Monte Carlo Methoden

Größe: px
Ab Seite anzeigen:

Download "Monte Carlo Methoden"

Transkript

1 Monte Carlo Methoden Lernverfahren zur Berechnung von Wertefunktionen und Policies werden vorgestellt. Vollständige Kenntnis der Dynamik wird nicht vorausgesetzt (im Gegensatz zu den Verfahren der DP). Für Monte Carlo Methoden werden Erfahrungen in Form von Beispielen (Folgen von Zuständen, Aktionen und Rewards) gebraucht. Monte Carlo Methoden basieren auf Mittelung des Returns erzielt für die vorhandenen Beispiele. Verfahren werden hier für episodische Aufgaben formuliert, d.h. Erfahrungen werden in einzelnen Episoden gesammelt, alle Episoden terminieren nach endlicher Zeit (unabhängig von den gewählten Aktionen). Monte Carlo Methoden sind inkrementell (im Sinne einzelner Episoden). F. Schwenker Reinforcement Learning 70

2 MC Policy Bestimmung MC Methoden zur Berechnung von V π für eine Policy π gesucht. V π (s) ist der erwartete (u.u. diskontierte) Return (π folgend) ausgehend vom Zustand s. Einfacher Weg um V π (s) zu aus Beispielen zu schätzen ist, die in den beobachteten Beispielen erzielen Returns zu mitteln. Falls nur genügend viele Beispiele vorliegen, wird der Mittelwert gegen den Erwartungswert konvergieren. Angenommen, wir wollen V π (s) schätzen, gegeben sei die Policy π und eine Menge von einzelnen Episoden, in welchen der Zustand s vorkommt. Ein Vorkommen von s heißt ein visit von s; in einer Episode heißt das erste Vorkommen auch first visit. Every visit MC Methoden: Mittelung der Returns über alle Visits von s. First visit MC Methoden: Mittelung der Returns ausgehend vom first visit in jeder Episode. Wir benutzen first visit MC Methoden. F. Schwenker Reinforcement Learning 71

3 First visit MC zur Schätzung von V π 1. Initalize: π := policy to be evaluated Returns(s) := for all s S 2. Repeat forever: Generate an episode using π For each s appearing in the episode: R := return following the first occurrence of s Returns(s) := Returns(s) R V (s) := mean(returns(s)) F. Schwenker Reinforcement Learning 72

4 MC Schätzung von Aktion Werten Falls die Umgebung bekannt ist (d.h. R a ss, P a ss ) so ist die Kenntnis der Wertefunktion V π ausrechend um eine Policy zu bestimmen (beste Kombination aus Reward und nächstem Zustand bestimmen). Falls das Modell nicht bekannt ist, müssen Schätzung über die Werte der Aktionen durchgeführt werden. Hauptziel ist es also Q zu bestimmen. Müssen dazu den Wert von Aktionen Q π (s, a) bestimmen. Methoden hierfür sind dieselben wie bei der Evaluation von V π (s) Problem: Viele der Paare (s, a) werden nie besucht. Bei einer deterministische Policy wir genau eine Aktion a im Zustand s ausgeführt (a = π(s)), sonst wird kein Zustands-Aktions-Paare besucht. Idee: Exploring Starts (ES), d.h. zu Beginn einer Episode wird ein Paar (s, a) zufällig gewählt, hierfür sei prob(s, a) > 0 für alle (s, a). F. Schwenker Reinforcement Learning 73

5 MC Algorithmus mit ES 1. Initalize for all s S and a A Q(s, a) arbitrary π(s) arbitrary Returns(s, a) := 2. Repeat forever: a) Generate an episode using exploring starts and π b) For each pair (s, a) appearing in the episode: R := return following the first occurrence of (s, a) Returns(s, a) := Returns(s, a) R Q(s, a) := mean(returns(s, a)) c) For each s in the episode: π(s) := arg max a Q(s, a) F. Schwenker Reinforcement Learning 74

6 On Policy MC Methoden Wie können wir exploring starts vermeiden? Agent muss in der Lage sein, stets eine beliebige Aktionen a im Zustand s auszuwählen. Betrachten soft policies, d.h. mit π(s, a) > 0 für alle (s, a). Beispiel sind die ɛ-greedy Policies, d.h. überwiegend wird die Greedy- Aktion ausgeführt, aber mit Wahrscheinlichkeit ɛ eine Zufalls-Aktion Nicht-Greedy-Aktionen erhalten somit die Wahrscheinlichkeit ɛ/ A(s), die Greedy-Aktion die Wahrscheinlichkeit (1 ɛ + ɛ/ A(s) ) ɛ-greedy sind Beispiele für ɛ-soft Policies. Wir verwenden first-visit MC Methoden zur Schätzung der Aktions- Wertefunktion Q π, für eine gegebene Policy π. Mit Hilfe des Policy-Improvement-Theorems kann man zeigen, das jede ɛ-greedy Policy bzgl. Q π eine Verbesserung für ɛ-soft Policy π. F. Schwenker Reinforcement Learning 75

7 Sei nun π eine solche ɛ-greedy Policy und s S: Q π (s, π (s)) = a π (s, a)q π (s, a) = = ɛ A(s) ɛ A(s) ɛ A(s) = V π (s) a Q π (s, a) + (1 ɛ) max a Q π (s, a) Q π (s, a) + (1 ɛ) π(s, a) ɛ A(s) Q π (s, a) 1 ɛ a a Q π (s, a) ɛ Q π (s, a) + π(s, a)q π (s, a) A(s) a a a Nach dem Policy Improvement Theorem folgt dann V π (s) V π (s) F. Schwenker Reinforcement Learning 76

