (3) Da die Residuenvektoren ein Orthogonalsystem bilden, wird das Minimum nach höchstens n Schritten erreicht - in der Theorie. Beim Rechnen mit Gleitkommaarithmetik kann es allerdings passieren, dass auch noch r HnL 0 gilt. Daher setzt man das Verfahren solange fort, bis das Residuum hinreichend klein ist oder bis sich die Iterierten nicht mehr ändern, so dass man auf dem Computer tatsächlich ein Iterationsverfahren durchführt. Da»» x HmL - x opt»» A í»» x H0L - x opt»» A JJ "####################### cond 2 HAL - 1NíJ "####################### cond 2 HAL + 1NN m, m = 0, 1,... gilt, konvergiert das Verfahren umso besser, je kleiner die Kondition von A ist. Daher ist es sinnvoll, das System A x = b zu ersetzen durch das äquivalente System B -1 A x = B -1 b mit einem positiv definiten B, so dass cond 2 IB -1 AM << cond 2 HAL # Vorkonditionierung, preconditioning....

Iterative Lösung Linearer Gleichungssysteme

Iterative Lösung Linearer Gleichungssysteme Iterative Lösung Linearer Gleichungssysteme E. Olszewski, H. Röck, M. Watzl 1. Jänner 00 E. Olszewski, H. Röck, M. Watzl: WAP (WS 01/0) 1 Vorwort C.F.Gauß in einem Brief vom 6.1.18 an Gerling:

Mehr

Der CG-Algorithmus (Zusammenfassung)

Der CG-Algorithmus (Zusammenfassung) Der CG-Algorithmus (Zusammenfassung) Michael Karow Juli 2008 1 Zweck, Herkunft, Terminologie des CG-Algorithmus Zweck: Numerische Berechnung der Lösung x des linearen Gleichungssystems Ax = b für eine

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren

Mehr

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems

Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems Kapitel 2 Newton Verfahren 2.1 Das lokale Newton Verfahren Wir untersuchen in diesem Abschnitt das (lokale) Newton Verfahren zur Lösung eines nichtlinearen Gleichungssystems F (x) = 0 (2.1) mit einer zumindest

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

3 Nichtlineare Gleichungssysteme

3 Nichtlineare Gleichungssysteme 3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

Das CG-Verfahren. Sven Wetterauer

Das CG-Verfahren. Sven Wetterauer Das CG-Verfahren Sven Wetterauer 06.07.2010 1 Inhaltsverzeichnis 1 Einführung 3 2 Die quadratische Form 3 3 Methode des steilsten Abstiegs 4 4 Methode der Konjugierten Richtungen 6 4.1 Gram-Schmidt-Konjugation.........................

Mehr

Normalengleichungen. Für eine beliebige m n Matrix A erfüllt jede Lösung x des Ausgleichsproblems Ax b min die Normalengleichungen A t Ax = A t b,

Normalengleichungen. Für eine beliebige m n Matrix A erfüllt jede Lösung x des Ausgleichsproblems Ax b min die Normalengleichungen A t Ax = A t b, Normalengleichungen Für eine beliebige m n Matrix A erfüllt jede Lösung x des Ausgleichsproblems Ax b min die Normalengleichungen A t Ax = A t b, Normalengleichungen 1-1 Normalengleichungen Für eine beliebige

Mehr

Iterative Verfahren zur Lösung von Linearen Gleichungssystemen

Iterative Verfahren zur Lösung von Linearen Gleichungssystemen Kapitel 4 Iterative Verfahren zur Lösung von Linearen Gleichungssystemen Situation: A C n n schwach besetzt, n groß, b C n. Ziel: Bestimme x C n mit Ax = b. 4.1 Spliting-Methoden Die Grundidee ist hier

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

Jacobi- und Gauß-Seidel-Verfahren, Jacobi-Relaxationsverfahren

Jacobi- und Gauß-Seidel-Verfahren, Jacobi-Relaxationsverfahren Universität Hamburg SS 2005 Proseminar Numerik Leitung: Prof. W. Hofmann Vortrag von Markus Stürzekarn zum Thema: Jacobi- und Gauß-Seidel-Verfahren, Jacobi-Relaxationsverfahren Gegeben sei ein lineares

Mehr

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R.

2) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 +bx 2 +c mit a, b, c R. Übung 6 1) Wir betrachten den Vektorraum aller Funktionen f(x) = ax 4 + bx 2 + c mit a, b, c R und nennen diesen V. Die Vektoren f 1 (x) = 2x 4 + 2x 2 + 2 und f 2 (x) = 3x 4 + x 2 + 4 sind in diesem Vektorraum

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

Erweiterte Koordinaten

Erweiterte Koordinaten Erweiterte Koordinaten Sei K n ein n dimensionaler affiner Raum Die erweiterten Koordinaten des Punktes x x n K n sind x x n Kn+ (Das ist für alle K sinnvoll, weil in jedem Körper K wohldefiniert ist In

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

Klausur zur Vordiplom-Prüfung

Klausur zur Vordiplom-Prüfung Technische Universität Hamburg-Harburg SS 25 Arbeitsbereich Mathematik Dr. Jens-Peter M. Zemke Klausur zur Vordiplom-Prüfung Numerische Verfahren 22. Juli 25 Sie haben 9 Minuten Zeit zum Bearbeiten der

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

9 Vektorräume mit Skalarprodukt

9 Vektorräume mit Skalarprodukt 9 Skalarprodukt Pink: Lineare Algebra 2014/15 Seite 79 9 Vektorräume mit Skalarprodukt 9.1 Normierte Körper Sei K ein Körper. Definition: Eine Norm auf K ist eine Abbildung : K R 0, x x mit den folgenden

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte

Lineare Ausgleichsprobleme. Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Lineare Ausgleichsprobleme Bisher: Lösung linearer GS Ax = b, A R n,n, A regulär, b R n Jetzt: Lösung überbestimmter linearer GS, d.h. mehr Gleichungen als Unbekannte Ax = b mit A R m,n, b R m, m n, rg(a)

Mehr

40 Lokale Extrema und Taylor-Formel

40 Lokale Extrema und Taylor-Formel 198 VI. Differentialrechnung in mehreren Veränderlichen 40 Lokale Extrema und Taylor-Formel Lernziele: Resultate: Satz von Taylor und Kriterien für lokale Extrema Methoden aus der linearen Algebra Kompetenzen:

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

5 Iterationsverfahren für lineare Gleichungssysteme

5 Iterationsverfahren für lineare Gleichungssysteme 5 Iterationsverfahren für lineare Gleichungssysteme Klassische Iterationsverfahren Sei A R N N und b R N. Wir wollen nun das LGS Ax = b iterativ lösen. Dazu betrachten wir die Komponenten m = 1,...,N:

Mehr

Vektor und Matrixnormen Vorlesung vom

Vektor und Matrixnormen Vorlesung vom Vektor und Matrixnormen Vorlesung vom 18.12.15 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2016 Lineare Gleichungssysteme Schwerpunkte: Interpretation und Verständnis der Gleichungen Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik unter

Mehr

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z

3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z R Es sei f : R n D R eine einmal stetig differenzierbare Funktion, für die in einer Umgebung eines Punkte a = a 1, a,, a n D gilt: fa 1, a,, a n = 0, f xn a 1, a,, a n 0 Dann gibt es eines Umgebung U des

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein

Mehr

35 Stetige lineare Abbildungen

35 Stetige lineare Abbildungen 171 35 Stetige lineare Abbildungen Lernziele: Konzepte: Lineare Operatoren und ihre Normen Resultate: Abschätzungen für Matrizennormen Kompetenzen: Abschätzung von Operatornormen 35.1 Lineare Abbildungen.

