Einführung in die Informatik I

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Informatik I"

Transkript

1 Einführung in die Informatik I Algorithmen und deren Programmierung Prof. Dr. Nikolaus Wulff

2 Definition Algorithmus Ein Algorithmus ist eine präzise formulierte Handlungsanweisung zur Lösung einer gleichartigen Klasse von Problemen. Ein Algorithmus besteht meist aus einer Folge von Anweisungen, die von einem Menschen/einer Maschine interpretiert und geeignet abgearbeitet werden können. Wenn er immer in einer endlichen Anzahl von Schritten beendet ist, terminiert der Algorithmus. Ein deterministischer Algorithmus hat eine eindeutig festgelegte Schrittfolge. Ist das Endergebnis, bei vorgegebenen Eingangsdaten, eindeutig bestimmt, so ist der Algorithmus determiniert. Prof. Dr. Nikolaus Wulff Informatik I 2

3 Algorithmen Beispiele Umgangssprachliche Algorithmen: Jedes (gute, genaue) Koch- und Backrezept. Bedienungsanleitung eines Telefons. Tonfolge einer Melodie an Hand von Noten.... Mathematische Algorithmen: Zerlegung einer natürlichen Zahl in Primfaktoren. Finden des größten gemeinsamen Teilers (ggt). Lösen von Ax=y per Gauss-Eliminationsverfahren. Lösen von f(x)=0 per Newton-Verfahren. Prof. Dr. Nikolaus Wulff Informatik I 3

4 Entwicklung des ggt Algorithmus Zur Illustration wird ein Algorithmus zur Bestimmung des größten gemeinsamen Teilers ggt entwickelt. Für Zahlen a, b N gilt die Beziehung ggt a,b kgv a,b =a b Der Algorithmus wurde bereits um ~330 v.chr. beschrieben: Wenn b aber a nicht misst, und man nimmt bei a, b abwechselnd immer das Kleinere vom Größeren weg, dann muss (schließlich) eine Zahl übrig bleiben, die die Vorangehende misst... Prof. Dr. Nikolaus Wulff Informatik I 4

5 Euklidischer Algorithmus Gesucht ist der ggt(a,b) für a, b N 0. Setze m=a und n=b. 1. Falls m < n vertausche m und n. 2. Berechne r = m n. 3. Setze m=n, n=r. 4. Falls r>0 ist, so mache weiter bei Die Zahl m ist der gesuchte ggt(a,b). Schleife Dies ist eine exakte, deterministische Vorschrift. Da m und n immer kleiner werden, muss der Algorithmus nach endlich vielen Schritten terminieren. Prof. Dr. Nikolaus Wulff Informatik I 5

6 Flussdiagramm Algorithmen lassen sich mittels Flussdiagrammen grafisch visualisieren. Sie bestehen aus einfachen elementaren Symbolen: Anfang: Hier beginnt die Ausführung Anweisung/Elementaraktion Der Pfeil zeigt auf nächste Anweisung Test: Im Karo steht eine Bedingung (if) Ende: Hier endet die Ausführung Prof. Dr. Nikolaus Wulff Informatik I 6

7 Flussdiagramm des ggt Start 0 m := a n := b T 1 m < n F 4 T r > 0 F 5 1 r := m m := n n := r r := m - n 2 3 m := n n := r Ziel Prof. Dr. Nikolaus Wulff Informatik I 7

8 C Implementierung des ggt int ggt(int a, int b) { int r, m = a, n = b; do { if (m < n) { r = m; m = n; n = r; } r = m - n; m = n; n = r; } while(r>0); return m; } Prof. Dr. Nikolaus Wulff Informatik I 8

9 Ablauf einer ggt Berechnung Ablauf der Berechnung vom ggt(64,24): r 1 = = 40, m 1 = 40, n 1 = 24 r 2 = = 16, m 2 = 24, n 2 = 16 r 3 = = 8, m 3 = 16, n 3 = 8 r 4 = 16 8 = 8, m 4 = 8, n 4 = 8 r 5 = 8 8 = 0, m 5 = 8, n 5 = 0 Nach fünf Iterationen ist das Ergebnis 8 ermittelt. Ist dies die beste Methode um den ggt zu berechnen? Problematisch sind die vielen Subtraktionen bei großen Unterschieden zwischen a und b. Prof. Dr. Nikolaus Wulff Informatik I 9

10 Optimierung des ggt Algorithmus Eine Analyse des größten gemeinsamen Teilers zeigt: ggt(a, b) = ggt(b, a) und ggt(a, b) = ggt(a, a-b) Um z.b. den ggt(10,2) zu berechnen muss 5 mal die 2 abgezogen werden: ggt(10,2) = ggt(8,2) = ggt(6,2) = ggt(4,2) = ggt(2,2) = 2 Der ggt kann wesentlich schneller berechnet werden, wenn anstatt mehrfacher Subtraktionen eine Division mit Rest erfolgt, d.h. für a=qb+r: ggt(a, b) = ggt(qb+r, b) = ggt(b, r) Die Modulo a/b=q mod r Variante benötigt weniger Schritte, da q Subtraktionen eingespart werden. Prof. Dr. Nikolaus Wulff Informatik I 10

