Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke?

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke?"

Transkript

1 Hans-Peter Zorn Inovex GmbH Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke?

2 War nicht BigData das gleiche NoSQL?

3 Data Lake = Keine Struktur? flickr/matthewthecoolguy

4 Oder gar ein Hadump? flickr/autohistorian

5 Wie viele SQL Lösungen für Hadoop gibt es mittlerweile?

6 Kylin Oracle Hadoop Connector Splice InfiniDB Hive on Spark Pivotal HAWQ Shark Hive-on-Tez Tajo Hive BigSQL Phoenix Apache Drill Lingual Presto Impala Hadapt Trafodion Spark SQL CitusDB IBM BigSQL Aster SQL/Mapreduce

7 Agenda Warum SQL, Anwendungfälle Überblick Hive Wie kann Hive verbessert werden SQL-Engines: Welche für was? Zusammenfassung

8 Warum jetzt doch SQL? Türöffner zur BigData-Welt Kenntnisse weit verbreitet Software:Treiber vorhanden flickr.com/salynaz

9 Wo wird SQL auf Hadoop eingesetzt? ETL Adhoc-Analyse Reporting

10 Oracle Hadoop Connector Splice InfiniDB Hive on Spark Pivotal HAWQ Kylin Hive-on-Tez Tajo BigSQL Shark Hive Phoenix Apache Drill Lingual Presto Impala Hadapt Trafodion Spark SQL CitusDB IBM BigSQL Aster SQL/Mapreduce

11 Hive ursprünglich von Facebook Compiliert HiveQL, ein SQL-Dialekt, zu MapReduce-Jobs Schema wird separat zu den Daten abgelegt: Metastore

12 Hive Architektur Anwender Hive Query Hadoop Hive Server2 Meta store Parser, Analyzer, Compiler

13 Hive ETL: gut geeignet Ad-hoc: Zu hohe Latenz Analytics: Latenz, Sprachumfang ungenügend

14 Was kann man besser machen? Oder: Warum ist Hive wie es ist

15 Hive auf Mapreduce Zieltabelle HDFS Reduce Rot: Plattenzugriff Shuffle Map Reduce-side Join Reduce HDFS HDFS Temporärtabelle Map-Side Join Shuffle HDFS Map Map HDFS HDFS HDFS HDFS Kunden Adressen Käufe Produkte

16 Was kann man besser machen? Unnötige Maps oder Reduces vermeiden Temporärdaten direkt weiterleiten Effizientere Datenspeicherung Query-Optimierung (cost-based) Arbeitsspeicher nutzen

17 Optimiertes Hive: DAGs Adressen HDFS Shuffle Reduce Reduce Reduce-side Join HDFS Map Shuffle HDFS Map-Side Join HDFS Map HDFS Kunden Adressen Käufe Produkte

18 Oracle Hadoop Connector Splice InfiniDB Hive on Spark Pivotal HAWQ Kylin Shark Hive-on-Tez Tajo Hive BigSQL Phoenix Apache Drill Lingual Presto Impala Hadapt Trafodion Spark SQL CitusDB IBM BigQuery Aster SQL/Mapreduce

19 MPP (massive parallel processing) Datenbanken Master Slave Slave Slave Slave (blackbox) (blackbox) (blackbox) (blackbox) HDFS HDFS HDFS HDFS

20 MPP-basiert Oracle Hadoop Connector Splice InfiniDB Hive on Spark Pivotal HAWQ Kylin Shark Hive-on-Tez Tajo Hive BigSQL Phoenix Apache Drill Lingual Presto Impala Hadapt Trafodion Spark SQL CitusDB IBM BigSQL Aster SQL/Mapreduce

