Nullstellen von algebraischen Gleichungen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Nullstellen von algebraischen Gleichungen"

Transkript

1 Kapitel 2 Nullstellen von algebraischen Gleichungen 2.1 Vorbemerkungen Suche Lösung der Gleichung f(x) = 0 (2.1) Dies ist die Standardform für eine Dimension. - typisch nichtlineare Gleichung, sonst elementar auflösbar - in mehreren Dimensionen: Linearisierung Lösung wird durch Iteration gefunden, für glatte Funktionen wird ein guter Algorithmus immer konvergieren, vorausgesetzt, die Anfangswahl war hinreichend genau. Tip: Immer zuerst Wurzel einklammern (z.b. raten, graphisch), dann Iterieren Eine einfache erste Möglichkeit bietet die graphische Darstellung. Schreibe die Gleichung um in g(x) = h(x), plotte y = g(x), und y = h(x) und suche den Schnittpunkt der zwei Kurven. Phys. Beispiele: - Minimum oder Maximum einer Fkt. g(x) - GGW eines Teilchens im Potential - Potentialflächen (Roche-Potential) - Energie-Niveaus - Keplergleichung bei der Planetenbewegung. In mehreren Dimensionen: Matrixproblem 2.2 Bisektion Prinzip: (siehe auch Abb. 2.1) Gegeben f(x) = 0 mit den Startwerten a und b mit a < b und f(a)f(b) < 0. D.h. mindestens eine Wurzel liegt im Interval [a, b]. Sei f(b) > 0. while b a > ɛ c = (a + b)/2 if f(c) > 0 then b = c else a = c end while 7

2 8 KAPITEL 2. NULLSTELLEN VON ALGEBRAISCHEN GLEICHUNGEN Y f(b) f(x) f(c) f(d) a e d c b X f(e) f(a) Abbildung 2.1: Die Intervallhalbierungsmethode (Bisektion) graphisch angedeutet. Das aktuelle Intervall wird jeweils halbiert und die neuen Grenzen so gewählt, dass die Nullstelle immer innerhalb des aktuellen Intervalls liegt: [a, b] [a, c] [a, d] [e, d] Anzahl der Rechenschritte Beim Start ist die Größe des Intervalls a b Nach der ersten Iteration a b /2 Nach der k-ten a b /2 k Bei einem gegebenen ɛ brechen wir nach a b /2 K ɛ ab. Nach Runden auf den nächsten Integer Wert: K log 2 ( a b /ɛ) (2.2) Z.B. a b = 1, ɛ = K 13, also 13 oder mehr Iterationen. Die Methode konvergiert linear, d.h. k+1 = const. m k, mit m = 1. (2.3) wobei k die Größe des Intervalls nach dem k-ten Schritt ist. Für m > 1 heißt eine Methode superlinear. Bem:. Y Bisektion muss konvergieren. Bei zwei Nullstellen wird eine gefunden, bei keinen Nullstellen, aber Singularitäten konvergiert die X Methode zu einer Singularität (siehe nebenstehende Skizze) Abbruchkriterium: verschiedene Möglichkeiten Intervallgröße: ɛ = ɛ m (a + b)/2. Residum der Funktion: f(x) < ɛ.

3 2.3. SEKANTENMETHODE UND REGULA FALSI 9 Änderung des Intervalls: b a ɛ. Iterationszahl: It < It max Vorsicht in der Nähe des Nullpunktes. 2.3 Sekantenmethode und Regula Falsi Bei glatten Funktionen in der Nähe einer Nullstelle konvergieren die Sekantenmethode, bzw. die Regula Falsi schneller als Bisektion. Methode: Die zwei Enden des Intervalls (a, f(a)) und (b, f(b)) werden durch eine Gerade verbunden, und die nächste Verbesserung der Wurzel ist der Punkt, den die Gerade mit der x-achse schneidet (siehe Abbildung 2.2). Der Unterschied zwischen den beiden Methoden besteht Y f(b) f(c) f(d) a d c b X f(a) Abbildung 2.2: Die regula falsi, graphisch angedeutet. Die Wurzel wird immer von den beiden Intervallgrenzen eingeklammert im Wesentlichen darin, dass bei der regula falsi jeweils der Schnittpunkt als neuer Approximations wert an die Nullstelle gewählt, so dass die Nullstelle immer innerhalb der aktuellen Intervallgrenzen liegt Bei der Sekantenmethode wird durch den Funktionswert zum Schnittpunkt der regula falsi Methode eine Gerade (Sekante) gelegt. Deren Schnittpunkt mit der x-achse liefert den neuesten Approximationspunkt unabhängig davon, ob er in das ursprüngliche Intervall fällt (siehe Abb. 2.3) Im obigen Schema der Bisektionmethode wird bei der Regula Falsi einfach c = f(b)a f(a)b f(b) f(a) gesetzt. Dies folgt mit dem Ansatz einer linearen Funktion p(x) = a 1 x + a 0 mit der Forderung p(a) = f(a) und p(b) = f(b). Dies liefert die Konstanten a 1, a 0, und der neue