8 Ein ɛ-soft On-Policy MC Algorithmus 1. Initalize for all s S and a A Q(s, a) arbitrary; π(s) arbitrary ɛ soft policy; Returns(s, a) := 2. Repeat forever: a) Generate an episode using π b) For each pair (s, a) appearing in the episode: R := return following the first occurrence of (s, a) Returns(s, a) := Returns(s, a) R Q(s, a) := mean(returns(s, a)) c) For each s in the episode: a := arg max a Q(s, a) For all s A(s): { 1 ɛ + ɛ/ A(s) a = a π(s, a) := ɛ/ A(s) a a F. Schwenker Reinforcement Learning 77

9 Off Policy MC Methoden Wollen V π bzw. Q π für eine (deterministische) Policy schätzen, haben aber Episoden nach einer anderen (Soft) Policy π π generiert. Kann man die Wertefunktionen V π noch lernen? Episoden seinen nach π erzeugt. In der Menge der Episoden, betrachten wir jeweils den ersten Besuche eines Zustands s und die Folge aus Zuständen und Aktionen die s folgen. Seien p i (s) und p i (s) die Wahrscheinlichkeiten dieser Folgen für die Policies π und π (i nummeriert die Episode). R i (s) der beobachtete Return von Zustand s. V (s) als gewichtetes Mittel mit Gewichten w i = p i (s)/p i (s) ergibt V (s) = ns i=1 ns i=1 p i (s) p i (s)r i(s) p i (s) p i (s) F. Schwenker Reinforcement Learning 78

10 Nehmen an, dass falls π(s, a) > 0 gilt, so auch π (s, a). p i (s) und p i (s) sind i.a. unbekannt. Allerdings wird nur p i(s) p benötigt. i (s) Sei T i (s) die Teit bis zur Termination in der i-ten Episode für Zustand s, dann gilt p i (s) = T i (s) 1 k=1 π(s k, a k )P a k s k s k+1 also p i (s) p i (s) = Ti (s) 1 k=1 π(s k, a k )P a k s k s k+1 Ti = (s) 1 k=1 π (s k, a k )P a k s k s k+1 T i (s) 1 k=1 π(s k, a k ) π (s k, a k ) Damit sind die Gewichte von der Dynamik unabhängig, hängen nur von den beiden Policies ab. F. Schwenker Reinforcement Learning 79

11 1. Initalize for all s S and a A Ein Off-Policy MC Algorithmus π(s) arbitrary deterministic policy; N(s, a) := 0; D(s, a) := 0 2. Repeat forever: a) Select a policy π and generate episode: s 0, a 0, r 1, s 1, r 1, r 2,..., s T 1, a T 1, r T, s T b) τ := latest time at which a τ π(s τ ) c) For each pair (s, a) appearing in the episode at time τ or later: t := time of first occurence of (s, a) such that t τ w := T k=t+1 (π (s k, a k )) 1 N(s, a) := N(s, a) + wr t D(s, a) := D(s, a) + w Q(s, a) := N(s, a)/d(s, a) d) For each s in the episode: π(s) := arg max a Q(s, a) F. Schwenker Reinforcement Learning 80

12 Inkrementelles Lernen Inkrementelle Lernverfahren lassen sich auch für gewichtete Mittelwerte herleiten Es soll berechnet werden: V n = n k=1 w kr k n k=1 w k Dann ergibt sich die Update-Regel und V n+1 = V n + w n+1 W n+1 (R n+1 V n ) W n+1 = W n + w n+1 mit V 0 = W 0 = 0. F. Schwenker Reinforcement Learning 81

13 Beispiel: Blackjack Spieler spielt gegen die Bank Blackjack. Ziel: möglichst nahe an 21 kommen Ass kann 1 oder 11 zählen, Bilder alle 10. Sonst Punkte wie auf der Karte. Zunächst erhält jeder 2 Karten. Eine Karte der Bank ist offen. Hat der Spieler 21 gewinnt er, es sein denn die Bank hat ebenfalls 21. Dann ist das Spiel unentschieden. Nun kann der Spieler weitere einzelne Karten anfordern, bis er stoppt oder mehr als 21 hat. Im letztgenannten Fall, verliert er. Stoppt er, nimmt die Bank weitere Karten, und zwar nach einer festen Policy: weitere Karten werden dann und nur dann genommen wenn die Augenzahl < 17 ist, sonst gestoppt. Hat die Bank mehr als 21, gewinnt der Spieler, sonst wird Gewinn, Verlust und Unentschieden durch die Augenzahl bestimmt. Jedes Spiel eine Episode. Danach werden die Karten dem Stapel wieder zu gefügt. F. Schwenker Reinforcement Learning 82

14 Rewards seien 1, 1 und 0 (Gewinn, Verlust, Unentschieden). Aktion sind: weitere Karte(hit) oder keine Karte mehr(stick). Zustände sind die Augenzahl auf den Karten des Spielers und die Augenzahl der offenen Karte der Bank. Ein Ass heißt hier usable falls es mit 11 gerechnet werden kann, und trotzdem die Augenzahl 21 nicht überschreitet. Gezeigt ist die optimale Policy bestimmt durch MC mit Exploring Starts. V ist durch Q berechnet. F. Schwenker Reinforcement Learning 83

