cos(kx) sin(nx)dx =?

Größe: px
Ab Seite anzeigen:

Download "cos(kx) sin(nx)dx =?"

Transkript

1 3.5 Fourierreihen Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π] symmetrisch bezüglich 0, gilt also: cos(kx) sin(nx)dx = 0 k, n Z. cos(kx) cos(nx)dx =? Versuch: partielle Integration: allgemeine Formel: f (x) g(x)dx = f(x) g(x) f(x) g (x)dx. Setze f (x) := cos(kx) f(x) = 1 k sin(kx), g(x) = cos(nx) g (x) = n sin(nx). Dabei k 0! [ 1 k sin(kx) cos(nx)]π + cos(kx) cos(nx)dx = 1 1 k sin(kx) n sin(nx)dx =

2 n sin(kx) sin(nx)dx. k Aus Symmetriegründen gilt: Dabei n 0! k n cos(kx) cos(nx)dx = cos(nx) cos(kx)dx = sin(kx) sin(nx)dx. Folglich ist k n = n k {1, 1}. oder sin(kx) sin(nx)dx = 0. Es gilt also: 0 = cos(kx) cos(nx)dx sin(kx) sin(nx)dx = k, n Z mit k ±n. Für k = 0 oder n = 0 gilt diese Gleichung wie man sich anhand einer Skizze überlegt. cos 2 (kx)dx = cos 2 (kx)dx =? sin 2 (kx)dx. 2

3 Das gilt für k 0. Es gilt: cos 2 (kx)dx + (cos 2 (kx) + sin 2 (kx))dx = Folglich gilt für k Z, k 0: Für k = 0 gilt: cos 2 (kx)dx = cos 2 (kx)dx = sin 2 (kx)dx = sin 2 (kx)dx = 1dx = 2π sin 2 (kx)dx = π Eine Skalarprodukt-Sprechweise 1 dx = 2π, 0 dx = 0. Die Abbildung <, >, die für je zwei auf [, π] stetige reelle Funktionen f, g definiert ist durch < f, g >:= f(x) g(x)dx heißt ein Skalarprodukt auf dem Raum der auf [, π] stetigen reellen Funktionen. heißt die Norm von f. f := < f, f > 3

4 Zwei auf [, π] stetige reelle Funktionen f, g heißen zueinander orthogonal, wenn gilt: < f, g >= 0. Wir haben gesehen: Die Funktionen cos kx, sin nx, k N 0, n N bilden ein Orthogonalsystem. Jede dieser Funktionen (außer cos(0 x)) hat die Norm π. Die Funktion cos(0 x) hat die Norm 2π. Die Funktionen 1 2π, 1 π cos kx, (k N) und 1 π sin nx, n N bilden ein Orthonormalsystem von Funktionen Eine Gleichheitsaussage Sinnvoll sei der folgende Ausdruck: f(x) = a 0 2 +a 1 cos x+b 1 sin x+a 2 cos(2x)+b 2 sin(2x)+... = a (a k cos(kx) + b k sin(kx)) ( ). k=1 Dann ist f eine 2π-periodische Funktion, d.h. f(t + 2π) = f(t) t R, und daraus folgt: f(t + k 2π) = f(t) t R. Wir nehmen an, dass wir gliedweise multiplizieren und gliedweise integrieren dürfen. (Dass diese Annahme sinnvoll ist, beweisen wir nicht.) 4

5 Dann erhalten wir: Also: f(x) cos(0x)dx = 2π a 0 2 = a 0 π. f(x) cos(nx)dx = a n π. f(x) sin(nx)dx = b n π. a k = 1 π b k = 1 π (Stimmt das für b k mit k = 0?) f(x) cos(kx)dx k = 0, 1, 2,... f(x) sin(kx)dx k = 0, 1, 2,... a k und b k heißen Fourier-Koeffizienten. Für gerade Funktionen f (f( x) = f(x) x R) gilt offenbar: b k = 0 und a k = 2 π 0 f(x) cos(kx)dx k N 0. Für ungerade Funktionen f (f( x) = f(x) x R) gilt offenbar: a k = 0 und b k = 2 π 0 f(x) sin(kx)dx k N 0. 5

6 3.5.4 Geschichtlicher Ursprung Bei seinen Untersuchungen zur Wärmeleitung verwendete Joseph Fourier im Jahr 1822 Darstellungen von Funktionen f der Gestalt (*). Daher kommt der Name Fourier-Reihe oder Fourierreihe für eine Darstellung von f in der Gestalt (*) Satz von Dirichlet Man kann zeigen: Voraussetzungen: Sei f :] π, π[ R auf ] π, π[ stetig außer höchstens in den endlich vielen Punkten x 1 < x 2 <... < x m. Sei f monoton (wachsend oder fallend) auf jedem der Intervalle ]x k, x k+1 [ (k = 1,..., m 1). Seien k = 1,..., m die einseitigen Grenzwerte f(x k 0) = lim x xk,x<x k f(x) und f(x k +0) = lim x xk,x>x k f(x) definiert. Dann gilt: Die Fourierreihe (*) konvergiert gegen f in allen Punkten, in denen f stetig ist und gegen 1 2 (f(x k 0)+f(x k +0)) an allen Unstetigkeitsstellen x k. Bemerkung: Das Funktionensystem bestehend aus cos kx, (k N 0 ) und sin nx, (n N) ist in diesem Sinn eine Basis des Raums aller Funktionen, die den Voraussetzungen des Satzes genügen. So eine Basis nennt man eine Schauder-Basis. Sie ist keine 6