11 Optimierter ggt Algorithmus Gesucht ist der ggt(a,b) für 0. Setze m=a und n=b. 1. Falls m < n vertausche m und n. 2. Berechne r = m mod n. 3. Setze m=n, n=r. a, b N 4. Falls r>0 ist, so mache weiter bei Die Zahl m ist der gesuchte ggt(a,b). Die Modulo Operation ist leicht mit einem Rechner auszuführen und der Algorithmus terminiert auch bei großen Unterschieden zwischen a und b wesentlich schneller. Eine kleine Änderung mit großer Wirkung! Prof. Dr. Nikolaus Wulff Informatik I 11

12 ggt mit Modulo Operation int ggt(int a, int b) { int r, m = a, n = b; do { if (m < n) { r = m; m = n; n = r; } r = m % n; m = n; n = r; } while(r>0); return m; } Prof. Dr. Nikolaus Wulff Informatik I 12

13 Optimierte ggt Implementierung int ggt(int m, int n) { int r; do { if (m < n) { r = m, m = n, n = r; } r = m % n; m = n; n = r; } while(r>0); return m; } Da C Kopien von a und b verwendet, kann das Kopieren von a nach m und b nach n entfallen... Prof. Dr. Nikolaus Wulff Informatik I 13

14 Zahlen raten Aufgabe ist es, eine bestimmte ganze Zahl n aus einer endlichen Menge zu erraten. M =[a, b] N Geantwortet wird immer nur mit die Zahl n ist kleiner, größer oder gleich einer gegebenen Zahl z. Gesucht ist die beste Strategie, um die Zahl n möglichst schnell zu finden. Ein deterministisches Verfahren, das immer zum Erfolg führt, ist bei z=a zu beginnen und dann immer z um eins zu erhöhen bis n gefunden wurde, dies wird spätesten nach m=(b-a) Versuchen der Fall sein. Dies ist die dümmste und ungünstigste Variante und benötigt im Mittel m/2 Versuche. Prof. Dr. Nikolaus Wulff Informatik I 14

15 Intervallhalbierung Effizienter ist das Verfahren der Intervallhalbierung: 1. Wähle als gesuchte Zahl z =(b+a)/2. 2. Falls z < n setze als neue untere Intervallgrenze a = z und gehe zu Fall z > n setze als neue obere Intervallgrenze b = z und gehe zu Es gilt z = n und die gesuchte Zahl ist gefunden. Um die m-elementige Menge M auf 1 zu reduzieren sind maximal m < 2 k Operationen notwendig. D.h. dieser Algorithmus hat eine Laufzeit ~ log 2 m. Prof. Dr. Nikolaus Wulff Informatik I 15

16 Flussdiagramm Intervallhalbierung Start 1 a := z z := (a+b)/2 b := z 2 3 T T F z < n z > n F 4 Ziel Prof. Dr. Nikolaus Wulff Informatik I 16

17 Nullstellensuche Ein weiteres Beispiel für einen einfachen Algorithmus ist das Bisektionsverfahren zur Suche der Nullstelle einer stetigen Funktion f :R R auf einem endlichen Intervall I =[a,b] R mit f a f b 0. Letztere Bedingung garantiert, unter Anwendung des Zwischenwertsatzes für stetige Funktionen, dass mindestens eine Nullstelle [a, b] existieren muss mit f =0. Das eben illustrierte Verfahren auf einer diskreten Menge M lässt sich direkt auf ein Intervall übertragen. Durch fortgesetzte Halbierung des Intervalls I wird die gesuchte Nullstelle immer enger eingegrenzt. Prof. Dr. Nikolaus Wulff Informatik I 17

18 Das Bisektionsverfahren Analog zum Zahlenraten lautet die Anweisung für das Bisektionsverfahren generiere eine Folge {x k }: 1. Wähle als gesuchte Zahl x =(b+a)/2. 2. Falls f(x) < 0 setze als neue untere Intervallgrenze a = x und gehe zu Fall f(x) > 0 setze als neue obere Intervallgrenze b = x und gehe zu Die Bedingung f(z) = 0 wird allerdings kaum zu erfüllen sein. Statt dessen wird gesetzt: Falls das verbleibende Fehlerintervall (b-a)/2 größer ist, als eine vorgegebene Fehlerschranke, so gehe zu Schritt Das aktuelle x k approximiert die gesuchte Nullstelle genau genug, d.h x k Prof. Dr. Nikolaus Wulff Informatik I 18