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Numerische Verfahren der nicht-linearen Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Line

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

45 Eigenwerte und Eigenvektoren

45 Eigenwerte und Eigenvektoren 45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

Iterative Methods for Improving Mesh Parameterizations

Iterative Methods for Improving Mesh Parameterizations Iterative Methods for Improving Mesh Parameterizations Autoren: Shen Dong & Michael Garland, SMI 07 Nicola Sheldrick Seminar Computergrafik April 6, 2010 Nicola Sheldrick (Seminar Computergrafik)Iterative

Mehr

Nichtlineare Gleichungen

Nichtlineare Gleichungen Nichtlineare Gleichungen Ein wichtiges Problem in der Praxis ist die Bestimmung einer Lösung ξ der Gleichung f(x) =, () d.h. das Aufsuchen einer Nullstelle ξ einer (nicht notwendig linearen) Funktion f.

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

4.4 Orthogonalisierungsverfahren und die QR-Zerlegung

4.4 Orthogonalisierungsverfahren und die QR-Zerlegung 4.4 Orthogonalisierungsverfahren und die QR-Zerlegung Die Zerlegung einer regulären Matrix A R n n in die beiden Dreiecksmatrizen L und R basiert auf der Elimination mit Frobeniusmatrizen, d.h. R = FA,

Mehr

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung Matrixzerlegungen. 7. Vorlesung 170004 Numerische Methoden I Clemens Brand 29. April 2010 Gliederung Elimination faktorisiert A = L R Die A = L R Faktorisieren: Zerlege A in ein Produkt (einfacherer) Angenommen,

Mehr

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden: Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

Quadratische Formen und Definitheit

Quadratische Formen und Definitheit Universität Basel Wirtschaftswissenschaftliches Zentrum Quadratische Formen und Definitheit Dr. Thomas Zehrt Inhalt: 1. Quadratische Formen 2. Quadratische Approximation von Funktionen 3. Definitheit von

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

NUMERISCHE MATHEMATIK I

NUMERISCHE MATHEMATIK I D-MATH ETH Zürich, 22. August 2011 Prof. Ch. Schwab NUMERISCHE MATHEMATIK I 1. Interpolation und Quadratur (25 P.) a) Sei [a, b] R 1 mit a < b ein beschränktes Intervall, und f C 2 ([a, b]). Zeigen Sie,

Mehr

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr?

Prüfung Lineare Algebra Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? 1. Sei V ein n-dimensionaler euklidischer Raum. Welche der folgenden Aussagen ist wahr? A. Wenn n = 3 ist, sind mindestens zwei der drei Euler-Winkel einer Drehung kleiner oder gleich π. B. Wenn n = 2

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Inhalt Kapitel I: Nichtlineare Gleichungssysteme

Inhalt Kapitel I: Nichtlineare Gleichungssysteme Inhalt Kapitel I: Nichtlineare Gleichungssysteme I Nichtlineare Gleichungssysteme I. Nullstellenbestimmung von Funktionen einer Veränderlichen I.2 I.3 Newton-Verfahren Kapitel I (UebersichtKapI) 3 Bisektionsverfahren

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

Numerische Mathematik für Ingenieure und Physiker

Numerische Mathematik für Ingenieure und Physiker Willi Törnig Peter Spellucci Numerische Mathematik für Ingenieure und Physiker Band 1: Numerische Methoden der Algebra Zweite, überarbeitete und ergänzte Auflage Mit 15 Abbildungen > Springer-Verlag Berlin

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

cos(kx) sin(nx)dx =?

cos(kx) sin(nx)dx =? 3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]

Mehr

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011)

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) M. Sc. Frank Gimbel Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) 1 Motivation Ziel ist es, ein gegebenes lineares Gleichungssystem der Form Ax = b (1) mit x, b R n und A R n n zu lösen.