7 Basis im Sinn der linearen Algebra, keine sogenannte Hamel-Basis ( weil man unendliche viele Summanden braucht ) Komplexe Schreibweise für Fourierreihen mit = k= f(x) = k= c k e ikx c k (cos(kx) + i sin(kx)) c k = 1 2 (a k ib k ) für k > 0 und c 0 = 1 2 a 0. c k = 1 2 (a k + ib k ) für k < Mittlere Abweichung Man kann zeigen: Ist s n (x) = a n (a k cos(kx) + b k sin(kx)) k=1 ein trigonometrisches Polynom oder eine Fourier-Summe so gilt: Der mittlere quadratische Fehler 7

8 1 (f(x) s n (x)) 2 dx 2π wird minimal, wenn man für a k und b k die Fourierkoeffizienten verwendet Konvergenz im Mittel Man kann zeigen: Mit den Bezeichnungen des vorigen Abschnitts gilt: Ist f :] π, π[ R beschränkt und in ] π, π[ stückweise stetig, so gilt: lim (f(x) s n (x)) 2 dx = 0. n Asymptotisches Verhalten der Fourier-Koeffizienten Bei vernünftigem f gilt: Für n gehen a n, b n 0, und zwar um so schneller, je schöner f ist. Genauer: Man kann zeigen: Ist eine 2π-periodische Funktion k-mal stetig differenzierbar, so gilt: lim n a nn k+1 = 0 und lim n b nn k+1 = Anwendungen Darstellung von Funktionen durch Reihen zur Weiterverwendung in der Mathematik. 8

9 Zerlegung physikalischer Schwingungen in Anteile verschiedener Frequenz. Sprachanalyse Wavelets Seit einigen Jahren verwendet man auch für numerische Berechnungen Wavelets ( kleine lokalisierte Wellen ) anstelle von sin und cos für Reihenentwicklungen von Funktionen als Ersatz für Fourierreihen. Werden Wavelets geschickt gewählt, können sie Vorteile vor sin und cos haben. Algorithmen der numerischen Mathematik werden schneller als beim klassischen Vorgehen. Ein Wavelet ist eine Funktion ψ : R R, so dass gilt: Die Funktionen x 2 n 2 ψ(2 n x k) bilden für k, n Z eine (Schauder-)Basis eines geeigneten Funktionenraumes. 9

Fourier-Reihen. Definition. Eine auf R definierte Funktion f heißt periodisch mit der Periode T 0, wenn f(x + T ) = f(x) x R.

Fourier-Reihen. Definition. Eine auf R definierte Funktion f heißt periodisch mit der Periode T 0, wenn f(x + T ) = f(x) x R. Fourier-Reihen Sehr häufig in der Natur begegnen uns periodische Vorgänge, zb beim Lauf der Gestirne am Nachthimmel In der Physik sind Phänomene wie Schwingungen und Wechselströme periodischer Natur Zumeist

Mehr

SPEZIELLE KAPITEL DER MATHEMATIK TEIL 1

SPEZIELLE KAPITEL DER MATHEMATIK TEIL 1 Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik SPEZIELLE KAPITEL DER MATHEMATIK TEIL 1 13. Fourier-Reihen Prof. Dr. Gunar Matthies Wintersemester 216/17

Mehr

Karteikarten, Analysis 2, Sätze und Definitionen nach der Vorlesung von PD Hanke

Karteikarten, Analysis 2, Sätze und Definitionen nach der Vorlesung von PD Hanke Karteikarten, Analysis 2, Sätze und en nach der Vorlesung von PD Hanke Felix Müller, felix.b.mueller@physik.lmu.de Diese Karteikärtchen sollten alle en und Sätze der Vorlesung Analysis 2 bei Herrn PD Hanke

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung WS 17/18: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung WS 17/18: Woche vom Übungsaufgaben 3. Übung WS 17/18: Woche vom 3. 10. - 7. 10. 017 Fourierreihen: 16. b,c,e,o), 16.3 a, b), 16.4 a) auch reelle Fourierreihe) Klausureinsicht zu Mathematik II 11.8. 017): 30.10.17, 7.00-8.30

Mehr

Ferienkurs der TU München- - Analysis 2 Fourierreihen und Taylorreihen. Marcus Jung, Jonas J. Funke

Ferienkurs der TU München- - Analysis 2 Fourierreihen und Taylorreihen. Marcus Jung, Jonas J. Funke Ferienkurs der U München- - Analysis Fourierreihen und aylorreihen Lösung Marcus Jung, Jonas J. Funke 3.8. FOURIERREIHEN Fourierreihen Aufgabe. Sei f : R R stetig und periodisch mit Fourierkoeffizienten