19 Das Bisektionsverfahren Quelle: X 2 X 4 X 3 X 1 Das Bisektionsverfahren: Durch fortgesetzte Intervallhalbierung entsteht eine konvergente Folge {x k } mit lim k x k = und f =0 Prof. Dr. Nikolaus Wulff Informatik I 19

20 Konvergenzverhalten Nach der ersten Iteration ist x 1 =(a+b)/2 und der maximale Fehler 1 = x 1 b a /2. Nach der k-ten Iteration ist der Fehler k bedingt durch die Intervallschachtelung abschätzbar zu: k = x k b a /2 k D. h. die Zahlen {x k } definieren eine konvergente Cauchy-Folge: Zu beliebigem > 0 gibt es mit m :=log 2 b a / ein n:= m 1 N so dass k = x k k n Prof. Dr. Nikolaus Wulff Informatik I 20

21 Algorithmen entwickeln Die Lösung eines Problems zu finden ist nicht einfach und auch nicht systematisch standardisiert. Algorithmen zu entwickeln ist eine Kunst. Algorithmen und Daten werden im Rechner immer als Binärfolgen codiert. Der Algorithmus muss i. A. immer mathematisch definiert und formal auf seine Korrektheit überprüft werden. Hierzu werden häufig Beweise durch vollständige Induktion, Beweise durch Widerspruch oder aber im mathematischen Kontext Approximationen durch konvergente Cauchy-Folgen verwendet. Prof. Dr. Nikolaus Wulff Informatik I 21

22 Zusammenfassung Um einen Algorithmus zu entwickeln bedarf es zunächst einer Lösungsidee. Das Auffinden dieser Lösungsidee ist meist der schwierigste Teil der Arbeit und ein kreativer Akt. Sodann muss sichergestellt werden, dass diese Idee (mathematisch, formal) korrekt ist. Erst als letzter Schritt wird die Idee des Algorithmus mit Hilfe einer konkreten Programmiersprache implementiert, ausreichend getestet und auf Fehler untersucht. Prof. Dr. Nikolaus Wulff Informatik I 22

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Algorithmen und Datenstrukturen 1. EINLEITUNG. Algorithmen und Datenstrukturen - Ma5hias Thimm 1

Algorithmen und Datenstrukturen 1. EINLEITUNG. Algorithmen und Datenstrukturen - Ma5hias Thimm 1 Algorithmen und Datenstrukturen 1. EINLEITUNG Algorithmen und Datenstrukturen - Ma5hias Thimm (thimm@uni-koblenz.de) 1 Allgemeines Einleitung Zu den Begriffen: Algorithmen und Datenstrukturen systematische

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Fortgeschrittene Rekursion Prof. Dr. Nikolaus Wulff Problematische Rekursion Mittels Rekursion lassen sich Spezifikationen recht elegant und einfach implementieren. Leider

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I LOOP Programme, rekursive Funktionen und der Turm von Hanoi Prof. Dr. Nikolaus Wulff Berechenbarkeit Mitte des 20. Jahrhunderts beantworteten Pioniere, wie Alan M. Turing

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Student: Alexander Carls Matrikelnummer: Aufgabe: Beschreibung des euklidischen Algorithmus Datum:

Student: Alexander Carls Matrikelnummer: Aufgabe: Beschreibung des euklidischen Algorithmus Datum: Berufsakademie Stuttgart / Außenstelle Horb Studienbereich Technik Studiengang Informationstechnik Kurs IT2006, 2.Semester Dozent: Olaf Herden Student: Alexander Carls Matrikelnummer: 166270 Aufgabe: Beschreibung

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 28 Einstieg in die Informatik mit Java Algorithmen Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 28 1 Überblick 2 Algorithmus 3 Grundalgorithmen in Java 4 Flussdiagramme

Mehr

Komplexität von Algorithmen

Komplexität von Algorithmen Komplexität von Algorithmen Prof. Dr. Christian Böhm WS 07/08 in Zusammenarbeit mit Gefei Zhang http://www.dbs.informatik.uni-muenchen.de/lehre/nfinfosw Ressourcenbedarf - Größenordnungen Prozesse verbrauchen

Mehr

Einführung in die Informatik 1

Einführung in die Informatik 1 Einführung in die Informatik 1 Algorithmen und algorithmische Sprachkonzepte Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag,

Mehr

2. Hausübung Algorithmen und Datenstrukturen

2. Hausübung Algorithmen und Datenstrukturen Prof. Dr. Gerd Stumme, Folke Eisterlehner, Dominik Benz Fachgebiet Wissensverarbeitung 7.4.009. Hausübung Algorithmen und Datenstrukturen Sommersemester 009 Abgabetermin: Montag, 04.05.009, 10:00 Uhr 1

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Vorlesung Diskrete Strukturen Die natürlichen Zahlen