21 Spalten vs Zeilenorientiert Stuttgart D Stuttgart München Berlin London München D Berlin D London GB D D D GB

22 ORC / Parquet Hortonworks/ Microsoft Spaltenindizes, Vektorisierte Queries Blöcke von Zeilen können über Index übersprungen werden Twitter/Cloudera/ Criteo Plattform- und Hive unabhängig. (z.b. Pig) Verschachtelte Datenstrukturen (Listen, Maps) - Kann ORC auch Hive Datentypen

23 No SQL!? Oracle Hadoop Connector Splice InfiniDB Hive on Spark Pivotal HAWQ Kylin Shark Hive-on-Tez Tajo Hive BigSQL Phoenix Apache Drill Lingual Presto Impala Hadapt Trafodion Spark SQL CitusDB IBM BigSQL Aster SQL/Mapreduce

24 Stinger initiative Hortonworks/Microsoft Hive weiterentwickeln Geschwindigkeit: Tez, ORC SQL-Features, Analytische Queries (OVER) Security (GRANT)

25 Tez und Spark TEZ Spark YARN Hive Spark MR YARN: Tez, Spark und Hive nebeneinander Tez: Neuer, spezialisierter Spark: generischer, viel Monumentum

26 Cloudera Impala MPP-basiert Queries zu nativem Code Speicherhungrig, empfohlen 128GB keine strukturierten Datentypen Zwischenergebnisse müssen in RAM passen (bis Impala 2.0)

27 Facebooks Presto MPP-Engine Discovery-Server + Worker-Nodes Struktur-Datentypen -> JSON Hive, Cassandra, MySQL Anwendung bei Facebook: Fact-table in Hive, Dimensions in MySQL einfaches Deployment

28 Apache Drill MapR s Schema-on-Read Connectoren für Hive, HBase, JSON, CSV. Joins über mehrere Quellen hinweg Compliliert Queries zu Java-Byte-Code Version 0.5.0

29 Apache Tajo MPP-like Fokus auf Query-Plan Optimierung, nicht Caching (wie Impala) SQL-Abdeckung noch nicht so weit In unseren Tests sehr schnell Kerberos in Arbeit

30 stinger.next Queries unter einer Sekunde MPP-Ähnliche Architektur (LLAP) Updates und Transaktionen SQL:2011 Analytics

31 Kylin Sehr neu, entwickelt von ebay (M)OLAP Engine Aggregate werden in HBase gespeichert

32 Features Impala Hive 0.14 Presto Drill Tajo SQL HiveQL HiveQL SQL92 ANSI SQL? Windowfunction s Security Fileformats Nested! Data nein yes yes no 0.9 Sentry RC, Parquet, Text, Seq Filesyste m+ Hive viele - - alle von hive + connector n alle von hive + connector en - (Kerbero RC, Parquet, Text,Seq nein ja via JSON ja no

33 Doch einige Zahlen 70,00& 60,00& 50,00& 50,91& 40,00& 30,00& 34,31& 30,96& 39,43& 20,00& 16,69& 10,00& 5,25& 9,25& 0,00& Hive& Shark& Shark/Cluster& Impala& Presto& Drill& Tajo&

34 Resume I Schnell Connectivity Drill Impala Tajo Presto Ausgereift Tez/Spark Hive Sprach- Umfang

35 Resumé II Welche Distribution will ich nutzen? Will ich heterogene Datenquellen nutzen (Cassandra, HBase, MySQL)? Will ich vorhandene Software anbinden (MicroStrategy, Tableau, SAP)? Welche Antwortzeiten brauche ich? Welche Datentypen nutze ich? Security?

36 Wer gewinnt also? Extrem schnell wachsendes, sich änderndes Umfeld. Unübersichtlich Keine One-Size-Fits-All Lösung bisher Anhand des individuellen Anwendungsfalles zu evaluieren.

37 Dankeschön! Fragen?

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh SQL on Hadoop für praktikables BI auf Big Data! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh War nicht BigData das gleiche NoSQL? 2 Wie viele SQL Lösungen für Hadoop gibt es mittlerweile? 3 ! No SQL!?