Mehr

53 Die Parsevalsche Gleichung

53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 53 Die Parsevalsche Gleichung 5 53. Skalarprodukte auf Räumen quadratintegrierbarer Funktionen. a) Die Orthogonalitätsrelationen (5.5) legen die Interpretation des Ausdrucks

Mehr

Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier-

Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang; Fourier- Kapitel 26 Fourier-Reihen 26.1 Einführung (Spektrum; harmonische Analyse; Periode einer Funktion; trigonometrische Reihen; trigonometrische Polynome; gliedweise Integration; Integration und Grenzübergang;

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe (9 Punkte) Es sei die Fläche S R 3 gegeben durch S : { } (x, y, z) R 3 : 4z x + y 4, z. (a) ( Punkte) Geben Sie eine Parametrisierung für S an. (b) (4 Punkte) Berechnen Sie den Flächeninhalt von

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 4.3.25, 2min Aufgabe ( Punkte) Es sei S := {(x, y, z) R 3 z = x 2 + y 2, z 2}. (a) (6 Punkte) Berechnen Sie den Flächeninhalt von S. (b) (4 Punkte) Berechnen Sie die

Mehr

Fourierreihen. Definition. Eine Funktion f(x) heißt periodisch mit der Periode T, wenn f(x + T ) = f(x)

Fourierreihen. Definition. Eine Funktion f(x) heißt periodisch mit der Periode T, wenn f(x + T ) = f(x) Fourierreihen Einer auf dem Intervall [, ] definierten Funtion f(x) ann ein (approximierendes) trigonometrisches Polynom (Fourier-Polynom) der Gestalt S n (x) = a + n a cos x + n b sin x zugeordnet werden.

Mehr

VIII. Fourier - Reihen

VIII. Fourier - Reihen VIII. Fourier - Reihen Dieses Kapitel enthält eine kurze Einführung in die mathematische Beschreibung von Schwingungen. Übersicht über den Inhalt von Kapitel VIII: 5. Der Satz von Fejér 53. Die Parsevalsche

Mehr

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Höhere Mathematik III Musterlösung , 120min Aufgabe 1 8 Punkte Es seien eine Kurve K R mit Parametrisierung C : [ π, π] R und ein Vektorfeld g : R R gegeben durch cos t 4y Ct :, gx, y : sin t 1 05 K 05 05 1 15 05 a 3 Punkte Berechnen Sie die Zirkulation

Mehr

Einführung in die Fourier-Reihen. 1 Fourier-Reihen: Definitionen

Einführung in die Fourier-Reihen. 1 Fourier-Reihen: Definitionen Vortrag zum Seminar zur Analysis, 05.07.2010 André Stollenwerk, Eva-Maria Seifert Die Fourieranalysis beschäftigt sich mit dem Problem, inwiefern sich Funktionen mittels Sinus und Cosinus, das heißt periodischen

Mehr

Teil III. Fourieranalysis

Teil III. Fourieranalysis Teil III Fourieranalysis 3 / 3 Fourierreihen Ziel: Zerlegung einer gegebenen Funktion in Schwingungen Konkret: f : (, L) R gegebene Funktion Gesucht: Darstellung der Form ( f (x) = a + a n cos ( n L x)

Mehr

43 Fourierreihen Motivation Fourierbasis

43 Fourierreihen Motivation Fourierbasis 43 Fourierreihen 43. Motivation Ähnlich wie eine Taylorreihe (vgl. MfI, Kap. 2) eine Funktion durch ein Polynom approximiert, wollen wir eine Funktion durch ein trigonometrisches Polynom annähern. Hierzu

Mehr

Orthogonalität von Kosinus und Sinus

Orthogonalität von Kosinus und Sinus Orthogonalität von Kosinus und Sinus Die Funktionen 1, cos(kx), sin(kx), k >, bilden ein Orthogonalsystem im Raum der quadratintegrierbaren π-periodischen Funktionen: cos(jx) cos(kx) dx = cos(jx) sin(lx)

Mehr

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben.

Modellfall. Orthogonalität trigonometrischer Funktionen. Anwendungen: f : (0, L) R gegeben. Modellfall Anwendungen: Fragen: Digitalisierung / digitale Darstellung von Funktionen, insbesondere für Ton- und Bilddaten Digitale Frequenzfilter Datenkompression: Abspeichern der unteren Frequenzen Lösung

Mehr

8 Euklidische Vektorräume und Fourierreihen

8 Euklidische Vektorräume und Fourierreihen Mathematik für Ingenieure II, SS 9 Freitag.7 $Id: fourier.tex,v.4 9/7/ :5:6 hk Exp $ 8 Euklidische Vektorräume und Fourierreihen 8. Fourier Reihen Wir wollen jeder, oder zumindest möglichst vielen, Funktionen

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

Probeklausur Höhere Mathematik II für Elektrotechniker

Probeklausur Höhere Mathematik II für Elektrotechniker I. Bouw.7.8 U. Hackstein Probeklausur Höhere Mathematik II für Elektrotechniker Es gibt 5 Punkte pro Teilaufgabe, also insgesamt 7 Punkte. Aufgabe. Skizzieren Sie folgenden Bereich: D = {(x, y) R x + y

Mehr

Fourier-Reihen und Fourier-Transformation

Fourier-Reihen und Fourier-Transformation Fourier-Reihen und Fourier-Transformation Matthias Dreÿdoppel, Martin Koch, Bernhard Kreft 25. Juli 23 Einleitung Im Folgenden sollen dir und die Fouriertransformation erläutert und mit Beispielen unterlegt

Mehr

Musterlösungen zur 10. Serie: Fourier-Reihen

Musterlösungen zur 10. Serie: Fourier-Reihen Musterlösungen zur. Serie: Fourier-Reihen. Aufgabe Bestimmen Sie die Fourier-Koeffizienten der Funktionen fx) x, gx) x und hx) e x a) auf [, ] bzgl., cosx, sinx, cosx,,sinx..., b) auf [, ] bzgl. c) auf

Mehr

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0.