Vorlesung Diskrete Strukturen Die natürlichen Zahlen Vorlesung Diskrete Strukturen Die natürlichen Zahlen Bernhard Ganter WS 2009/10 Alles ist Zahl? Wenn in der modernen Mathematik alles auf Mengen aufgebaut ist, woher kommen dann die Zahlen? Sind Zahlen

Mehr

Kapitel III Ringe und Körper

Kapitel III Ringe und Körper Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem

Mehr

Computeralgebra in der Lehre am Beispiel Kryptografie

Computeralgebra in der Lehre am Beispiel Kryptografie Kryptografie Grundlagen RSA KASH Computeralgebra in der Lehre am Beispiel Kryptografie Institut für Mathematik Technische Universität Berlin Kryptografie Grundlagen RSA KASH Überblick Kryptografie mit

Mehr

Algorithmen & Programmierung. Aspekte von Algorithmen

Algorithmen & Programmierung. Aspekte von Algorithmen Algorithmen & Programmierung Aspekte von Algorithmen Algorithmus (Wdh.) Aufgabe Beschreibung einer Abfolge von Schritten zur Lösung eines Problems in einer beliebigen Sprache Charakteristika eines Algorithmus

Mehr

Entwurf von Algorithmen - Kontrollstrukturen

Entwurf von Algorithmen - Kontrollstrukturen Entwurf von Algorithmen - Kontrollstrukturen Eine wichtige Phase in der Entwicklung von Computerprogrammen ist der Entwurf von Algorithmen. Dieser Arbeitsschritt vor dem Schreiben des Programmes in einer

Mehr

Bsp. Euklidischer Algorithmus

Bsp. Euklidischer Algorithmus Bsp. Euklidischer Algorithmus Bsp: Berechne ggt(93, 42) mittels EUKLID. 93 2 42 = 9 42 4 9 = 6 9 1 6 = 3 6 2 3 = 0 D.h. ggt(93, 42) = 3. Durch Rücksubstitution erhalten wir die Bézout-Koeffizienten x,

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Funktionale Programmierung. Funktionale Programmierung: Vorlesungsüberblick. Eigenschaften rein funktionaler Programmierung

Funktionale Programmierung. Funktionale Programmierung: Vorlesungsüberblick. Eigenschaften rein funktionaler Programmierung Funktionale Programmierung 1 Funktionale Programmierung: Vorlesungsüberblick 1. Funktionale Programmierung Prinzipien funktionaler Programmierung Funktionale Programmierung in prozeduralen Sprachen Rekursive

Mehr

VBA-Programmierung: Zusammenfassung

VBA-Programmierung: Zusammenfassung VBA-Programmierung: Zusammenfassung Programmiersprachen (Definition, Einordnung VBA) Softwareentwicklung-Phasen: 1. Spezifikation 2. Entwurf 3. Implementierung Datentypen (einfach, zusammengesetzt) Programmablaufsteuerung

Mehr

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung)

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) Wintersemester 2007/08 Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) (Vorlesung) Prof. Dr. Günter Rudolph Fakultät für Informatik Lehrstuhl

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

3 Nichtlineare Gleichungssysteme

3 Nichtlineare Gleichungssysteme 3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )

Mehr

Teil 2 - Softwaretechnik. Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2. Übersicht. Softwaretechnik

Teil 2 - Softwaretechnik. Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2. Übersicht. Softwaretechnik Grundlagen der Programmierung 1 Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2 Softwaretechnik Prof. Dr. O. Drobnik Professur Architektur und Betrieb verteilter Systeme Institut für

Mehr

Beispiel: Primelemente in den Gaußschen Zahlen

Beispiel: Primelemente in den Gaußschen Zahlen Beispiel: Primelemente in den Gaußschen Zahlen Satz Primelemente in Z[i] Für die Primelemente π Z[i] gilt bis auf Assoziiertheit 1 N(π) = p für ein p P oder 2 π = p für ein p P mit p x 2 + y 2 für (x,

Mehr

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975)

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975) Dass das Problem, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen zu den wichtigsten und nützlichsten der ganzen Arithmetik gehört und den Fleiss

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens 1 Organisatorisches Freitag, 05. Mai 2006: keine Vorlesung! aber Praktikum von 08.00 11.30 Uhr (Gruppen E, F, G, H; Vortestat für Prototyp)

Mehr

Java-Programmierung mit NetBeans

Java-Programmierung mit NetBeans Java-Programmierung mit NetBeans Steuerstrukturen Dr. Henry Herper Otto-von-Guericke-Universität Magdeburg - WS 2012/13 Steuerstrukturen Steuerstrukturen Verzweigungen Alternativen abweisende nichtabweisende

Mehr

Kanonische Primfaktorzerlegung

Kanonische Primfaktorzerlegung Mathematik I für Informatiker Zahlen p. 1 Kanonische Primfaktorzerlegung Jede natürliche Zahl n kann auf eindeutige Weise in der Form n = p α 1 1 pα 2 2... pα k k geschrieben werden, wobei k N 0, α i N