4 10 KAPITEL 2. NULLSTELLEN VON ALGEBRAISCHEN GLEICHUNGEN Y f(b) f(c ) a f(c) c c b X f(a) Abbildung 2.3: Die Sekantenregel, graphisch angedeutet. Durch den Funktionswert (f(c )) zum Schnittpunkt (c ) der Sekante von (f(a), f(b)) mit der x-achse wird eine neue Gerade gelegt, und der alte Punkt (a) verworfen. Damit kann die neue Approximation an die Wurzel möglicherweise außerhalb der aktuellen Intervallgrenzen liegen. Intervallpunkt c wird gefunden durch p(c) = 0. Ansonsten vollzieht sich der Algorithmus wie oben. Bei der Sekantenmethode wird der neue Punkt ebenso durch die obige Formel gegeben, und der älteste Punkt wird weggeworfen. Die Konvergenz der Sekantenmethode ist durch den Goldenen Schnitt gegeben: lim k+1 const. k (2.4) k Die Konvergenzordnung ist also = (1 + 5) / 2 Bem: Nachteil der Sekantenmethode: Die Nullstelle wird nicht immer durch Intervall eingeschlossen (nach unendlich geschickt). Die Sekantenmethode konvergiert schneller als die Regula Falsi, weil immer die neuesten Werte für das neue Intervall verwendet werden. Die Regula Falsi und Sekantenmethode konvergieren dann langsam, wenn sich in der Nähe der Nullstelle die Funktion schnell ändert. 2.4 Newton Methode Die Newton Methode (oder auch Newton-Raphson) ist eine Tangentenmethode bei der die Annäherung an die Nullstelle über den Schnittpunkt der Tangente an die Funktion f(x) an einer Näherung x 0 der Nullstelle mit der x-achse als neuer Iterationswert gewählt wird. Es wird immer nur ein Punkt bei der Iteration benutzt, keine Einschachtelung (siehe Abb. 2.4). Lege an Funktion Tangente im Punkt x k (s. Abb.2.4), d.h. ich schreibe p(x) = f (x k ) x + a 0

5 2.4. NEWTON METHODE 11 Y f(x1) T2 T1 x2 x3 x1 X f(x2) Abbildung 2.4: Beim Newton-Verfahren wird die neue Näherung durch den Schnittpunkt der Tangente (T i ) an den letzten Funktionswert gefunden. Die Abb. verdeutlicht die schnelle Konvergenz des Newtonverfahrens. mit den Bedingungen p(x k ) = f(x k ). Daraus folgt a 0 = f(x k ) f (x k ) x k. Nullsetzten p(x k+1 ) = 0 liefert den nächsten Schnittpunkt Newton-Formel x k+1 = x k f(x k) f (x k ) (2.5) verwendet Konvergenz des Newton-Verfahrens Die Konvergenzanalyse wird mit Hilfe einer Taylorentwicklung durchgeführt. Wir schreiben für die Wurzel r = x k + ɛ k, x k = r ɛ k wobei r die Wurzel bezeichnet, und ɛ k den Fehler nach der k-ten Iteration. Nach k + 1 Iterationen gilt r = x k+1 + ɛ k+1, x k+1 = r ɛ k+1 Eingesetzt in die Newton-Methode r ɛ k+1 = x k+1 = r ɛ k f(r ɛ k) f (r ɛ k ) oder ɛ k+1 = ɛ k + f(r ɛ k) f (r ɛ k ) Entwickle f(x k ) und f (x k ) in Taylor-Reihen um r (2.6) f(r ɛ k ) = f(r) ɛ k f (r) + ɛ2 k 2 f (r)...