Mehr

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting Beratung Results, no Excuses. Consulting Lösungen Grown from Experience. Ventum Consulting SQL auf Hadoop Oliver Gehlert 1 Ventum Consulting Daten und Fakten Results, no excuses Fachwissen Branchenkenntnis

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

Big Data Informationen neu gelebt

Big Data Informationen neu gelebt Seminarunterlage Version: 1.01 Copyright Version 1.01 vom 21. Mai 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

Die wichtigsten Hadoop-Komponenten für Big Data mit SAS

Die wichtigsten Hadoop-Komponenten für Big Data mit SAS Webinar@Lunchtime Die wichtigsten Hadoop-Komponenten für Big Data mit SAS Herzlich Willkommen bei Webinar@Lunchtime Moderation Anne K. Bogner-Hamleh SAS Institute GmbH Education Consultant Xing-Profil:

Mehr

Hadoop Eine Erweiterung für die Oracle DB?

Hadoop Eine Erweiterung für die Oracle DB? Hadoop Eine Erweiterung für die Oracle DB? Nürnberg, 18.11.2015, Matthias Fuchs Sensitive Über mich 10+ Jahre Erfahrung mit Oracle Oracle Certified Professional Exadata Certified Oracle Engineered Systems

Mehr

BIG DATA IM RETAIL-SEKTOR AM BEISPIEL KASSENBONDATEN BUSINESS ANALYTICS DAY

BIG DATA IM RETAIL-SEKTOR AM BEISPIEL KASSENBONDATEN BUSINESS ANALYTICS DAY BIG DATA IM RETAIL-SEKTOR AM BEISPIEL KASSENBONDATEN BUSINESS ANALYTICS DAY 08.03.2017 REWE Systems GmbH Jonas Freiknecht inovex GmbH Bernhard Schäfer AGENDA 1 / Vorstellung REWE Systems GmbH und inovex

Mehr

Big Data in a Nutshell. Dr. Olaf Flebbe of ät oflebbe.de

Big Data in a Nutshell. Dr. Olaf Flebbe of ät oflebbe.de Big Data in a Nutshell Dr. Olaf Flebbe of ät oflebbe.de Zu mir Bigdata Projekt, benutzt Apache Bigtop Linux seit Anfang vor Minix/ATARI Linuxtag 2001? Promoviert in Computational Physics in Tü Seit Jan

Mehr

Lessons learned in Big Data Projekten mit Hadoop. Dominik Benz, Inovex GmbH 2014/09/25, Java User Group Hessen

Lessons learned in Big Data Projekten mit Hadoop. Dominik Benz, Inovex GmbH 2014/09/25, Java User Group Hessen Lessons learned in Big Data Projekten mit Hadoop Dominik Benz, Inovex GmbH 2014/09/25, Java User Group Hessen Motivation Big is beautiful! Class A extends Mapper ROI, $$, Big Data is like Teenagesex: Everyone

Mehr

Skalierbare Webanwendungen

Skalierbare Webanwendungen Skalierbare Webanwendungen Thomas Bachmann Lead Software Architect & CIO Mambu GmbH Twitter: @thobach Anwendungsbeispiel Hohe Nichtfunktionale Anforderungen Sicherheit Vertraulichkeit Integrität Verfügbarkeit

Mehr

BIG SQL FOR HORTONWORKS (MOGELPACKUNG ODER GENIALER SCHACHZUG?)