15 π * V * Usable ace No usable ace HIT A Dealer showing 21 STICK HIT A STICK Player sum +1 1 A A Dealer showing Player sum F. Schwenker Reinforcement Learning 84

Temporal Difference Learning

Temporal Difference Learning Temporal Difference Learning Das Temporal Difference (TD) Lernen ist eine bedeutende Entwicklung im Reinforcement Lernen. Im TD Lernen werden Ideen der Monte Carlo (MC) und dynamische Programmierung (DP)

Mehr

3. Das Reinforcement Lernproblem

3. Das Reinforcement Lernproblem 3. Das Reinforcement Lernproblem 1. Agierender Agent in der Umgebung 2. Discounted Rewards 3. Markov Eigenschaft des Zustandssignals 4. Markov sche Entscheidung 5. Werte-Funktionen und Bellman sche Optimalität

Mehr

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Friedhelm Schwenker Institut für Neuroinformatik Vorlesung/Übung: (V) Di 14-16 Uhr, (Ü) Do 12.30-14.00 jeweils im Raum O27/121 Übungsaufgaben sind schriftlich zu bearbeiten (Schein

Mehr

2. Beispiel: n-armiger Bandit

2. Beispiel: n-armiger Bandit 2. Beispiel: n-armiger Bandit 1. Das Problem des n-armigen Banditen 2. Methoden zur Berechung von Wert-Funktionen 3. Softmax-Auswahl von Aktionen 4. Inkrementelle Schätzverfahren 5. Nichtstationärer n-armiger

Mehr

Reinforcement Learning

Reinforcement Learning Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Reinforcement Learning Uwe Dick Inhalt Problemstellungen Beispiele Markov Decision Processes Planen vollständige MDPs Lernen unbekannte

Mehr

Dynamic Programming. To compute optimal policies in a perfect model of the environment as a Markov decision process.

Dynamic Programming. To compute optimal policies in a perfect model of the environment as a Markov decision process. Dynamic Programming To compute optimal policies in a perfect model of the environment as a Markov decision process. 1. Dynamic Programming Algorithmen die Teilergebnisse speichern und zur Lösung des Problems

Mehr

RL und Funktionsapproximation

RL und Funktionsapproximation RL und Funktionsapproximation Bisher sind haben wir die Funktionen V oder Q als Tabellen gespeichert. Im Allgemeinen sind die Zustandsräume und die Zahl der möglichen Aktionen sehr groß. Deshalb besteht

Mehr

Reinforcement Learning

Reinforcement Learning Reinforcement Learning 1. Allgemein Reinforcement Learning 2. Neuronales Netz als Bewertungsfunktion 3. Neuronales Netz als Reinforcement Learning Nils-Olaf Bösch 1 Allgemein Reinforcement Learning Unterschied

Mehr

Monte Carlo Methoden

Monte Carlo Methoden Monte Carlo Methoden im Verstärkungslernen [Spink] Bryan Spink 2003 Ketill Gunnarsson [ ketill@inf.fu-berlin.de ], Seminar zum Verstärkungslernen, Freie Universität Berlin [ www.inf.fu-berlin.de ] Einleitung

Mehr

Reinforcement Learning

Reinforcement Learning Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Reinforcement Learning Uwe Dick Inhalt Problemstellungen Beispiele Markov Decision Processes Planen vollständige MDPs Lernen unbekannte

Mehr

8. Reinforcement Learning

8. Reinforcement Learning 8. Reinforcement Learning Einführung 8. Reinforcement Learning Wie können Agenten ohne Trainingsbeispiele lernen? Auch kennt der Agent zu Beginn nicht die Auswirkungen seiner Handlungen. Stattdessen erhält

Mehr

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Viktor Seifert Seminar: Knowledge Engineering und Lernen in Spielen SS06 Prof. Johannes Fürnkranz Übersicht 1. Definition 2. Allgemeiner Lösungsansatz 3. Temporal Difference Learning

Mehr

Einführung Basic Strategy. Blackjack. Das Spiel und die Basic Strategy. Ruwen Hollenbach R. Hollenbach Blackjack

Einführung Basic Strategy. Blackjack. Das Spiel und die Basic Strategy. Ruwen Hollenbach R. Hollenbach Blackjack Blackjack Das Spiel und die Ruwen Hollenbach 24.01.2012 Übersicht 1 Das Spiel Geschichte des Spiels 2 Das Spiel Geschichte des Spiels Abbildung: http://oranges-world.com/black-jack-table.html Umriss Das

Mehr

V π (s) ist der Erwartungswert, der bei Start in s und Arbeit gemäß π insgesamt erreicht wird:

V π (s) ist der Erwartungswert, der bei Start in s und Arbeit gemäß π insgesamt erreicht wird: Moderne Methoden der KI: Maschinelles Lernen Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Sommer-Semester 2007 Verstärkungs-Lernen (Reinforcement Learning) Literatur: R.S.Sutton, A.G.Barto Reinforcement

Mehr

Institut für Informatik Lehrstuhl Maschinelles Lernen. Uwe Dick

Institut für Informatik Lehrstuhl Maschinelles Lernen. Uwe Dick Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Reinforcement Learning Uwe Dick Inhalt Problemstellungen Beispiele Markov Decision Processes Planen vollständige MDPs Lernen unbekannte

Mehr

Schriftliche Ausarbeitung zum Seminarvortrag: Einführung in die Perfekte Simulation. Propp-Wilson-Algorithmus