Bestimmen Sie die Lösung des Anfangswertproblems. y (x) 4y (x) 5y(x) = 6e x. y(0) = y (0) = 0. Aufgabe Bestimmen Sie die Lösung des Anfangswertproblems y (x) 4y (x) 5y(x) = 6e x y(0) = y (0) = 0. Zunächst bestimmen wir die Lösung der homogenen DGL. Das charakteristische Polynom der DGL ist λ 2 4λ

Mehr

Konvergenz im quadratischen Mittel - Hilberträume

Konvergenz im quadratischen Mittel - Hilberträume CONTENTS CONTENTS Konvergenz im quadratischen Mittel - Hilberträume Contents 1 Ziel 2 1.1 Satz........................................ 2 2 Endlich dimensionale Vektorräume 2 2.1 Defintion: Eigenschaften

Mehr

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2.

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2. 1. Aufgabe 8 Punkte Geben Sie die Bereiche, auf denen die Funktion f : R R mit f (x) = (x + 1) e x monoton wachsend oder fallend ist, an, und untersuchen Sie die Funktion auf lokale und globale Extrema.

Mehr

10. Periodische Funktionen, Fourier Reihen

10. Periodische Funktionen, Fourier Reihen H.J. Oberle Analysis II SoSe 212 1. Periodische Funktionen, Fourier Reihen Jean Baptiste Joseph Fourier: Joseph Fourier wurde am 21.3.1768 bei Auxerre (Burgund) geboren und starb am 16.5.183 in Paris.

Mehr

Approximation von Funktionen

Approximation von Funktionen von Funktionen Fakultät Grundlagen Februar 6 Fakultät Grundlagen von Funktionen Übersicht Problemstellung Taylorpolynom Taylorenreihe Zusammenhang von e-funktion und trigonometrischen Funktionen 3 Fakultät

Mehr

hhhhh 8 ( x)/2, <x 0, ( x)/2, 0 <x, , ] hinaus. Diese Funktion ist ungerade, ihre Fourierreihe also eine reine Sinusreihe. Man findet 1 cos nx dx.

hhhhh 8 ( x)/2, <x 0, ( x)/2, 0 <x, , ] hinaus. Diese Funktion ist ungerade, ihre Fourierreihe also eine reine Sinusreihe. Man findet 1 cos nx dx. 86 5 Fouriertheorie Für gerades f ist f (x) sin nx ungerade, somit b n = f (x) sin nx dx =. Für ungerades f ist dagegen f cos nx ungerade, also a n = f (x) cos nx dx =..Ò Beispiel Die Sägezahnfunktion

Mehr

1.1 Vorbemerkung: Konvergenz von Reihen. g = lim. n=0. n=0 a n sei konvergent und schreibt. a n = g. (2) n=0

1.1 Vorbemerkung: Konvergenz von Reihen. g = lim. n=0. n=0 a n sei konvergent und schreibt. a n = g. (2) n=0 1 Taylor-Entwicklung 1.1 Vorbemerkung: Konvergenz von Reihen Gegeben sei eine unendliche Folge a 0,a 1,a,... reeller Zahlen a n R. Hat der Grenzwert g = lim k a n (1) einen endlichen Wert g R, so sagt

Mehr

11 Fourier-Analysis Grundlegende Begriffe

11 Fourier-Analysis Grundlegende Begriffe 11 Fourier-Analysis 11.1 Grundlegende Begriffe Definition: Eine Funktion f : R R (oder f : R C) heißt periodisch mit der Periode T (oder T-periodisch), falls f(t + T) = f(t) für alle t R. Ziel: Entwicklung

Mehr

exp(z) := k=0 sin(z) := k=0 cos(z) := k=0

exp(z) := k=0 sin(z) := k=0 cos(z) := k=0 Die komplexen Zahlen und komplexe Exponentialfunktion In diesem Vortrag sollen die komplexen Zahlen eingeführt werden, und wichtige Eigenschaften wiederholt und bewiesen werden. Wir definieren die komplexen

Mehr

Programmierung und Angewandte Mathematik

Programmierung und Angewandte Mathematik Programmierung und Angewandte Mathematik C++ /Scilab Programmierung und Einführung in das Konzept der objektorientierten Anwendungen zu wissenschaftlichen Rechnens SS 2012 Inhalt Steckbrief der Funktion