BIG SQL FOR HORTONWORKS (MOGELPACKUNG ODER GENIALER SCHACHZUG?) THOMAS KALB BIG SQL FOR HORTONWORKS (MOGELPACKUNG ODER GENIALER SCHACHZUG?) Big SQL for Hortonworks (Mogelpackung oder genialer Schachzug) Copyright 2017 ITGAIN GmbH 1 AGENDA ITGAIN Big SQL Aktionen PoC

Mehr

Big Data im Retail-Sektor am Beispiel Kassenbondaten

Big Data im Retail-Sektor am Beispiel Kassenbondaten Big Data im Retail-Sektor am Beispiel Kassenbondaten REWE Systems GmbH Jonas Freiknecht inovex GmbH Bernhard Schäfer Business Analytics Day, 08.03.2017 AGENDA 1. Vorstellung REWE Systems GmbH und inovex

Mehr

Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien

Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien Wir unternehmen IT. Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien Karlsruhe, 30.09.2015 $id thgreiner Thorsten Greiner Teamleiter Software Development ConSol* Software GmbH, Düsseldorf

Mehr

Datenbanken & Informationssysteme (WS 2016/2017)

Datenbanken & Informationssysteme (WS 2016/2017) Datenbanken & Informationssysteme (WS 2016/2017) Klaus Berberich (klaus.berberich@htwsaar.de) Wolfgang Braun (wolfgang.braun@htwsaar.de) 0. Organisatorisches Dozenten Klaus Berberich (klaus.berberich@htwsaar.de)

Mehr

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" HANS-JOACHIM EDERT

WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN? HANS-JOACHIM EDERT WEBINAR@LUNCHTIME THEMA: SAS TOOLS FÜR DIE DATENVERARBEITUNG IN HADOOP ODER WIE REITET MAN ELEFANTEN?" Copyr i g ht 2012, SAS Ins titut e Inc. All rights res er ve d. HANS-JOACHIM EDERT EBINAR@LUNCHTIME

Mehr

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe Hadoop Demo HDFS, Pig & Hive in Action Oracle DWH Konferenz 2014 Carsten Herbe Wir wollen eine semi-strukturierte Textdatei in Hadoop verarbeiten und so aufbereiten, dass man die Daten relational speichern

Mehr

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen DATA WAREHOUSE Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen Alfred Schlaucher, Detlef Schroeder DATA WAREHOUSE Themen Big Data Buzz Word oder eine neue Dimension

Mehr

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration June 2015 Automic Hadoop Agent Data Automation - Hadoop Integration + Aufbau der Hadoop Anbindung + Was ist eigentlich ist MapReduce? + Welches sind die Stärken von Hadoop + Welches sind die Schwächen

Mehr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr Peter Dikant mgm technology partners GmbH Echtzeitsuche mit Hadoop und Solr ECHTZEITSUCHE MIT HADOOP UND SOLR PETER DIKANT MGM TECHNOLOGY PARTNERS GMBH WHOAMI peter.dikant@mgm-tp.com Java Entwickler seit

Mehr

O-BIEE Einführung mit Beispielen aus der Praxis

O-BIEE Einführung mit Beispielen aus der Praxis O-BIEE Einführung mit Beispielen aus der Praxis Stefan Hess Business Intelligence Trivadis GmbH, Stuttgart 2. Dezember 2008 Basel Baden Bern Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg

Mehr

Review Freelancer-Workshop: Fit für Big Data. Mittwoch, 29.04.2015 in Hamburg

Review Freelancer-Workshop: Fit für Big Data. Mittwoch, 29.04.2015 in Hamburg Review Freelancer-Workshop: Fit für Big Data Mittwoch, 29.04.2015 in Hamburg Am Mittwoch, den 29.04.2015, hatten wir von productive-data in Zusammenarbeit mit unserem langjährigen Partner Informatica zu

Mehr

Möglichkeiten für bestehende Systeme

Möglichkeiten für bestehende Systeme Möglichkeiten für bestehende Systeme Marko Filler Bitterfeld, 27.08.2015 2015 GISA GmbH Leipziger Chaussee 191 a 06112 Halle (Saale) www.gisa.de Agenda Gegenüberstellung Data Warehouse Big Data Einsatz-

Mehr

Big Data Anwendungen Chancen und Risiken

Big Data Anwendungen Chancen und Risiken Big Data Anwendungen Chancen und Risiken Dr. Kurt Stockinger Studienleiter Data Science, Dozent für Informatik Zürcher Hochschule für Angewandte Wissenschaften Big Data Workshop Squeezing more out of Data