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Programmieren Formulierung eines Algorithmus in einer Programmiersprache

Programmieren Formulierung eines Algorithmus in einer Programmiersprache Zum Titel der Vorlesung: Programmieren Formulierung eines in einer Programmiersprache Beschreibung einer Vorgehensweise, wie man zu jedem aus einer Klasse gleichartiger Probleme eine Lösung findet Beispiel:

Mehr

8 Diskrete Optimierung

8 Diskrete Optimierung 8 Diskrete Optimierung Definition 8.1. Ein Graph G ist ein Paar (V (G), E(G)) besteh aus einer lichen Menge V (G) von Knoten (oder Ecken) und einer Menge E(G) ( ) V (G) 2 von Kanten. Die Ordnung n(g) von

Mehr

Kanonische Primfaktorzerlegung

Kanonische Primfaktorzerlegung Kanonische Primfaktorzerlegung Jede natürliche Zahl Form kann auf eindeutige Weise in der geschrieben werden, wobei, für und Primzahlen sind. Dies ist die kanonische Primfaktorzerlegung von. Mathematik

Mehr

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz Tobias Kraushaar Kaiserstr. 178 44143 Dortmund Matr.- Nr.: 122964 Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz 1. EINLEITUNG... 2 2. HAUPTTEIL... 3 2.1. Der

Mehr

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009

Das RSA-Verfahren. Armin Litzel. Proseminar Kryptographische Protokolle SS 2009 Das RSA-Verfahren Armin Litzel Proseminar Kryptographische Protokolle SS 2009 1 Einleitung RSA steht für die drei Namen Ronald L. Rivest, Adi Shamir und Leonard Adleman und bezeichnet ein von diesen Personen

Mehr

Algorithmik II. SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen.

Algorithmik II. SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen. Algorithmik II SS 2003 Prof. Dr. H. Stoyan Lehrstuhl für Informatik 8 ( Künstliche Intelligenz) Email: stoyan@informatik.uni-erlangen.de Homepage der Vorlesung Vorbemerkungen I http://www8.informatik.uni-erlangen.de/immd8

Mehr

Primzahlzertifikat von Pratt

Primzahlzertifikat von Pratt Primzahlzertifikat von Pratt Daniela Steidl TU München 17. 04. 2008 Primzahltests in der Informatik "Dass das Problem, die Primzahlen von den Zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren

Mehr

Einführung in die Java- Programmierung

Einführung in die Java- Programmierung Einführung in die Java- Programmierung Dr. Volker Riediger Tassilo Horn riediger horn@uni-koblenz.de WiSe 2012/13 1 Rückblick Datentypen (int, long, double, boolean, String) Variablen und Variablendeklarationen

Mehr

Lösungen zu Kapitel 7

Lösungen zu Kapitel 7 Lösungen zu Kapitel 7 Lösung zu Aufgabe 1: Nach Definition 7.1 ist eine Verknüpfung auf der Menge H durch eine Abbildung : H H H definiert. Gilt H = {a 1,..., a m }, so wird eine Verknüpfung auch vollständig

Mehr

Nichtlineare Gleichungen

Nichtlineare Gleichungen Nichtlineare Gleichungen Ein wichtiges Problem in der Praxis ist die Bestimmung einer Lösung ξ der Gleichung f(x) =, () d.h. das Aufsuchen einer Nullstelle ξ einer (nicht notwendig linearen) Funktion f.

Mehr

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 1 Primzahltest 1.1 Motivation Primzahlen spielen bei zahlreichen Algorithmen, die Methoden aus der Zahlen-Theorie verwenden, eine zentrale Rolle. Hierzu

Mehr

Beispiel: Primelemente in den Gaußschen Zahlen

Beispiel: Primelemente in den Gaußschen Zahlen Beispiel: Primelemente in den Gaußschen Zahlen Satz Primelemente in Z[i] Für die Primelemente π Z[i] gilt bis auf Assoziiertheit 1 N(π) = p für ein p P oder 2 π = p für ein p P mit p x 2 + y 2 für (x,

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Teilbarkeit von natürlichen Zahlen

Teilbarkeit von natürlichen Zahlen Teilbarkeit von natürlichen Zahlen Teilbarkeitsregeln: Die Teilbarkeitsregeln beruhen alle darauf, dass man von einer Zahl einen grossen Teil wegschneiden kann, von dem man weiss, dass er sicher durch

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015

Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015 Technische Universität Dortmund Informatik VII (Graphische Systeme) Prof. Dr. Heinrich Müller; Dr. Frank Weichert 7. September 2015 Übungsaufgaben zum Vorkurs Informatik Wintersemester 2015/2016 Teil I

Mehr

Erweiterter Euklidischer Algorithmus

Erweiterter Euklidischer Algorithmus Erweiterter Euklidischer Algorithmus Algorithmus ERWEITERTER EUKLIDISCHER ALG. (EEA) EINGABE: a, b N 1 If (b = 0) then return (a, 1, 0); 2 (d, x, y) EEA(b, a mod b); 3 (d, x, y) (d, y, x a b y); AUSGABE:

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr

Rechenoperationen mit Folgen. Rekursion und Iteration.