6 12 KAPITEL 2. NULLSTELLEN VON ALGEBRAISCHEN GLEICHUNGEN und f (r ɛ k ) = f (r) ɛ k f (r) + ɛ2 k 2 f (r)... mit f(r) = 0, eingesetzt in Gl.(2.6) nun ɛ k mit Nenner erweitern D.h. das Verfahren konvergiert quadratisch: ɛ k+1 = ɛ k + ɛ kf (r) ɛ2 k f (r) f (r) ɛ k f (r) +... ɛ k+1 = ɛ2 k f (r) 2f (r) + ɛ3 k... ɛ k+1 const. ɛ 2 k Bem.: diskrete Newtonmethode Falls Ableitung f (x) nicht bekannt, Approximation durch numerische Differenzbildung x k x k 1 x k+1 = x k f(x k ) f(x k ) f(x k 1 ) = x k 1f(x k ) f(x k 1 )x k f(x k ) f(x k 1 ) 2.5 Allg. Iterationsverfahren Das Newton-Verfahren kann geschrieben werden als eine Iteration der Form x k+1 = G(x k ) (2.7) Ein Iterationsverfahren der Form (2.7) heißt Fixpunkt-Iteration. Die Konvergenz wird mit Hilfe einer Taylor-Entwicklung durchgeführt. Wir schreiben wieder Aus der Fixpunkt Gleichung (2.7) folgt und eine Taylor-Entwicklung liefert: Für die Wurzel gilt r = G(r) und somit x k = r ɛ k, x k+1 = r ɛ k+1 r ɛ k+1 = G(r ɛ k ) r ɛ k+1 = G(r) ɛ k G (r) + ɛ 2 G (r) k ɛ k+1 G (r)ɛ k (2.8) D.h. die Fixunkt-Iteration ist erster Ordnung, falls G (r) 0. Für den Fehler beim k-ten Schritt gilt, falls für den ersten ɛ 1 = G (r)ɛ 0 galt, ɛ n [G (r)] n ɛ 0 (2.9)

7 2.6. BEISPIEL 13 Der Fehler reduziert sich, falls G (r) < 1 ist. Zusammenhang mit Newton: Für die Newton-Iteration gilt: für die erste Ableitung gilt also G N (x) = x f(x) f (x) G N (x) = [ x f f ] = ff f 2 (2.10) Wegen f(r) = 0 und f (r) 0 gilt G N(r) = 0 D.h. Newton ist zweiter Ordnung. G N (r) = f (r) f (r) 0 Daraus folgt dann die Konvergenzgleichung für die Newton-Iteration. 2.6 Beispiel Zu berechnen sei die Nullstelle der Funktion f(x) = e x ln(x) x 2 Mit der Wahl x 0 = a = 1, x 1 = b = 2. Ein einfacher Test liefert f(a) f(b) < 0. Der exakte Wert liegt bei Die drei Verfahren liefern: Typ Ergebnis Iterationen Bisektion Sekante Newton Pathologische Fälle Je nach auszuwertender Funktion kann es zu Fällen kommen, bei denen einige Verfahren schlecht konvergieren. In Abb. (2.5) konvergiert die Regula-Falsi schlecht. Das Newton- Verfahren wäre hier deutlich besser. In Abb. (2.6) liegt der neue Schätzwert aufgrund des verschwindenen Gradienten weit im Negativ-Unendlichen. In Abb. (2.7) liegt eine Hysterese Situation vor, welche nur extrem langsam konvergiert.

8 14 KAPITEL 2. NULLSTELLEN VON ALGEBRAISCHEN GLEICHUNGEN Abbildung 2.5: Die Regula-Falsi konvergiert in diesem Beispiel sehr schlecht. Abbildung 2.6: Das lokale Maximum führt zu schlechter Konvergenz des Newton- Verfahrens.

9 2.7. PATHOLOGISCHE FÄLLE 15 Abbildung 2.7: Hysterese-Verhalten beim Newton-Verfahren.