Mehr

Roadshow - What s new in SQL Server 2016

Roadshow - What s new in SQL Server 2016 1 Roadshow - What s new in SQL Server 2016 Kursleitung: Dieter Rüetschi (ruetschi@ability-solutions.ch) 2 Inhalt Fachreferat Everything-Built-In Mission Critical Plattform Security Hochverfügbarkeit Advanced

Mehr

SODA. Die Datenbank als Document Store. Rainer Willems. Master Principal Sales Consultant Oracle Deutschland B.V. & Co. KG

SODA. Die Datenbank als Document Store. Rainer Willems. Master Principal Sales Consultant Oracle Deutschland B.V. & Co. KG SODA Die Datenbank als Document Store Rainer Willems Master Principal Sales Consultant Oracle Deutschland B.V. & Co. KG vs No Anforderungskonflikte Agile Entwicklung Häufige Schema-Änderungen Relationales

Mehr

Step 0: Bestehende Analyse-Plattform

Step 0: Bestehende Analyse-Plattform Die Themen 09:30-09:45 Einführung in das Thema (Oracle) 09:45-10:15 Hadoop in a Nutshell (metafinanz) 10:15-10:45 Hadoop Ecosystem (metafinanz) 10:45-11:00 Pause 11:00-11:30 BigData Architektur-Szenarien

Mehr

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel Carsten Herbe metafinanz Informationssysteme GmbH In unserer Business Line Business Intelligence & Risk gibt es fünf Bereiche: Risk,

Mehr

Big Data Hype und Wirklichkeit Bringtmehrauchmehr?

Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Günther Stürner, Vice President Sales Consulting 1 Copyright 2011, Oracle and/or its affiliates. All rights Überschrift 2 Copyright 2011, Oracle and/or

Mehr

Wide column-stores für Architekten

Wide column-stores für Architekten Wide column-stores für Architekten Andreas Buckenhofer Daimler TSS GmbH Ulm Schlüsselworte Big Data, Hadoop, HBase, Cassandra, Use Cases, Row Key, Hash Table NoSQL Datenbanken In den letzten Jahren wurden

Mehr

90 Prozent der heute weltweit vorhandenen Daten wurden dabei erst in den letzten zwei Jahren generiert.

90 Prozent der heute weltweit vorhandenen Daten wurden dabei erst in den letzten zwei Jahren generiert. QualysoftGruppe Jeden Tag werden 2,5 Trillionen Byte an Daten erstellt. 90 Prozent der heute weltweit vorhandenen Daten wurden dabei erst in den letzten zwei Jahren generiert. Diese Daten stammen aus

Mehr

Trends im Markt für Business Intelligence. Patrick Keller, Senior Analyst & Prokurist CeBIT 2016

Trends im Markt für Business Intelligence. Patrick Keller, Senior Analyst & Prokurist CeBIT 2016 Trends im Markt für Business Intelligence Patrick Keller, Senior Analyst & Prokurist CeBIT 2016 18.03.2016 BARC 2016 2 IT Meta-Trends 2016 Digitalisierung Consumerization Agilität Sicherheit und Datenschutz

Mehr

Big Data. Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover

Big Data. Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover Big Data Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover Agenda Was ist Big Data? Parallele Programmierung Map/Reduce Der Big Data Zoo 2 3Vs oder: Was ist Big Data? Deutsche Telekom:

Mehr

Big Data Konnektoren: Hadoop und die Oracle DB

Big Data Konnektoren: Hadoop und die Oracle DB Big Data Konnektoren: Hadoop und die Oracle DB Philipp Loer ORDIX AG, Paderborn Schlüsselwörter Hadoop, Hive, OLH, OSCH Einleitung Der Vortrag beginnt mit einer Einführung in die Big Data Welt mit Apache