Rechenoperationen mit Folgen. Rekursion und Iteration. Rechenoperationen mit Folgen. Die Menge aller Folgen in V bildet einen Vektorraum, V N, für den die Addition und skalare Multiplikation wie folgt definiert sind. (a n ) n N + (b n ) n N := (a n + b n )

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Mathematische Maschinen

Mathematische Maschinen Mathematische Maschinen Ziel: Entwicklung eines allgemeinen Schemas zur Beschreibung von (mathematischen) Maschinen zur Ausführung von Algorithmen (hier: (partiellen) Berechnungsverfahren). Mathematische

Mehr

SFZ FN Sj. 12/13. Python 4 Grundlagen. W.Seyboldt. Python, SFZ FN, Sj 12/13

SFZ FN Sj. 12/13. Python 4 Grundlagen. W.Seyboldt. Python, SFZ FN, Sj 12/13 SFZ FN Sj. 12/13 Python 4 Grundlagen 1 Python, SFZ FN, Sj 12/13 Python Methoden: def teilt(t, n): ''' Kommentar. ''' Berechnungen return var Statt der Variable var bei Return kann auch eine Methode oder

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Kapitel 3. Konvergenz von Folgen und Reihen

Kapitel 3. Konvergenz von Folgen und Reihen Kapitel 3. Konvergenz von Folgen und Reihen 3.1. Normierte Vektorräume Definition: Sei V ein Vektorraum (oder linearer Raum) über (dem Körper) R. Eine Abbildung : V [0, ) heißt Norm auf V, falls die folgenden

Mehr

Kapitel 7: Formaler Datenbankentwurf

Kapitel 7: Formaler Datenbankentwurf 7. Formaler Datenbankentwurf Seite 1 Kapitel 7: Formaler Datenbankentwurf Die Schwierigkeiten der konzeptuellen Modellierung sind zu einem großen Teil dadurch begründet, dass sich die relevanten Strukturen

Mehr

Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme. Faktorisierung. Stefan Büttcher stefan@buettcher.org

Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme. Faktorisierung. Stefan Büttcher stefan@buettcher.org Ferienakademie 2001: Kryptographie und Sicherheit offener Systeme Faktorisierung Stefan Büttcher stefan@buettcher.org 1 Definition. (RSA-Problem) Gegeben: Ò ÔÕ, ein RSA-Modul mit unbekannten Primfaktoren

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

p Z >1 ist Primzahl, wenn gilt Euklid:

p Z >1 ist Primzahl, wenn gilt Euklid: Grundlegende Tatsachen über den Ring Z Z; +, ist ein nullteilerfreier Ring Divisionseigenschaft a Z, b Z > q, r Z : a = b q + r, r < b Arithmetik Grundlegende Tatsachen über den Ring Z Euklidischer Algorithmus

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

2. Algorithmenbegriff

2. Algorithmenbegriff 2. Algorithmenbegriff Keine Algorithmen: Anleitungen, Kochrezepte, Wegbeschreibungen,... Algorithmus: Berechnungsvorschrift, die angibt, wie durch Ausführung bestimmter Elementaroperationen aus Eingabegrößen

Mehr

3. Diskrete Mathematik

3. Diskrete Mathematik Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,

Mehr

Informatik 1. Teil 1 - Wintersemester 2012/2013. Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik

Informatik 1. Teil 1 - Wintersemester 2012/2013. Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik Informatik 1 Teil 1 - Wintersemester 2012/2013 Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik Dieser Foliensatz wurde z.t. von Herrn Prof. Grossmann übernommen 0. Rechner und Programmierung

Mehr

Schleifeninvarianten. Dezimal zu Binär

Schleifeninvarianten. Dezimal zu Binär Schleifeninvarianten Mit vollstandiger Induktion lasst sich auch die Korrektheit von Algorithmen nachweisen. Will man die Werte verfolgen, die die Variablen beim Ablauf eines Algorithmus annehmen, dann

Mehr

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12)

5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Technische Universität München Zentrum Mathematik PD Dr. hristian Karpfinger http://www.ma.tum.de/mathematik/g8vorkurs 5. Übung zum G8-Vorkurs Mathematik (WiSe 2011/12) Aufgabe 5.1: In einer Implementierung

Mehr

Informatik. Teil 1 Wintersemester 2011/2012. Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik

Informatik. Teil 1 Wintersemester 2011/2012. Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik Informatik Teil 1 Wintersemester 2011/2012 Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik Dieser Foliensatz wurde z.t. von Herrn Prof. Grossmann übernommen Inhalt 1. Algorithmen -