10 16 KAPITEL 2. NULLSTELLEN VON ALGEBRAISCHEN GLEICHUNGEN

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Numerische Verfahren zur Lösung nichtlinearer Gleichungen

Numerische Verfahren zur Lösung nichtlinearer Gleichungen Kapitel 2 Numerische Verfahren zur Lösung nichtlinearer Gleichungen 21 Aufgabenstellung und Motivation Ist f eine in einem abgeschlossenen Intervall I = [a, b] stetige und reellwertige Funktion, so heißt

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Verbessern, immer wieder verbessern... Gleichungen numerisch behandeln

Verbessern, immer wieder verbessern... Gleichungen numerisch behandeln Verbessern, immer wieder verbessern... Gleichungen numerisch behandeln H.R. Schneebeli, T.P. Wihler Version vom 1. Juli 201 Zusammenfassung Zur näherungsweisen numerischen Lösung von nichtlinearen Gleichungen,

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann

Abiturvorbereitung Mathematik -Dierentialrechnungc Max. Hoffmann Abiturvorbereitung Mathematik -Dierentialrechnungc Max Hoffmann 1 Ganzrationale Funktionen Im Folgenden wollen wir uns mit ganzrationale Funktionen und der Untersuchung solcher beschäftigen. Dabei werden

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

Aufgaben zur Flächenberechnung mit der Integralrechung

Aufgaben zur Flächenberechnung mit der Integralrechung ufgaben zur Flächenberechnung mit der Integralrechung ) Geben ist die Funktion f(x) = -x + x. a) Wie groß ist die Fläche, die die Kurve von f mit der x-chse einschließt? b) Welche Fläche schließt der Graph

Mehr

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Analysis, Hessen 2009, Grundkurs (TR) Gegeben ist die trigonometrische Funktion f mit f(x) = 2 sin(2x) 1 (vgl. Material 1). 1.) Geben Sie für die Funktion f den Schnittpunkt mit der y

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Stefan Funken, Dirk Lebiedz, Karsten Urban. Numerik II. (Einführung in die Numerische Analysis)

Stefan Funken, Dirk Lebiedz, Karsten Urban. Numerik II. (Einführung in die Numerische Analysis) Stefan Funken, Dirk Lebiedz, Karsten Urban Numerik II (Einführung in die Numerische Analysis) SKRIPT, UNIVERSITÄT ULM, SOMMERSEMESTER 213 i Vorwort. Dieses Manuskript ist entstanden aus Mitschriften und

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr 0/04 Fach (A) Prüfungstag 9. Mai 04 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Prof. Dr. Dres. h.c. Hans Georg Bock Dr. Christian Kirches Dipl.-Phys. Simon Lenz Übungen zur Numerischen Mathematik 2 Sommersemester

Mehr

Hinweise zur Nutzung der EXCEL-Mappe FktPlot.xls

Hinweise zur Nutzung der EXCEL-Mappe FktPlot.xls Hinweise zur Nutzung der EXCEL-Mappe FktPlot.xls Die Mappe enthält Makros, ohne die sie nicht funktionsfähig ist. Die Sicherheitseinstellungen müssen entsprechend gewählt und die Ausführung von Makros

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg Universität Regensburg Wintersemester 2012/13 1 Einführung Anwendungen Finanzwirtschaft: maximale Gewinnrate unter Beschränkungen an das Risiko; Portfolio von Investments Produktion: maximiere Gewinn bei

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Algorithmen und deren Programmierung Prof. Dr. Nikolaus Wulff Definition Algorithmus Ein Algorithmus ist eine präzise formulierte Handlungsanweisung zur Lösung einer gleichartigen

Mehr

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz Mathematik für Bioinformatik und Systembiologie - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz WS 2009/10 Universität Freiburg Dieses Vorlesungsskript ist auf der Basis von Vorlesungen

Mehr

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007

Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 2006 / 2007 Senatsverwaltung für Bildung, Wissenschaft und Forschung Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr / 7 Name, Vorname: Klasse: Prüfungsfach: Mathematik Prüfungstag:

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Softwareentwicklung 1. Übungsaufgabe 4 Kontrollstrukturen

Softwareentwicklung 1. Übungsaufgabe 4 Kontrollstrukturen Softwareentwicklung Übungsaufgabe 4 Kontrollstrukturen Wintersemester 2006/2007 Prof. Dr. rer.nat. Richard Alznauer Dipl.-Ing. (FH) Joachim Hampel Dipl.-Ing. (FH) Marc Jüttner Version.0.., 2. Dezember

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Nichtlineare Optimierungsprobleme mit Komplexität

Nichtlineare Optimierungsprobleme mit Komplexität Definition eines Nichtlinearen Optimierungsproblemes (NLP) min f (x) bzw. min f (x) s.d. x S x S wobei die zulässige Menge S R n typischerweise definiert ist durch S {x R n : h(x) =, c(x) } für Gleichungs-

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Transformation und Darstellung funktionaler Daten