Schriftliche Ausarbeitung zum Seminarvortrag: Einführung in die Perfekte Simulation. Propp-Wilson-Algorithmus Technische Universität Berlin Schriftliche Ausarbeitung zum Seminarvortrag: Einführung in die Perfekte Simulation Propp-Wilson-Algorithmus Lisa Brust Matrikelnummer: 330793 Master Mathematik 30. Juni 2016

Mehr

Reinforcement learning

Reinforcement learning Reinforcement learning Erfolgsgeschichten... Quelle: twitter.com/ai memes Q-Learning als Art von Reinforcement learning Paul Kahlmeyer February 5, 2019 1 Einführung 2 Q-Learning Begriffe Algorithmus 3

Mehr

Institut für Informatik Lehrstuhl Maschinelles Lernen. Uwe Dick

Institut für Informatik Lehrstuhl Maschinelles Lernen. Uwe Dick Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Reinforcement Learning 2 Uwe Dick Funktionsapproximation Modellierung Value Iteration Least-Squares-Methoden Gradienten-Methoden

Mehr

Planung von Handlungen bei unsicherer Information

Planung von Handlungen bei unsicherer Information Planung von Handlungen bei unsicherer Information Dr.-Ing. Bernd Ludwig Lehrstuhl für Künstliche Intelligenz Friedrich-Alexander-Universität Erlangen-Nürnberg 20.01.2010 Dr.-Ing. Bernd Ludwig (FAU ER)

Mehr

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 7

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 7 Technische Universität München WS 2012 Institut für Informatik Prof. Dr. H.-J. Bungartz Prof. Dr. T. Huckle Prof. Dr. M. Bader Kristof Unterweger Perlen der Informatik I Wintersemester 2012 Aufgabenblatt

Mehr

Reinforcement Learning

Reinforcement Learning Effiziente Darstellung von Daten Reinforcement Learning 02. Juli 2004 Jan Schlößin Einordnung Was ist Reinforcement Learning? Einführung - Prinzip der Agent Eigenschaften das Ziel Q-Learning warum Q-Learning

Mehr

Algorithmen für schwierige Probleme

Algorithmen für schwierige Probleme Algorithmen für schwierige Probleme Britta Dorn Wintersemester 2011/12 24. November 2011 Farbkodierung Beispiel Longest Path Longest Path gegeben: G = (V, E) und k N. Frage: Gibt es einen einfachen Pfad

Mehr

IR Seminar SoSe 2012 Martin Leinberger

IR Seminar SoSe 2012 Martin Leinberger IR Seminar SoSe 2012 Martin Leinberger Suchmaschinen stellen Ergebnisse häppchenweise dar Google: 10 Ergebnisse auf der ersten Seite Mehr Ergebnisse gibt es nur auf Nachfrage Nutzer geht selten auf zweite

Mehr

Seminar: Randomisierte Algorithmen Auswerten von Spielbäumen Nele Küsener

Seminar: Randomisierte Algorithmen Auswerten von Spielbäumen Nele Küsener Seminar: Randomisierte Algorithmen Auswerten von Sielbäumen Nele Küsener In diesem Vortrag wird die Laufzeit von Las-Vegas-Algorithmen analysiert. Das Ergebnis ist eine obere und eine untere Schranke für

Mehr

Bayes-Netze (2) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Bayes-Netze (2) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Bayes-Netze (2) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl KI) Bayes-Netze (2) 1 / 23 Gliederung 1 Zusammenhang zwischen Graphenstruktur

Mehr

Kniffel-Agenten. Von Alexander Holtkamp

Kniffel-Agenten. Von Alexander Holtkamp Kniffel-Agenten Von Alexander Holtkamp Übersicht Grundregeln Vorteil der Monte Carlo -Methode Gliederung des Projekts Aufbau State - Action Kodierung von State - Action Optimierung Aussicht Grundregeln

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Uwe Dick

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Uwe Dick Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Reinforcement Learning Uwe Dick Inhalt Problemstellungen Beispiele Markov Decision Processes Planen vollständige MDPs Lernen unbekannte

Mehr

Reasoning and decision-making under uncertainty

Reasoning and decision-making under uncertainty Reasoning and decision-making under uncertainty 9. Vorlesung Actions, interventions and complex decisions Sebastian Ptock AG Sociable Agents Rückblick: Decision-Making A decision leads to states with values,

Mehr

General Video Game AI Competition 2016

General Video Game AI Competition 2016 General Video Game AI Competition 2016 BFS, MCTS und GA - Einführung Miriam Moneke, Nils Schröder, Tobias Joppen Christan Wirth, Prof. J. Fürnkranz 27.04.2016 Fachbereich Informatik Knowledge Engineering

Mehr

MoGo Seminar Knowledge Engineering und Lernern in Spielen Sommersemester 2010

MoGo Seminar Knowledge Engineering und Lernern in Spielen Sommersemester 2010 MoGo Seminar Knowledge Engineering und Lernern in Spielen Sommersemester 2010 08.06.2010 Fachbereich 20 Knowledge Engineering Group Christian Brinker 1 Inhalt Go Probleme für KIs Monte-Carlo-Suche UCT-Suchalgorithmus

Mehr

Lösung Übungsblatt 5

Lösung Übungsblatt 5 Lösung Übungsblatt 5 5. Januar 05 Aufgabe. Die sogenannte Halb-Normalverteilung spielt eine wichtige Rolle bei der statistischen Analyse von Ineffizienzen von Produktionseinheiten. In Abhängigkeit von