Mehr

Apl. Prof. Dr. N. Knarr Musterlösung , 120min

Apl. Prof. Dr. N. Knarr Musterlösung , 120min Apl. Prof. Dr. N. Knarr Musterlösung 3.9.5, min Aufgabe (8 Punkte) Gegeben ist der Körper K : {(x, y, z) R 3 x + 4y, z 3}. Berechnen Sie der Ausfluss von g : R 3 R 3 durch den Rand K mit g(x, y, z) (x

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Klausur zur Höheren Mathematik IV

Klausur zur Höheren Mathematik IV Düll Höhere Mathematik IV 8. 1. 1 Klausur zur Höheren Mathematik IV für Fachrichtung: kyb Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 1 Minuten Erlaubte Hilfsmittel: 1 eigenhändig beschriebene

Mehr

Periodische Funktionen, Fourier Reihen

Periodische Funktionen, Fourier Reihen Kapitel 1: Periodische Funktionen, Fourier Reihen 1.1 Grundlegende Begriffe Periodische Funktionen Definition: Eine Funktion f : R R oder f : R C) heißt periodisch mit der Periode T, falls für alle t R

Mehr

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016)

Vorlesung Mathematik 2 für Ingenieure (Sommersemester 2016) 1 Vorlesung Mathematik 2 für Ingenieure (Sommersemester 216) Kapitel 11: Potenzreihen und Fourier-Reihen Prof. Miles Simon Nach Folienvorlage von Prof. Dr. Volker Kaibel Otto-von-Guericke Universität Magdeburg.

Mehr

Komplexe Analysis für ITET und RW/CSE. Serie 11

Komplexe Analysis für ITET und RW/CSE. Serie 11 Prof. Dr. F. Da Lio R. Gantner Frühlingssemester 5 Komplexe Analysis für ITET und RW/CSE ETH Zürich D-MATH Serie Aufgabe. Fourierreihen (.a Sei f p die ungerade periodische Fortsetzung der Funktion f :

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16

Bildverarbeitung: Fourier-Transformation. D. Schlesinger () BV: Fourier-Transformation 1 / 16 Bildverarbeitung: Fourier-Transformation D. Schlesinger () BV: Fourier-Transformation 1 / 16 Allgemeines Bilder sind keine Vektoren. Bilder sind Funktionen x : D C (Menge der Pixel in die Menge der Farbwerte).

Mehr

6 Fourierreihen und die Fouriertransformation

6 Fourierreihen und die Fouriertransformation Mathematik für Physiker IV, SS 13 Mittwoch 9.5 $Id: fourier.tex,v 1.4 13/5/31 16:8:3 hk Exp hk $ 6 Fourierreihen und die Fouriertransformation 6.1 Die Fourierreihe einer integrierbaren Funktion Am Ende

Mehr

Ein Beispiel zur Fourier-Entwicklung

Ein Beispiel zur Fourier-Entwicklung Ein Beispiel zur Universität Leipzig, Mathematisches Institut Januar 2011 Aufgabenstellung Entwickle die Funktion u(x) = { 0 in π in ( ) ( π, π 3 2π ( 3, π) π 3, 2π ) 3 über dem Intervall [ π, π] in eine

Mehr

Westfälische Wilhelms-Universität Münster. Seminararbeit. Fourier-Reihen. vorgelegt von. Stefan Marczinzik

Westfälische Wilhelms-Universität Münster. Seminararbeit. Fourier-Reihen. vorgelegt von. Stefan Marczinzik Westfälische Wilhelms-Universität Münster Seminararbeit Fourier-Reihen vorgelegt von Stefan Marczinzik Fachbereich Mathematik und Informatik Seminar: Integraltransformationen (WS /3) Seminarleiter: Prof.

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Fourier Reihen Sehen wir in 2 Wochen Lösung der lin. Dgln.

Mehr

Mathematik III für das MW: WS 15/16 + SS 16. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik

Mathematik III für das MW: WS 15/16 + SS 16. Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik Mathematik III für das MW: WS 15/16 + SS 16 Karsten Eppler Technische Universität Dresden Institut für Numerische Mathematik karsten.eppler@tu-dresden.de http://www.math.tu-dresden.de/ eppler Vorlesungsassistent:

Mehr

HOCHSCHULBÜCHER FÜR MATHEMATIK H.GRELL, K.MARUHN U N D W.RINOW BAND 14 FOURIERREIHEN VON G.P. TOLSTOW MIT 51 A B B I L D U N G E N

HOCHSCHULBÜCHER FÜR MATHEMATIK H.GRELL, K.MARUHN U N D W.RINOW BAND 14 FOURIERREIHEN VON G.P. TOLSTOW MIT 51 A B B I L D U N G E N fc HOCHSCHULBÜCHER FÜR MATHEMATIK H E R A U S G E G E B E N VON H.GRELL, K.MARUHN U N D W.RINOW BAND 14 FOURIERREIHEN VON G.P. TOLSTOW MIT 51 A B B I L D U N G E N 1955 VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Analysis für Informatiker und Statistiker Modulprüfung

Analysis für Informatiker und Statistiker Modulprüfung Prof. Dr. Peter Otte Wintersemester 2013/14 Tom Bachmann, Sebastian Gottwald 18.02.2014 Analysis für Informatiker und Statistiker Modulprüfung Lösungsvorschlag Name:.......................................................