Transformation und Darstellung funktionaler Daten Transformation und Darstellung funktionaler Daten Seminar - Statistik funktionaler Daten Jakob Bossek Fakultät für Statistik 7. Mai 2012 Übersicht Einleitung Einordnung im Seminar Motivation am Beispiel

Mehr

Darstellungsformen einer Funktion

Darstellungsformen einer Funktion http://www.flickr.com/photos/sigfrid/348144517/ Darstellungsformen einer Funktion 9 Analytische Darstellung: Eplizite Darstellung Funktionen werden nach Möglichkeit eplizit dargestellt, das heißt, die

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Typische Prüfungsfragen Die folgenden Fragen dienen lediglich der Orientierung und müssen nicht den tatsächlichen Prüfungsfragen entsprechen. Auch Erkenntnisse aus den

Mehr

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45.

Mathematik I für Wirtschaftswissenschaftler Klausur am 08.06.2004, 15.45 17.45. Mathematik I für Wirtschaftswissenschaftler Klausur am 8.6.4, 5.45 7.45. Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. b) Lösungswege und Begründungen sind anzugeben. Die

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Selbständiges Arbeiten. Oberstufe - KSOe (SprachProfil) GeoGebra. Klasse 6bw. Okt. 2011 / R. Balestra

Selbständiges Arbeiten. Oberstufe - KSOe (SprachProfil) GeoGebra. Klasse 6bw. Okt. 2011 / R. Balestra Selbständiges Arbeiten Oberstufe - KSOe (SprachProfil) GeoGebra Klasse 6bw Okt. 2011 / R. Balestra Inhaltsverzeichnis 1 Ziel 2 2 freeware GeoGebra - Der Download 3 3 Die Eingabe von Funktionen 4 3.1 Bearbeitungsmöglichkeiten......................

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung

Mehr

Rekursion und Iteration - Folgen und Web-Diagramme

Rekursion und Iteration - Folgen und Web-Diagramme Rekursion und Iteration - Folgen und Web-Diagramme Ac Einführungsbeispiel Quadratpflanze Ein Quadrat mit der Seitenlänge m wächst wie in der Grafik beschrieben: Figur Figur2 Figur3 Täglich kommt eine Generation

Mehr

2.4 Adaptive Verfahren mit Schrittweitensteuerung

2.4 Adaptive Verfahren mit Schrittweitensteuerung 0 0 0 Euler und RK4 fuer f(t,y) = t 0. Euler RK4 /N 0 0 f(t,y) =. t 0., graduiertes Gitter RK4 /N 4 Fehler bei T = 0 3 0 4 0 5 Fehler bei T = 0 5 0 0 0 6 0 7 0 0 0 0 2 0 3 0 4 0 5 Anzahl Schritte N 0 5

Mehr

Approximation durch Taylorpolynome

Approximation durch Taylorpolynome TU Berlin Fakultät II - Mathematik und Naturwissenschaften Sekretariat MA 4-1 Straße des 17. Juni 10623 Berlin Hochschultag Approximation durch Taylorpolynome Im Rahmen der Schülerinnen- und Schüler-Uni

Mehr

Optimierung. Florian Jarre Josef Stoer. Springer

Optimierung. Florian Jarre Josef Stoer. Springer 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Florian Jarre Josef Stoer Optimierung Springer Inhaltsverzeichnis

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Dr. Nico Düvelmeyer Freitag, 8. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 NLP Aufgabe KKT 2 Nachtrag

Mehr

Taylorentwicklung der k ten Dimension

Taylorentwicklung der k ten Dimension Taylorentwicklung der k ten Dimension 1.) Taylorentwicklung... 2 1.1.) Vorgehenesweise... 2 1.2.) Beispiel: f ((x, y)) = e x2 +y 2 8x 2 4y 4... 3 2.) Realisierung des Algorithmus im CAS Sage Math... 5

Mehr

Vorwort. Kerstin Rjasanowa. Mathematische Modelle im Bauingenieurwesen. Mit Fallstudien und numerischen Lösungen ISBN: 978-3-446-42125-7

Vorwort. Kerstin Rjasanowa. Mathematische Modelle im Bauingenieurwesen. Mit Fallstudien und numerischen Lösungen ISBN: 978-3-446-42125-7 Vorwort Kerstin Rjasanowa Mathematische Modelle im Bauingenieurwesen Mit Fallstudien und numerischen Lösungen ISBN: 978-3-446-45-7 Weitere Inormationen oder Bestellungen unter http://www.hanser.de/978-3-446-45-7