Mehr

Automatentheorie und formale Sprachen Pumping-Lemma für reguläre Sprachen

Automatentheorie und formale Sprachen Pumping-Lemma für reguläre Sprachen Automatentheorie und formale Sprachen Pumping-Lemma für reguläre Sprachen Dozentin: Wiebke Petersen 10.6.2009 Wiebke Petersen Automatentheorie und formale Sprachen - SoSe09 1 Finite-state automatons accept

Mehr

Einsatz von Reinforcement Learning in der Modellfahrzeugnavigation

Einsatz von Reinforcement Learning in der Modellfahrzeugnavigation Einsatz von Reinforcement Learning in der Modellfahrzeugnavigation von Manuel Trittel Informatik HAW Hamburg Vortrag im Rahmen der Veranstaltung AW1 im Masterstudiengang, 02.12.2008 der Anwendung Themeneinordnung

Mehr

Einführung in die Maximum Likelihood Methodik

Einführung in die Maximum Likelihood Methodik in die Maximum Likelihood Methodik Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Gliederung 1 2 3 4 2 / 31 Maximum Likelihood

Mehr

WAHRSCHEINLICHKEITSRECHNUNG

WAHRSCHEINLICHKEITSRECHNUNG WAHRSCHEINLICHKEITSRECHNUNG Mathematischer Teil In der Wahrscheinlichkeitsrechnung haben wir es mit Zufallsexperimenten zu tun, d.h. Ausgang nicht vorhersagbar. Grundbegriffe Zufallsexperiment und Ergebnisse

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, 31.01.2011 Fakultät für Mathematik M. Winkler Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Bearbeitungszeit 90 min. Die Klausur gilt als bestanden, wenn

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Algorithmische Geometrie: Delaunay Triangulierung (Teil 2)

Algorithmische Geometrie: Delaunay Triangulierung (Teil 2) Algorithmische Geometrie: Delaunay Triangulierung (Teil 2) Nico Düvelmeyer WS 2009/2010, 2.2.2010 Überblick 1 Delaunay Triangulierungen 2 Berechnung der Delaunay Triangulierung Randomisiert inkrementeller

Mehr

Übungen zur Wahrscheinlichkeitstheorie und Statistik

Übungen zur Wahrscheinlichkeitstheorie und Statistik Übungen zur Wahrscheinlichkeitstheorie und Statistik Prof. Dr. C. Löh/M. Blank Blatt 0 vom 16. April 2012 Aufgabe 1 (Wahrscheinlichkeitsräume). Welche der folgenden Aussagen sind wahr? Begründen Sie jeweils

Mehr

Kapitel 6 Martingale

Kapitel 6 Martingale Kapitel 6 Martingale Martingale spielen eine große Rolle in der Finanzmathematik, und sind zudem ein wichtiges Hilfsmittel für die statistische Inferenz stochastischer Prozesse, insbesondere auch für Zählprozesse

Mehr

Kap. 6.6: Kürzeste Wege

Kap. 6.6: Kürzeste Wege Kap. 6.6: Kürzeste Wege Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 1./. VO DAP SS 009./9. Juli 009 1 Nachtest für Ausnahmefälle Di 1. Juli 009, 16:00 Uhr,

Mehr

7.5 Erwartungswert, Varianz

7.5 Erwartungswert, Varianz 7.5 Erwartungswert, Varianz Def. 7.5.: a) X sei eine diskrete ZV, die bei unendl. vielen Werten x k folgende Zusatzbedingung erfüllt: x k p k

Mehr

7. Grenzwertsätze. Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012

7. Grenzwertsätze. Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 7. Grenzwertsätze Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Mittelwerte von Zufallsvariablen Wir betrachten die arithmetischen Mittelwerte X n = 1 n (X 1 + X 2 + + X n ) von unabhängigen

Mehr

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Valentin Hermann 25. Juli 2014 Inhaltsverzeichnis 1 Einführung 3 2 Wie funktioniert Reinforcement Learning? 3 2.1 Das Modell................................... 3 2.2 Exploration

Mehr

Hypothesenbewertungen: Übersicht

Hypothesenbewertungen: Übersicht Hypothesenbewertungen: Übersicht Wie kann man Fehler einer Hypothese abschätzen? Wie kann man einschätzen, ob ein Algorithmus besser ist als ein anderer? Trainingsfehler, wirklicher Fehler Kreuzvalidierung

Mehr

Kap. 6.6: Kürzeste Wege

Kap. 6.6: Kürzeste Wege 0.0.00 Nachtest für Ausnahmefälle Kap..: Kürzeste Wege Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund./. VO DAP SS 00./. Juli 00 Di. Juli 00, :00 Uhr, OH, R.