Mehr

10.1 Einleitung: Die Saitenschwingungsgleichung

10.1 Einleitung: Die Saitenschwingungsgleichung Kapitel Fourier-Reihen Fourier-Reihen sind seit langer Zeit ein zentrales Thema in der Analysis, das auch immer wieder Anstöße zu neuen Entwicklungen gab. Ursprung des Problems war die Saitenschwingungsgleichung,

Mehr

2.3 Konvergenzverhalten von Fourierreihen

2.3 Konvergenzverhalten von Fourierreihen 24 2 Fourierreihen 2.3 Konvergenzverhalten von Fourierreihen Wir diskutieren die folgenden Fragen: Unter welchen Umständen konvergiert eine Fourierreihe einer Funktion? Wann kann man eine stückweise stetige

Mehr

Fourierreihen. Die erste dieser Aussagen folgt direkt aus der Definition. Für die zweite bemerken

Fourierreihen. Die erste dieser Aussagen folgt direkt aus der Definition. Für die zweite bemerken Fachbereich Mathematik SS 0 J. Latschev Analysis II Fourierreihen In diesem Kapitel der Vorlesung widmen wir uns der Frage, inwieweit man jede periodische Funktion als Reihe in gewissen Standardfunktionen

Mehr

Höhere Mathematik für Ingenieure , Uhr (1. Termin)

Höhere Mathematik für Ingenieure , Uhr (1. Termin) Studiengang: Matrikelnummer: 1 3 4 5 6 Z Punkte Note Prüfungsklausur A zum Modul Höhere Mathematik für Ingenieure 1 17.. 14, 8. - 11. Uhr 1. Termin Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche

Mehr

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel

v(x, y, z) = (1 z)x 2 + (1 + z)y 2 + z. Hinweis: Der Flächeninhalt der Einheitssphäre ist 4π; das Volumen der Einheitskugel Aufgabe Gegeben sei das Gebiet G : { (x, y, z) R 3 x 2 + y 2 + z 2 < } und die Funktion Berechnen Sie das Integral v(x, y, z) ( z)x 2 + ( + z)y 2 + z. G n ds, wobei n der nach außen zeigende Normalenvektor

Mehr

D-CHEM Mathematik III Sommer 2016 Prof. Dr. F. Da Lio. First Draft. 20 x ct x + ct x 4t x + 4t 20, 4t 20 x 20 4t.

D-CHEM Mathematik III Sommer 2016 Prof. Dr. F. Da Lio. First Draft. 20 x ct x + ct x 4t x + 4t 20, 4t 20 x 20 4t. D-CHEM Mathematik III Sommer 06 Prof. Dr. F. Da Lio First Draft. a) Der Wert u(x, t) kann für (x, t) berechnet werden, wenn (x, t) im Einflussgebiet von [ 0, 0] liegt (denn nur auf dem Intervall [ 0, 0]

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2016/17. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2016/17. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 016/17 7. Fourier-Methoden 7.1. Periodische Funktionen In der Physik und in der Technik spielen periodische Funktionen eine

Mehr

Fachbereich Mathematik Hochschule Regensburg. Kurz-Skriptum zu Fourierreihen. Prof. Dr. Michael Fröhlich

Fachbereich Mathematik Hochschule Regensburg. Kurz-Skriptum zu Fourierreihen. Prof. Dr. Michael Fröhlich Fachbereich Mathematik Hochschule Regensburg Kurz-Skriptum zu Fourierreihen Prof. Dr. Michael Fröhlich Inhaltsverzeichnis p-periodische Funktionen und trigonometrische Reihen 4. p-periodische Funktionen................................

Mehr

Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: Parseval-Identität. Speziell:

Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: Parseval-Identität. Speziell: Parseval-Identität: Seien zwei Funktionen v. mit Fourier-Reihen: dann gilt: (kühnes Vertauschen von Integral und Summe!) Parseval-Identität Speziell: Anmerkung: beide Seiten kann man als Skalarprodukt

Mehr

Aufgaben zur Analysis I aus dem Wiederholungskurs

Aufgaben zur Analysis I aus dem Wiederholungskurs Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 Hilfskräfte: A. Weiß, W. Thumann 6.3.29 NWF I - Mathematik Universität Regensburg Aufgaben zur Analysis I aus dem Wiederholungskurs Die folgenden

Mehr

Kapitel 30. Aufgaben. Verständnisfragen. Aufgabe 30.1 Gegeben ist die Funktion. 0 <x π 2 π 2 <x π. x, π. f(x)=

Kapitel 30. Aufgaben. Verständnisfragen. Aufgabe 30.1 Gegeben ist die Funktion. 0 <x π 2 π 2 <x π. x, π. f(x)= Kapitel 3 Aufgaben Verständnisfragen Aufgabe 3.1 Gegeben ist die Funktion { fx= x,,

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

Beispiel: Die Sägezahnfunktion.