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel von Christian Schmitz Übersicht Zufallszahlen am Computer Optionspreis als Erwartungswert Aktienkurse simulieren Black-Scholes Formel Theorie

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

JOHANNES BONNEKOH. Analysis. Allgemeine Hochschulreife und Fachabitur

JOHANNES BONNEKOH. Analysis. Allgemeine Hochschulreife und Fachabitur JOHANNES BONNEKOH Analysis Allgemeine Hochschulreife und Fachabitur Vorwort Vorwort Mathematik ist eine Sprache, die uns hilft die Natur und allgemeine naturwissenschaftliche Vorgänge zu beschreiben. Johannes

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

MINT-Circle-Schülerakademie

MINT-Circle-Schülerakademie 1 Einführung MINT-Circle-Schülerakademie Kurze Einführung, was Maple ist, wozu es dienen kann, wo es verwendet wird. Zur Einführung die folgenden Aufgaben bearbeiten lassen. Aufgabe 1. Gib unter Maple

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe B Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl0-Gruppe B. Gegeben ist die Exponentialfunktion y=f x =0.8 2 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Bestimmung von Nullstellen mit Tabellenkalkulation in Anwendung des Newton'schen Näherungsverfahrens

Bestimmung von Nullstellen mit Tabellenkalkulation in Anwendung des Newton'schen Näherungsverfahrens Bestimmung von Nullstellen mit Tabellenkalkulation in Anwendung des Newton'schen Näherungsverfahrens Christian Strutz * Einleitung Fast unbemerkt hat in den letzten Jahrzehnten eine Revolution der Computertechnik

Mehr

Sortieren. Eine Testmenge erstellen

Sortieren. Eine Testmenge erstellen Sortieren Eine der wohl häufigsten Aufgaben für Computer ist das Sortieren, mit dem wir uns in diesem Abschnitt eingeher beschäftigen wollen. Unser Ziel ist die Entwicklung eines möglichst effizienten

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Quadratische Funktionen (Parabeln)

Quadratische Funktionen (Parabeln) Quadratische Funktionen (Parabeln) Aufgabe: Gegeben ist die quadratische Funktion = () x. Berechne mit Hilfe einer Wertetabelle die Funktionswerte von bis + im Abstand 0,. Zeichne anschließend die Punkte

Mehr

Abitur 2011, Analysis I

Abitur 2011, Analysis I Abitur, Analysis I Teil. f(x) = x + 4x + 5 Maximale Definitionsmenge: D = R \ {,5} Ableitung: f (4x + 5) (x + ) 4 8x + 8x (x) = (4x + 5) = (4x + 5) = (4x + 5). F(x) = 4 x (ln x ); D F = R + F (x) = 4 x

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben an der Fachhochschule Heilbronn im Wintersemester 2002/2003 Dr. Matthias Fischer Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009

MATHEMATIK 3 STUNDEN. DATUM: 8. Juni 2009 EUROPÄISCHES ABITUR 2009 MATHEMATIK 3 STUNDEN DATUM: 8. Juni 2009 DAUER DES EXAMENS : 3 Stunden (180 Minuten) ZUGELASSENE HILFSMITTEL : Europäische Formelsammlung Nicht graphischer und nicht programmierbarer

Mehr

Gegeben ist die Funktion f durch. Ihr Schaubild sei K.

Gegeben ist die Funktion f durch. Ihr Schaubild sei K. Aufgabe I 1 Gegeben ist die Funktion f durch. Ihr Schaubild sei K. a) Geben Sie die maximale Definitionsmenge D f an. Untersuchen Sie K auf gemeinsame Punkte mit der x-achse. Bestimmen Sie die Intervalle,

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Finite Differenzen und Elemente

Finite Differenzen und Elemente Dietrich Marsal Finite Differenzen und Elemente Numerische Lösung von Variationsproblemen und partiellen Differentialgleichungen Mit 64 Abbildungen Springer-Verlag Berlin Heidelberg NewYork London Paris

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Übungen aus den numerischen Methoden der Astronomie SS 2011

Übungen aus den numerischen Methoden der Astronomie SS 2011 Übungen aus den numerischen Methoden der Astronomie SS 2011 1. Fermat Teil I : Berechnen Sie die Fläche eines rechtwinkeligen Dreiecks mit Hilfe des pythagoräischen Lehrsatzes. Die beiden Katheten sollen