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS Stochastic Processes Summer Semester 2008 Final Exam Friday June 4, 2008, 12:30, Magnus-HS Name: Matrikelnummer: Vorname: Studienrichtung: Whenever appropriate give short arguments for your results. In

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 19/21, 29.04.2019 Wahrscheinlichkeit und Statistik Patric Müller WBL 2019 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Probabilistische Pfadsuche

Probabilistische Pfadsuche Probabilistische Pfadsuche Frage: Existiert ein Pfad in G von s nach t? Deterministisch mit Breitensuche lösbar in Zeit O( V + E ). Erfordert allerdings auch Speicher Ω( V ). Algorithmus PATH EINGABE:

Mehr

Algorithmen und Datenstrukturen SS09. Foliensatz 15. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik

Algorithmen und Datenstrukturen SS09. Foliensatz 15. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik Foliensatz 15 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 2009 TU Ilmenau Seite 1 / 16 Untere Schranken für das Vergleichsbasierte Sortieren TU

Mehr

Reinforcement Learning

Reinforcement Learning VL Algorithmisches Lernen, Teil 3d Jianwei Zhang, Dept. of Informatics Vogt-Kölln-Str. 30, D-22527 Hamburg zhang@informatik.uni-hamburg.de 08/07/2009 Zhang 1 Terminübersicht: Part 3 17/06/2009 Dimensionsproblem,

Mehr

Abgabe: (vor 12 Uhr)

Abgabe: (vor 12 Uhr) TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen WS 11/12 Einführung in die Informatik I Übungsblatt 2 Prof. Dr. Helmut Seidl, M. Schwarz, A. Herz,

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Gibbs sampling. Sebastian Pado. October 30, Seien X die Trainingdaten, y ein Testdatenpunkt, π die Parameter des Modells

Gibbs sampling. Sebastian Pado. October 30, Seien X die Trainingdaten, y ein Testdatenpunkt, π die Parameter des Modells Gibbs sampling Sebastian Pado October 30, 2012 1 Bayessche Vorhersage Seien X die Trainingdaten, y ein Testdatenpunkt, π die Parameter des Modells Uns interessiert P (y X), wobei wir über das Modell marginalisieren

Mehr

DWT 2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten 400/467 Ernst W. Mayr

DWT 2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten 400/467 Ernst W. Mayr 2. Ankunftswahrscheinlichkeiten und Übergangszeiten Bei der Analyse von Markov-Ketten treten oftmals Fragestellungen auf, die sich auf zwei bestimmte Zustände i und j beziehen: Wie wahrscheinlich ist es,

Mehr

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit ** i=1

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit ** i=1 Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 05/06 ITI Wagner. Musterlösung Problem : Average-case-Laufzeit vs. Worst-case-Laufzeit ** (a) Im schlimmsten Fall werden für jedes Element

Mehr

Introduction to Python. Introduction. First Steps in Python. pseudo random numbers. May 2016

Introduction to Python. Introduction. First Steps in Python. pseudo random numbers. May 2016 to to May 2016 to What is Programming? All computers are stupid. All computers are deterministic. You have to tell the computer what to do. You can tell the computer in any (programming) language) you

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Reduktion. Komplexitätsklassen. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Das Black-Scholes Modell

Das Black-Scholes Modell Vathani Arumugathas Das Black-Scholes Modell 1 Das Black-Scholes Modell Vathani Arumugathas Seminar zu Finanzmarktmodellen in der Lebensversicherung, Universität zu Köln 10. Juni 016 Inhaltsverzeichnis

Mehr

5 Binomial- und Poissonverteilung

5 Binomial- und Poissonverteilung 45 5 Binomial- und Poissonverteilung In diesem Kapitel untersuchen wir zwei wichtige diskrete Verteilungen d.h. Verteilungen von diskreten Zufallsvariablen): die Binomial- und die Poissonverteilung. 5.1

Mehr

Statistik 1 Beispiele zum Üben

Statistik 1 Beispiele zum Üben Statistik 1 Beispiele zum Üben 1. Ein Kühlschrank beinhaltet 10 Eier, 4 davon sind faul. Wir nehmen 3 Eier aus dem Kühlschrank heraus. (a Bezeichne die Zufallsvariable X die Anzahl der frischen herausgenommenen

Mehr

C : Genau ein Wurf ergibt Augenzahl D:.Wenigstens ein Wurf ergibt Augenzahl 2

C : Genau ein Wurf ergibt Augenzahl D:.Wenigstens ein Wurf ergibt Augenzahl 2 Lapace-Experimente ================================================================== 1. a) Wie groß ist die W'keit, beim Werfen eines Laplace-Würfels eine Sechs zu erhalten? b) Wie groß ist die W'keit,

Mehr

Solvency II and Nested Simulations - a Least-Squares Monte Carlo Approach

Solvency II and Nested Simulations - a Least-Squares Monte Carlo Approach Grafik and - a Least-Squares Monte Carlo Approach Khischgee Turbat Technische Universität Wien 17. Februar 2016 Grafik 1 2 3 4 Grafik 5 6 Inhalt Grafik Großprojekt der EU-Kommission gültig ab dem 1. Jänner

Mehr

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26 Ein Wahrscheinlichkeitsraum (Ω, P ist eine Menge Ω (Menge aller möglichen Ausgänge eines Zufallsexperiments: Ergebnismenge versehen mit einer Abbildung

Mehr

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h

Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h 5. Die partielle Autokorrelationsfunktion 5.1 Definition, Berechnung, Schätzung Bisher: Gewöhnliche Autokorrelationsfunktion (ACF) eines stationären Prozesses {X t } t Z zum Lag h ρ X (h) = Corr(X t, X

Mehr

Randomisierte Algorithmen am Beispiel Quicksort

Randomisierte Algorithmen am Beispiel Quicksort Randomisierte Algorithmen am Beispiel Quicksort Mathias Katzer Universität 28. Juli 2003 Mathias Katzer 0 Überblick Motivation: Begriff Randomisierung Quicksort Stochastik-Ausflug Effizienzanalyse Allgemeineres