Beispiel: Die Sägezahnfunktion. Beispiel: Die Sägezahnfunktion. Betrachte die Sägezahnfunktion : für t = oder t = π S(t) := 1 (π t) : für < t < π Die Sägezahnfunktion ist ungerade, also gilt (mit ω = 1) a k = und b k = π π und damit

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2012 Konvergenz Definition Fourierreihen Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn es ein

Mehr

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung

Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Konvergenz im quadratischen Mittel und die Parsevelsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Dr. Gerhard Mülich Christian Maaß 6.Mai 8 Im letzten Vortrag haben wir gesehen, dass das

Mehr

Chebyshev & Fourier Reihen

Chebyshev & Fourier Reihen Chebyshev & Fourier Reihen Pascal Bauer 26. Mai 2015 1 / 75 Inhaltsverzeichnis 1 Fourier-Reihen 2 Chebyshev-Polynome 3 Zusammenhang zwischen Fourier und Chebyshev 4 Konvergenzgeschwindigkeiten 5 Konvergenzuntersuchungen

Mehr

Die Wärmeleitungsgleichung

Die Wärmeleitungsgleichung Die Wärmeleitungsgleichung In einem Stab der Länge 1 wird die Temperaturverteilung gegeben durch die Funktion u : ([0,1] [0, )) R, u(x,t) ist die Temperatur am Punkt x zum Zeitpunkt t. Die Funktion erfüllt

Mehr

Nachklausur Analysis 2

Nachklausur Analysis 2 Nachklausur Analysis 2. a) Wie ist der Grenzwert einer Folge in einem metrischen Raum definiert? Antwort: Se (a n ) n N eine Folge in dem metrischen Raum (M, d). Diese Folge besitzt den Grenzwert g M,

Mehr

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik

Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 6..3 Übungsklausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((3++5) Punkte)

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Differential und Integralrechnung 3 3. (Herbst 20, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende

Mehr

Mathematik 2 (Master Sicherheitstechnik)

Mathematik 2 (Master Sicherheitstechnik) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 4.6.8 Mathematik Master Sicherheitstechnik) Übungsblatt 8 Aufgabe 5. Konvergenz von Fourierreihen) Der Sinus Hyperbolicus ist die Funktion sinhx) = e x e x). Es

Mehr

Mathematik für Sicherheitsingenieure II (MScS, MScQ)

Mathematik für Sicherheitsingenieure II (MScS, MScQ) Priv.-Doz. Dr. J. Ruppenthal Wuppertal,.3.7 Mathematik für Sicherheitsingenieure II MScS, MScQ) Modulteil: Mathematik II Aufgabe. 8+6+6 Punkte) a) Bringen Sie folgende komplexe Zahlen in die Form x + iy

Mehr

Denition eines Orthonormalsystems (ONS) Eine Teilmenge M eines Prähilbertraums V mit dim(m) = n dim(v ) = m heiÿt Orthonormalsystem, wenn gilt:

Denition eines Orthonormalsystems (ONS) Eine Teilmenge M eines Prähilbertraums V mit dim(m) = n dim(v ) = m heiÿt Orthonormalsystem, wenn gilt: Hilbertraum Durch Verallgemeinerung der aus der Linearen Algebra bekannten Konzepte wie Basis, Orthogonalität und Projektion lassen sich die Eigenschaften des Hilbertraumes verstehen. Vorweg eine kurze

Mehr

Leitfaden a tx t

Leitfaden a tx t Leitfaden -0.7. Potenz-Reihen. Definition: Es sei (a 0, a, a 2,...) eine Folge reeller Zahlen (wir beginnen hier mit dem Index t 0). Ist x R, so kann man die Folge (a 0, a x, a 2 x 2, a 3 x 3,...) und

Mehr

Höhere Mathematik II. Variante A

Höhere Mathematik II. Variante A Lehrstuhl II für Mathematik Prof Dr E Triesch Höhere Mathematik II SoSe 5 Variante A Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA4-Blätter (Vorder- und Rückseite

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) Kapitel 4: Konvergenz und Stetigkeit Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 22. November 2007) Folgen Eine Folge

Mehr

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. Analysis I, WiSe 2013/14, 04.02.2014 (Iske), Version A 1 Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. a) Welche der folgenden Aussagen über Folgen sind sinnvoll und

Mehr

Vorlesung Analysis I WS 07/08

Vorlesung Analysis I WS 07/08 Vorlesung Analysis I WS 07/08 Erich Ossa Vorläufige Version 07/12/04 Ausdruck 8. Januar 2008 Inhaltsverzeichnis 1 Grundlagen 1 1.1 Elementare Logik.................................. 1 1.1.A Aussagenlogik................................