Mehr

Fraktale Geometrie: Julia Mengen

Fraktale Geometrie: Julia Mengen Fraktale Geometrie: Julia Mengen Gunnar Völkel 1. Februar 007 Zusammenfassung Diese Ausarbeitung ist als Stoffsammlung für das Seminar Fraktale Geometrie im Wintersemester 006/007 an der Universität Ulm

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Elementare Bildverarbeitungsoperationen

Elementare Bildverarbeitungsoperationen 1 Elementare Bildverarbeitungsoperationen - Kantenerkennung - 1 Einführung 2 Gradientenverfahren 3 Laplace-Verfahren 4 Canny-Verfahren 5 Literatur 1 Einführung 2 1 Einführung Kantenerkennung basiert auf

Mehr

Investition & Finanzierung. 2. Investitionsrechnung unter Sicherheit

Investition & Finanzierung. 2. Investitionsrechnung unter Sicherheit Investition & Finanzierung 2. Investitionsrechnung unter Univ.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) 1 Unter Cashflows verstehen wir Ein- sowie Auszahlungen. Wir konzentrieren uns vollkommen auf diese

Mehr

Wahlfach Mathematik: Funktionen

Wahlfach Mathematik: Funktionen Wahlfach Mathematik: Funktionen In der Mathematik ist eine Funktion oder Abbildung eine Beziehung zwischen zwei Mengen, die jedem Element der einen Menge (Funktionsargument, unabhängige Variable, x-wert)

Mehr

Methodische Lösungswege zu 70364

Methodische Lösungswege zu 70364 Methodische Lösungswege zu 7036 1. Auflage 010. Taschenbuch. S. Paperback ISBN 978 3 8085 7039 5 Format (B x L): 17 x cm Gewicht: g schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

DAS ABI-PFLICHTTEIL Büchlein

DAS ABI-PFLICHTTEIL Büchlein DAS ABI-PFLICHTTEIL Büchlein für Baden-Württemberg Alle Originalaufgaben Haupttermine 004 0 Ausführlich gerechnete und kommentierte Lösungswege Mit vielen Zusatzhilfen X π Von: Jochen Koppenhöfer und Pascal

Mehr

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen)

Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiele zur Kurvendiskussion (Gebrochen rationale Funktionen) Beispiel 1 Diskutiere die durch f(x) = x2 3x 4 x + 2 gegebene Funktion f. a) Definitionsbereich: Der Nenner eines Bruches darf nicht gleich

Mehr

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz Optimale Steuerung Kevin Sieg Fachbereich für Mathematik und Statistik Universität Konstanz 14. Juli 2010 1 / 29 Aufgabenstellung 1 Aufgabenstellung Aufgabenstellung 2 Die zusammengesetzte Trapezregel

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Umgekehrte Kurvendiskussion

Umgekehrte Kurvendiskussion Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt.

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt. LÖSUNGEN TEIL 1 Arbeitszeit: 50 min Gegeben ist die Funktion f mit der Gleichung. Begründen Sie, warum die Steigung der Sekante durch die Punkte A(0 2) und C(3 11) eine weniger gute Näherung für die Tangentensteigung

Mehr

Vorkurs Mathematik Übungen zu Polynomgleichungen

Vorkurs Mathematik Übungen zu Polynomgleichungen Vorkurs Mathematik Übungen zu en 1 Aufgaben Lineare Gleichungen Aufgabe 1.1 Ein Freund von Ihnen möchte einen neuen Mobilfunkvertrag abschließen. Es gibt zwei verschiedene Angebote: Anbieter 1: monatl.

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem

Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem Anwendung der Theorie von Gauß Shift Experimenten auf den Kolmogorov Smirnov Test und das einseitige Boundary Crossing Problem Inauguraldissertation zur Erlangung des Doktorgrades der Mathematisch Naturwissenschaftlichen

Mehr

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( )

Grundwissen 10. Klasse Mathematik. Berechne Umfang und Flächeninhalt des Spitzbogens mit Lösung: ( ) 1.1 Der Kreis Der Kreis Umfang Flächeninhalt Der Kreissektor (Kreisausschnitt) mit Mittelpunktswinkel Bogenlänge Flächeninhalt Grundwissen 10. Klasse Mathematik Wie ändert sich der Flächeninhalt eines

Mehr