Mehr

Fast Analytics on Fast Data

Fast Analytics on Fast Data Fast Analytics on Fast Data Kudu als Storage Layer für Banking Applikationen Problem Klassischer Kreditprozess Beantragung in der Filiale Aufwendiger Prozess Nachweis durch Dokumente Manuelle Bewilligung

Mehr

Living Lab Big Data Konzeption einer Experimentierplattform

Living Lab Big Data Konzeption einer Experimentierplattform Living Lab Big Data Konzeption einer Experimentierplattform Dr. Michael May Berlin, 10.12.2012 Fraunhofer-Institut für Intelligente Analyseund Informationssysteme IAIS www.iais.fraunhofer.de Agenda n Ziele

Mehr

Data Mart Offload nach Hadoop Star Schema in HDFS anstatt RDBMS. Carsten Herbe DOAG Konferenz November 2014

Data Mart Offload nach Hadoop Star Schema in HDFS anstatt RDBMS. Carsten Herbe DOAG Konferenz November 2014 Data Mart Offload nach Hadoop Star Schema in HDFS anstatt RDBMS Carsten Herbe DOAG Konferenz November 2014 Wir fokussieren mit unseren Services die Herausforderungen des Marktes und verbinden Mensch und

Mehr

Big Data und SQL - das passt! Philipp Loer ORDIX AG Paderborn

Big Data und SQL - das passt! Philipp Loer ORDIX AG Paderborn Schlüsselworte Hadoop, Hive, Sqoop, SQL Big Data und SQL - das passt! Philipp Loer ORDIX AG Paderborn Einleitung In diesem Vortrag werden, nach einer kurzen Einführung in Apache Hadoop, die beiden Werkzeuge

Mehr

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2 Seminar Cloud Data Management WS09/10 Tabelle1 Tabelle2 1 Einführung DBMS in der Cloud Vergleich verschiedener DBMS Beispiele Microsoft Azure Amazon RDS Amazon EC2 Relational Databases AMIs Was gibt es

Mehr

Apache HBase. A BigTable Column Store on top of Hadoop

Apache HBase. A BigTable Column Store on top of Hadoop Apache HBase A BigTable Column Store on top of Hadoop Ich bin... Mitch Köhler Selbstständig seit 2010 Tätig als Softwareentwickler Softwarearchitekt Student an der OVGU seit Oktober 2011 Schwerpunkte Client/Server,

Mehr

Dokumentenorientierte Datenbanken - MongoDB

Dokumentenorientierte Datenbanken - MongoDB Dokumentenorientierte Datenbanken - MongoDB Jan Hentschel Ultra Tendency UG Übersicht Dokumente sind unabhängige Einheiten Bessere Performance (zusammengehörige Daten werden gemeinsam gelesen) Objektmodell

Mehr

Neues aus der nicht-, semi- und relationalen Welt

Neues aus der nicht-, semi- und relationalen Welt Neues aus der nicht-, semi- und relationalen Welt Information Management Thomas Klughardt Senior System Consultant Das Big Data Problem Was bedeutet Big Data? Performancekritisch Echtzeit Cold Storage

Mehr

Hadoop und SAS Status und Ausblick WIEN, JUNI 2015 GERNOT ENGEL, CLIENT SERVICE MANAGER SAS AUSTRIA

Hadoop und SAS Status und Ausblick WIEN, JUNI 2015 GERNOT ENGEL, CLIENT SERVICE MANAGER SAS AUSTRIA Copyright o p y r i g h t 2012, 2 0 1 2, SAS S A S Institute s t i t u tinc e In. c All. Arights l l r i g hreserved. t s r e s e r ve d. Hadoop und SAS Status und Ausblick WIEN, JUNI 2015 GERNOT ENGEL,