Mehr

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik INGENIEURMATHEMATIK 8. Reihen Prof. Dr. Gunar Matthies Sommersemester 2016 G. Matthies Ingenieurmathematik

Mehr

= 3 e e x 1 + 2x 2. + x 2. = x. x 1 = 5 x 2 = 2

= 3 e e x 1 + 2x 2. + x 2. = x. x 1 = 5 x 2 = 2 Lösungsvorschläge zu Blatt 7: ) x ( ) 3 3 e + e ( ) ( ) ( )! x x + x + x x + x x x Wir haben hier also zwei verschiedene Darstellungen für einen Vektor, da zwei verschiedene Basen verwendet werden. b b

Mehr

Lösungsvorschlag zur Übungsklausur zur Analysis I

Lösungsvorschlag zur Übungsklausur zur Analysis I Prof. Dr. H. Garcke, Dr. H. Farshbaf-Shaker, D. Depner WS 8/9 NWF I - Mathematik 9..9 Universität Regensburg Lösungsvorschlag zur Übungsklausur zur Analysis I Frage 1 Vervollständigen Sie die folgenden

Mehr

Der Satz von Taylor. Kapitel 7

Der Satz von Taylor. Kapitel 7 Kapitel 7 Der Satz von Taylor Wir haben bereits die Darstellung verschiedener Funktionen, wie der Exponentialfunktion, der Cosinus- oder Sinus-Funktion, durch unendliche Reihen kennen gelernt. In diesem

Mehr

D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler. Lösungen Serie 3

D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler. Lösungen Serie 3 D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie 3. Die Norm x x + y wird von einem Skalarprodukt induziert. y a richtig b falsch Diese Norm erfüllt die Parallelogrammregel nicht

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens WS 2012/13 Inhalt Fourier reihen Fourier Transformation Laplace Transforamation

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Lösungsvorschläge zum 14. Übungsblatt.

Lösungsvorschläge zum 14. Übungsblatt. Übung zur Analysis III WS / Lösungsvorschläge zum 4. Übungsblatt. Aufgabe 54 Sei a R\{}. Ziel ist die Berechnung des Reihenwertes k a + k. Definiere dazu f : [ π, π] R, x coshax. Wir entwickeln f in eine

Mehr

72 Orthonormalbasen und Konvergenz im quadratischen Mittel

72 Orthonormalbasen und Konvergenz im quadratischen Mittel 72 Orthonormalbasen und Konvergenz im quadratischen Mittel 30 72 Orthonormalbasen und Konvergenz im quadratischen Mittel Wir untersuchen nun die Konvergenz von Fourier-Reihen im quadratischen Mittel in

Mehr

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) 1 Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13) Kapitel 5: Konvergenz Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Dezember 2011) Folgen Eine Folge x 0, x 1,

Mehr

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1 Studiengang: Matrikelnummer: 3 4 5 6 Z Bonus Punkte Note Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure.. 7, 3. - 6. Uhr Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche Ausarbeitungen

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung

Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Konvergenz im quadratischen Mittel und Parsevalsche Gleichung Skript zum Vortrag im Proseminar Analysis bei Prof Dr Picard, gehalten von Helena Malinowski In vorhergehenden Vorträgen und dazugehörigen

Mehr

Wichtige Kenntnisse der Linearen Algebra

Wichtige Kenntnisse der Linearen Algebra Wichtige Kenntnisse der Linearen Algebra In Kapitel 3 der Vorlesung werden wir sehen (und in Kapitel 6 vertiefen, dass zur Beschreibung von Quantensystemen mathematische Begriffe aus dem Gebiet der Linearen

Mehr

Fourier-Reihen. Thomas Peters Thomas Mathe-Seiten 1. Dezember 2004

Fourier-Reihen. Thomas Peters Thomas Mathe-Seiten  1. Dezember 2004 Fourier-Reihen Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de. Dezember 4 Dieser Artikel gibt eine elementare Einführung in die Theorie der Fourier-Reihen. Er beginnt mit einer kurzen Analyse des

Mehr

Konvergenz und Stetigkeit

Konvergenz und Stetigkeit Mathematik I für Biologen, Geowissenschaftler und Geoökologen 10. Dezember 2008 Konvergenz Definition Fourierreihen Obertöne Geometrische Reihe Definition: Eine Funktion f : D R d heißt beschränkt, wenn

Mehr

Anmerkung: Falls f(x) nicht ganz glatt ist, sondern nur stückweise stetig differenzierbar ist (d.h. Sprünge hat), gilt (Satz v.

Anmerkung: Falls f(x) nicht ganz glatt ist, sondern nur stückweise stetig differenzierbar ist (d.h. Sprünge hat), gilt (Satz v. Fourier-Reihen für periodische Funktionen Sei periodisch, mit Periode L: Auch für diesen Fall gilt die Fourier- Reihen-Darstellung (b.3), mit : (b.3) (und stückweise stetig differenzierbar) (c.5) Integral

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 25/6): Differential und Integralrechnung 3 3. (Herbst 2, Thema 3, Aufgabe 2) Gegeben ist für m R die Funktion f m : ], 2π[ R; f m (x) = Folgende Tatsachen

Mehr

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C.

Die komplexen Zahlen und Skalarprodukte Kurze Wiederholung des Körpers der komplexen Zahlen C. Die omplexen Zahlen und Salarprodute Kurze Wiederholung des Körpers der omplexen Zahlen C. Erinnerung an die Definition von exp, sin, cos als Potenzreihen C C Herleitung der Euler Formel Definition eines

Mehr

Serie 12 - Integrationstechniken

Serie 12 - Integrationstechniken Analysis D-BAUG Dr. Meike Akveld HS 5 Serie - Integrationstechniken. Berechnen Sie folgende Integrale: a e x cos(x dx Wir integrieren zwei Mal partiell, bis wir auf der rechten Seite wieder das Integral

Mehr