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Vektoren und Matrizen Einführung: Wie wir gesehen haben, trägt der R 2, also die Menge aller Zahlenpaare, eine Körperstruktur mit der Multiplikation (a + bi(c + di ac bd + (ad + bci Man kann jedoch zeigen,

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =

C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w = 1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 206 Lineare Algebra und analytische Geometrie II Vorlesung 33 Das Kreuzprodukt Eine Besonderheit im R 3 ist das sogenannte Kreuzprodukt, das zu zwei gegebenen Vektoren

Mehr

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen 11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen Ziel: Wir wollen lokale Extrema von Funktionen f : M R untersuchen, wobei M R n eine k-dimensionale Untermannigfaltigkeit des

Mehr

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)

Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor) Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.

Mehr

Mathematik für Informatiker II Übungsblatt 7

Mathematik für Informatiker II Übungsblatt 7 Mathematik für Informatiker II Übungsblatt 7 Vincent Blaskowitz Übungsblatt 7 vom 03.06.20 Aufgabe Aufgabenstellung Berechnen Sie die folgenden Logarithmen ohne Taschenrechner: i log 0,008 ii log 2 Lösung

Mehr

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.

Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn. Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich

Mehr

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen

46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46 Eigenwerte und Eigenvektoren symmetrischer Matrizen 46.1 Motivation Symmetrische Matrizen (a ij = a ji für alle i, j) kommen in der Praxis besonders häufig vor. Gibt es für sie spezielle Aussagen über

Mehr

Wirtschaftsmathematik Formelsammlung

Wirtschaftsmathematik Formelsammlung Wirtschaftsmathematik Formelsammlung Binomische Formeln Stand März 2015 (a + b) 2 = a 2 +2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b) (a b) =a 2 b 2 Fakultät (Faktorielle) n! =1 2 3 4 (n 1) n Intervalle Notation

Mehr

Lineare Gleichungssysteme - Grundlagen

Lineare Gleichungssysteme - Grundlagen Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente

Mehr

2 Euklidische Vektorräume

2 Euklidische Vektorräume Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

3. Das Gleichungssystem

3. Das Gleichungssystem Lagerung: Damit das Fachwerk Kräfte aufnehmen kann, muss es gelagert werden, Die Lagerung muss so beschaffen sein, dass keine Starrkörperbewegungen oder Mechanismen mehr möglich sind. Die Verschiebungen

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015 Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten

Mehr

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012 Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.0 Aufgabe : Entscheiden Sie in dieser Aufgabe, ob die Aussagen wahr oder falsch sind. Begründungen sind nicht erforderlich. Ein korrekt gesetztes

Mehr

KAPITEL 6. Nichtlineare Ausgleichsrechnung

KAPITEL 6. Nichtlineare Ausgleichsrechnung KAPITEL 6 Nichtlineare Ausgleichsrechnung Beispiel 61 Gedämpfte Schwingung: u + b m u + D m u = 0, Lösungen haben die Form: u(t) = u 0 e δt sin(ω d t + ϕ 0 ) Modell einer gedämpften Schwingung y(t; x 1,

Mehr

10 Extremwerte mit Nebenbedingungen

10 Extremwerte mit Nebenbedingungen 10 Extremwerte mit Nebenbedingungen 49 10 Extremwerte mit Nebenbedingungen Wir betrachten nun Extremwertaufgaben, bei denen nach dem Extremwert einer fx 1,, x n gesucht wird, aber die Menge der zulässigen

Mehr

Satz 2.3. Jeder lineare normierte Raum wird durch Einführung einer Metrik

Satz 2.3. Jeder lineare normierte Raum wird durch Einführung einer Metrik Kapitel Lineare normierte Räume.1 Allgemeiner Überblick Definition.1. Eine Menge X, in der über einem Zahlenkörper K (K = R oder K = C) die Addition und λ-multiplikation mit den üblichen Verbindungsaxiomen

Mehr

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz Mathematik für Bioinformatik und Systembiologie - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz WS 2009/10 Universität Freiburg Dieses Vorlesungsskript ist auf der Basis von Vorlesungen

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle 2. Matrixalgebra Warum Beschäftigung mit Matrixalgebra? Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle bequeme mathematische

Mehr