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Kapitel 1 Markus Lohrey Universität Leipzig http://www.informatik.uni-leipzig.de/~lohrey/rand WS 2005/2006 Markus Lohrey (Universität Leipzig) Randomisierte Algorithmen WS 2005/2006

Mehr

Seminar. Knowledge Engineering und Lernen in Spielen. Reinforcement Learning to Play Tetris. TU - Darmstadt Mustafa Gökhan Sögüt, Harald Matussek 1

Seminar. Knowledge Engineering und Lernen in Spielen. Reinforcement Learning to Play Tetris. TU - Darmstadt Mustafa Gökhan Sögüt, Harald Matussek 1 Seminar Knowledge Engineering und Lernen in Spielen Reinforcement Learning to Play Tetris 1 Überblick Allgemeines zu Tetris Tetris ist NP-vollständig Reinforcement Learning Anwendung auf Tetris Repräsentationen

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

Monetäre Außenwirtschaft

Monetäre Außenwirtschaft Monetäre Außenwirtschaft Prof Dr. Christian Bauer Universität Trier February 12, 2011 Christian Bauer (WS 2010/2011) Monetäre Außenwirtschaft February 12, 2011 1 / 19 Christian Bauer (WS 2010/2011) Monetäre

Mehr

Fundamentale Matrix: 8-Punkte Algorithmus

Fundamentale Matrix: 8-Punkte Algorithmus Übungen zu Struktur aus Bewegung Arbeitsgruppe Aktives Sehen Sommersemester 2003 Prof. Dr-Ing. D. Paulus / S. Bouattour Übungsblatt 5 Fundamentale Matrix: 8-Punkte Algorithmus Gegeben sei eine Menge von

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Wie stehen unsere Chancen? Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Wie stehen unsere Chancen? Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Wie stehen unsere Chancen? Das komplette Material finden Sie hier: School-Scout.de RAAbits Hauptschule 7 9 Mathematik 78 Zufallsversuche

Mehr

Fast-SLAM: Synchrone Lokalisierung und Kartenerstellung mit einem Partikel-Filter

Fast-SLAM: Synchrone Lokalisierung und Kartenerstellung mit einem Partikel-Filter Fast-SLAM: Synchrone Lokalisierung und Kartenerstellung mit einem Partikel-Filter! Landmarkenbasiertes Fast-SLAM! Gitterbasiertes Fast-Slam! Optimierungen Prof. Dr. O. Bittel, HTWG Konstanz Autonome Roboter

Mehr

Bayesian Networks. Syntax Semantics Parametrized Distributions Inference in Bayesian Networks. Exact Inference. Approximate Inference

Bayesian Networks. Syntax Semantics Parametrized Distributions Inference in Bayesian Networks. Exact Inference. Approximate Inference Syntax Semantics Parametrized Distributions Inference in Exact Inference Approximate Inference enumeration variable elimination stochastic simulation Markov Chain Monte Carlo (MCMC) 1 Includes many slides

Mehr

Effiziente Algorithmen (SS2015)

Effiziente Algorithmen (SS2015) Effiziente Algorithmen (SS205) Kapitel 5 Approximation II Walter Unger Lehrstuhl für Informatik 2.06.205 07:59 5 Inhaltsverzeichnis < > Walter Unger 5.7.205 :3 SS205 Z Inhalt I Set Cover Einleitung Approximation

Mehr

Einführung in die Computerlinguistik reguläre Sprachen und endliche Automaten

Einführung in die Computerlinguistik reguläre Sprachen und endliche Automaten Einführung in die Computerlinguistik reguläre Sprachen und endliche Automaten Dozentin: Wiebke Petersen 03.11.2009 Wiebke Petersen Einführung CL (WiSe 09/10) 1 Formal language Denition Eine formale Sprache

Mehr

VI.4 Elgamal. - vorgestellt 1985 von Taher Elgamal. - nach RSA das wichtigste Public-Key Verfahren

VI.4 Elgamal. - vorgestellt 1985 von Taher Elgamal. - nach RSA das wichtigste Public-Key Verfahren VI.4 Elgamal - vorgestellt 1985 von Taher Elgamal - nach RSA das wichtigste Public-Key Verfahren - besitzt viele unterschiedliche Varianten, abhängig von zugrunde liegender zyklischer Gruppe - Elgamal

Mehr

Literatur. [9-3] [9-4]

Literatur. [9-3]   [9-4] Literatur [9-1] Willems, Wolfgang: Codierungstheorie und Kryptographie. Mathematik Kompakt, Birkhäuser, 2008 [9-2] Socher, Rolf: Algebra für Informatiker. Hanser, 2012 [9-3] https://de.wikipedia.org/wiki/fermatscher_primzahltest

Mehr

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung

Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen. Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Verteilungen eindimensionaler stetiger Zufallsvariablen Stetige Verteilungen Chi-Quadrat-Verteilung Studentverteilung Fisher-Verteilung Typisierung der stetigen theoretischen Verteilungen Bibliografie:

Mehr

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik 3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten lassen sich häufig durch Abzählen der günstigen und möglichen Fällen lösen. Kompliziertere Fragestellungen bedürfen aber der Verwendung mathematischer

Mehr

6. Übungsblatt Aufgaben mit Lösungen

6. Übungsblatt Aufgaben mit Lösungen 6. Übungsblatt Aufgaben mit Lösungen Exercise 6: Find a matrix A R that describes the following linear transformation: a reflection with respect to the subspace E = {x R : x x + x = } followed by a rotation