Mehr

Form der Äquivalenzklassen

Form der Äquivalenzklassen Form der Äquivalenzklassen Anmerkung: Es gilt a = a ± m = a ± 2m =... = a + km mod m für alle k Z. Wir schreiben auch {x Z x = a + mk, k Z} = a + mz. Es gibt m verschiedene Äquivalenzklassen modulo m:

Mehr

Einführung in die Programmierung

Einführung in die Programmierung : Inhalt Einführung in die Programmierung Wintersemester 2008/09 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering Fakultät für Informatik TU Dortmund - mit / ohne Parameter - mit / ohne Rückgabewerte

Mehr

Prof. Dr. Heinrich Müller, Dr. Frank Weichert 10. September 2012

Prof. Dr. Heinrich Müller, Dr. Frank Weichert 10. September 2012 Technische Universität Dortmund Informatik VII (Graphische Systeme) Prof. Dr. Heinrich Müller, Dr. Frank Weichert 10. September 2012 Übungsaufgaben zum Vorkurs Informatik Wintersemester 2012/2013 Teil

Mehr

Kostenmaße. F3 03/04 p.188/395

Kostenmaße. F3 03/04 p.188/395 Kostenmaße Bei der TM nur ein Kostenmaß: Ein Schritt (Konfigurationsübergang) kostet eine Zeiteinheit; eine Bandzelle kostet eine Platzeinheit. Bei der RAM zwei Kostenmaße: uniformes Kostenmaß: (wie oben);

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Ganzzahlige Division mit Rest

Ganzzahlige Division mit Rest Modulare Arithmetik Slide 1 Ganzzahlige Division mit Rest Für a,b Æ mit a b gibt es stets eine Zerlegung von a der Form a = q b+r mit 0 r b 1. Hierbei gilt q = a b (salopp formuliert: b passt q-mal in

Mehr

Beispiellösungen zu Blatt 111

Beispiellösungen zu Blatt 111 µ κ Mathematisches Institut Georg-August-Universität Göttingen Beispiellösungen zu Blatt 111 Aufgabe 1 Ludwigshafen hat einen Bahnhof in Dreiecksform. Markus, Sabine und Wilhelm beobachten den Zugverkehr

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Kapitel 3 Elementare Zahletheorie

Kapitel 3 Elementare Zahletheorie Kapitel 3 Elementare Zahletheorie 89 Kapitel 3.1 Ganze Zahlen, Gruppen und Ringe 90 Die ganzen Zahlen Menge der ganzen Zahlen Z={..., 3, 2, 1,0,1,2,3,...} Es gibt zwei Operationen Addition: Z Z Z, (a,b)

Mehr

Folgen und Funktionen in der Mathematik

Folgen und Funktionen in der Mathematik Folgen und Funktionen in der Mathematik Anhand von einigen exemplarischen Beispielen soll die Implementierung von mathematischen Algorithmen in C/C++ gezeigt werden: Reelle Funktionen in C/C++ Diese wird

Mehr

7. Musterlösung zu Mathematik für Informatiker I, WS 2003/04

7. Musterlösung zu Mathematik für Informatiker I, WS 2003/04 7. Musterlösung zu Mathematik für Informatiker I, WS 2003/04 KATHRIN TOFALL Aufgabe 7. (Symmetrischer EEA). (9 Punkte) Ziel dieser Aufgabe ist es zu zeigen, was man gewinnt, wenn man bei der Division mit

Mehr

Kapitel 2: Formale Sprachen Kontextfreie Sprachen. reguläre Grammatiken/Sprachen. kontextfreie Grammatiken/Sprachen

Kapitel 2: Formale Sprachen Kontextfreie Sprachen. reguläre Grammatiken/Sprachen. kontextfreie Grammatiken/Sprachen reguläre Grammatiken/prachen Beschreibung für Bezeichner in Programmiersprachen Beschreibung für wild cards in kriptsprachen (/* reguläre Ausdrücke */)?; [a-z]; * kontextfreie Grammatiken/prachen Beschreibung

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Vorlesung Analysis I / Lehramt

Vorlesung Analysis I / Lehramt Vorlesung Analysis I / Lehramt TU Dortmund, Wintersemester 2012/ 13 Winfried Kaballo Die Vorlesung Analysis I für Lehramtsstudiengänge im Wintersemester 2012/13 an der TU Dortmund basiert auf meinem Buch

Mehr

Technische Universität München SS 2006 Fakultät für Informatik 12. Oktober 2006 Prof. Dr. A. Knoll. Aufgabe 1 Transferfragen (Lösungsvorschlag)

Technische Universität München SS 2006 Fakultät für Informatik 12. Oktober 2006 Prof. Dr. A. Knoll. Aufgabe 1 Transferfragen (Lösungsvorschlag) Technische Universität München SS 2006 Fakultät für Informatik 12. Oktober 2006 Prof. Dr. A. Knoll Lösungsvorschläge der Klausur zu Einführung in die Informatik II Aufgabe 1 Transferfragen (Lösungsvorschlag)