Mehr

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Ziel: Lernen von Bewertungsfunktionen durch Feedback (Reinforcement) der Umwelt (z.b. Spiel gewonnen/verloren). Anwendungen: Spiele: Tic-Tac-Toe: MENACE (Michie 1963) Backgammon:

Mehr

Einführung in die Computerlinguistik Satz von Kleene

Einführung in die Computerlinguistik Satz von Kleene Einführung in die Computerlinguistik Satz von Kleene Dozentin: Wiebke Petersen 17.11.2009 Wiebke Petersen Einführung CL (WiSe 09/10) 1 Satz von Kleene (Stephen C. Kleene, 1909-1994) Jede Sprache, die von

Mehr

Reinforcement Learning. Volker Tresp

Reinforcement Learning. Volker Tresp Reinforcement Learning Volker Tresp 1 Überwachtes und unüberwachtes Lernen Überwachtes Lernen: Zielgrößen sind im Trainingsdatensatz bekannt; Ziel ist die Verallgemeinerung auf neue Daten Unüberwachtes

Mehr

Willkommen zur Vorlesung Komplexitätstheorie

Willkommen zur Vorlesung Komplexitätstheorie Willkommen zur Vorlesung Komplexitätstheorie WS 2011/2012 Friedhelm Meyer auf der Heide V11, 16.1.2012 1 Themen 1. Turingmaschinen Formalisierung der Begriffe berechenbar, entscheidbar, rekursiv aufzählbar

Mehr

Der Euklidische Algorithmus Dieter Wolke

Der Euklidische Algorithmus Dieter Wolke Der Euklidische Algorithmus Dieter Wolke Einleitung. Für den Begriff Algorithmus gibt es keine einheitliche Definition. Eine sehr knappe findet sich in der Encyclopaedia Britannica (1985) A systematic

Mehr

Automatentheorie und formale Sprachen rechtslineare Grammatiken

Automatentheorie und formale Sprachen rechtslineare Grammatiken Automatentheorie und formale Sprachen rechtslineare Grammatiken Dozentin: Wiebke Petersen 17.6.2009 Wiebke Petersen Automatentheorie und formale Sprachen - SoSe09 1 Pumping lemma for regular languages

Mehr

Die Bestimmung von Value-at-Risk- Werten mit Hilfe der Monte-Carlo- Simulation. Jens Schiborowski

Die Bestimmung von Value-at-Risk- Werten mit Hilfe der Monte-Carlo- Simulation. Jens Schiborowski Die Bestimmung von Value-at-Risk- Werten mit Hilfe der Monte-Carlo- Simulation Jens Schiborowski Gliederung Einführung Monte-Carlo-Simulation Definition von Monte-Carlo-Simulation Einsatzgebiete von Monte-Carlo-Simulation

Mehr

Algorithmentheorie Randomisierung

Algorithmentheorie Randomisierung Algorithmentheorie 03 - Randomisierung Prof. Dr. S. Albers Randomisierung Klassen von randomisierten Algorithmen Randomisierter Quicksort Randomisierter Primzahltest Kryptographie 2 1. Klassen von randomisierten

Mehr

4.1 Der Blum-Blum-Shub-Generator

4.1 Der Blum-Blum-Shub-Generator 4.1 Der Blum-Blum-Shub-Generator Der Blum-Blum-Shub-Generator oder BBS-Generator setzt bei der in Kapitel III vorgestellten Quadratrest-Vermutung an und funktioniert so: Als ersten Schritt wählt man eine

Mehr

Real-time reinforcement learning von Handlungsstrategien für humanoide Roboter

Real-time reinforcement learning von Handlungsstrategien für humanoide Roboter Real-time reinforcement learning von Handlungsstrategien für humanoide Roboter von Colin Christ 1 Aufgabenstellung Entwicklung einer Applikation zur Demonstration von RL für humanoide Roboter Demonstration:

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 28 (Algorithmen & Datenstrukturen) Vorlesung 22 (6.7.28) Greedy Algorithmen II (Datenkompression) Algorithmen und Komplexität Datenkompression Reduziert Größen von Files Viele Verfahren

Mehr

Aufgabe A1 Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors

Aufgabe A1 Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors Level Grundlagen Blatt Dokument mit Aufgaben Aufgabe A Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors gilt.

Mehr

1,00 2,00 3,00 4,00 Bestimme den Gewinnerwartungswert. Entscheide, ob das Spiel fair ist.

1,00 2,00 3,00 4,00 Bestimme den Gewinnerwartungswert. Entscheide, ob das Spiel fair ist. Level Grundlagen Blatt Dokument mit 3 Aufgaben Aufgabe A Ein Glücksrad hat vier Sektoren, wovon die ersten beiden die Winkelgröße 60 haben. Für die Winkelgrößen und des dritten und vierten Sektors gilt.

Mehr

Erwartungswert. c Roolfs

Erwartungswert. c Roolfs Erwartungswert 2e b a 4e Der Sektor a des Glücksrads bringt einen Gewinn von 2e, der Sektor b das Doppelte. Um den fairen Einsatz zu ermitteln, ist der durchschnittlich zu erwartende Gewinn pro Spiel zu

Mehr

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik 3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten lassen sich häufig durch Abzählen der günstigen und möglichen Fällen lösen. Kompliziertere Fragestellungen bedürfen aber der Verwendung mathematischer

Mehr