Mehr

MATHEMATISCHE ANALYSE VON ALGORITHMEN

MATHEMATISCHE ANALYSE VON ALGORITHMEN MATHEMATISCHE ANALYSE VON ALGORITHMEN Michael Drmota Institut für Diskrete Mathematik und Geometrie, TU Wien michael.drmota@tuwien.ac.at www.dmg.tuwien.ac.at/drmota/ Ringvorlesung SS 2008, TU Wien Algorithmus

Mehr

Kontrollstrukturen, Pseudocode und Modulo-Rechnung

Kontrollstrukturen, Pseudocode und Modulo-Rechnung Kontrollstrukturen, Pseudocode und Modulo-Rechnung CoMa-Übung III TU Berlin 29.10.2012 CoMa-Übung III (TU Berlin) Kontrollstrukturen, Pseudocode und Modulo-Rechnung 29.10.2012 1 / 1 Themen der Übung 1

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

10. Teilbarkeit in Ringen

10. Teilbarkeit in Ringen 70 Andreas Gathmann 10. Teilbarkeit in Ringen Ein wichtiges Konzept in Ringen, das ihr für den Fall des Ringes Z bereits aus der Schule kennt, ist das von Teilern also der Frage, wann und wie man ein Ringelement

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Berechenbarkeit und Komplexität Prof. Dr. Nikolaus Wulff Berechenbarkeit Im Rahmen der Turingmaschine fiel zum ersten Mal der Begriff Berechenbarkeit. Ein Funktion f heißt

Mehr

Relationen und DAGs, starker Zusammenhang

Relationen und DAGs, starker Zusammenhang Relationen und DAGs, starker Zusammenhang Anmerkung: Sei D = (V, E). Dann ist A V V eine Relation auf V. Sei andererseits R S S eine Relation auf S. Dann definiert D = (S, R) einen DAG. D.h. DAGs sind

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Gliederung. Tutorium zur Vorlesung. Gliederung. Gliederung. 1. Gliederung der Informatik. 1. Gliederung der Informatik. 1. Gliederung der Informatik

Gliederung. Tutorium zur Vorlesung. Gliederung. Gliederung. 1. Gliederung der Informatik. 1. Gliederung der Informatik. 1. Gliederung der Informatik Informatik I WS 2012/13 Tutorium zur Vorlesung 1. Alexander Zietlow zietlow@informatik.uni-tuebingen.de Wilhelm-Schickard-Institut für Informatik Eberhard Karls Universität Tübingen 11.02.2013 1. 2. 1.

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Ausarbeitung zum Thema Approximationsalgorithmen im Rahmen des Fachseminars 24. Juli 2009 Robert Bahmann robert.bahmann@gmail.com FH Wiesbaden Erstellt von: Robert Bahmann Zuletzt berarbeitet von: Robert

Mehr

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9

4. ggt und kgv. Chr.Nelius: Zahlentheorie (SS 2007) 9 Chr.Nelius: Zahlentheorie (SS 2007) 9 4. ggt und kgv (4.1) DEF: Eine ganze Zahl g heißt größter gemeinsamer Teiler (ggt) zweier ganzer Zahlen a und b, wenn gilt: GGT 0 ) g 0 GGT 1 ) g a und g b GGT 2 )

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Große Übung #1 Christian Rieck, Arne Schmidt 26.10.2017 Organisatorisches Christian Rieck, Arne Schmidt Große Übung 2 Homepage Aktuelle Informationen, Hausaufgaben, Slides

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests Probabilistische Primzahltests Daniel Tanke 11. Dezember 2007 In dieser Arbeit wird ein Verfahren vorgestellt, mit welchem man relativ schnell testen kann, ob eine ganze Zahl eine Primzahl ist. Für einen

Mehr

WIEDERHOLUNG (BIS ZU BLATT 7)

WIEDERHOLUNG (BIS ZU BLATT 7) Universität Bielefeld SS 2016 WIEDERHOLUNG (BIS ZU BLATT 7) JULIA SAUTER Wir wiederholen, welche Aufgabentypen bis zu diesem Zeitpunkt behandelt worden sind. Auf der nächsten Seite können Sie sich selber

Mehr

Übung Grundlagen der Programmierung. Übung 03: Schleifen. Testplan Testergebnisse

Übung Grundlagen der Programmierung. Übung 03: Schleifen. Testplan Testergebnisse Übung 03: Schleifen Abgabetermin: xx.xx.xxxx Name: Matrikelnummer: Gruppe: G1 (Prähofer) G2 (Prähofer) G3 (Wolfinger) Aufgabe Punkte gelöst abzugeben schriftlich abzugeben elektronisch Aufgabe 03.1 12

Mehr