Mehr

EXASOL Anwendertreffen 2012

EXASOL Anwendertreffen 2012 EXASOL Anwendertreffen 2012 EXAPowerlytics Feature-Architektur EXAPowerlytics In-Database Analytics Map / Reduce Algorithmen Skalare Fkt. Aggregats Fkt. Analytische Fkt. Hadoop Anbindung R LUA Python 2

Mehr

Oracle Big Data Discovery Ein Überblick

Oracle Big Data Discovery Ein Überblick Oracle Big Data Discovery Ein Überblick Hadoop Data Reservoir gewinnt weiter an Bedeutung Data Warehouse Bekannte Datenquellen Data Reservoir Entstehende Datenquellen Hadoop Umsatz und Forecast 49% CAGR,

Mehr

Big Data im Call Center: Kundenbindung verbessern, Antwortzeiten verkürzen, Kosten reduzieren! 25.02.2016 Sascha Bäcker Dr.

Big Data im Call Center: Kundenbindung verbessern, Antwortzeiten verkürzen, Kosten reduzieren! 25.02.2016 Sascha Bäcker Dr. Big Data im Call Center: Kundenbindung verbessern, Antwortzeiten verkürzen, Kosten reduzieren! 25.02.2016 Sascha Bäcker Dr. Florian Johannsen AGENDA 1. Big Data Projekt der freenet Group Dr. Florian Johannsen

Mehr

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator Agenda Was ist Business Intelligence? Was ist OLAP? Unterschied zwischen OLAP und OLTP? Bestandteile

Mehr

ETL in den Zeiten von Big Data

ETL in den Zeiten von Big Data ETL in den Zeiten von Big Data Dr Oliver Adamczak, IBM Analytics 1 1 Review ETL im Datawarehouse 2 Aktuelle Herausforderungen 3 Future of ETL 4 Zusammenfassung 2 2015 IBM Corporation ETL im Datawarehouse

Mehr

Clouds. Erwartungen der Nutzer. Wolkig bis Heiter. (c) 2013, Peter Sturm, Universität Trier. Er ist verwöhnt! Er ist nicht dankbar!

Clouds. Erwartungen der Nutzer. Wolkig bis Heiter. (c) 2013, Peter Sturm, Universität Trier. Er ist verwöhnt! Er ist nicht dankbar! Clouds Wolkig bis Heiter Erwartungen der Nutzer Er ist verwöhnt! Verfügbarkeit Viele Anwendungen Intuitive Interfaces Hohe Leistung Er ist nicht dankbar! Mehr! Mehr! Mehr! Moore 1 Erwartungen der Entwickler

Mehr

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden

Mehr

Hadoop Projekte Besonderheiten & Vorgehensweise. Oracle/metafinanz Roadshow Februar 2014

Hadoop Projekte Besonderheiten & Vorgehensweise. Oracle/metafinanz Roadshow Februar 2014 Hadoop Projekte Besonderheiten & Vorgehensweise Oracle/metafinanz Roadshow Februar 2014 Head of Data Warehousing DWH Principal Consultant DWH Senior Consultant Wir fokussieren mit unseren Services die

Mehr

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes Hadoop Eine Open-Source-Implementierung von MapReduce und BigTable von Philipp Kemkes Hadoop Framework für skalierbare, verteilt arbeitende Software Zur Verarbeitung großer Datenmengen (Terra- bis Petabyte)

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

Datenbanken (WS 2015/2016)

Datenbanken (WS 2015/2016) Datenbanken (WS 2015/2016) Klaus Berberich (klaus.berberich@htwsaar.de) Wolfgang Braun (wolfgang.braun@htwsaar.de) 0. Organisatorisches Dozenten Klaus Berberich (klaus.berberich@htwsaar.de) Sprechstunde

Mehr

Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen

Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen Brownbag am Freitag, den 26.07.2013 Daniel Bäurer inovex GmbH Systems Engineer Wir nutzen Technologien, um unsere Kunden glücklich zu machen. Und

Mehr

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte. TRACK I Big Data Analytics & Self Service BI

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte. TRACK I Big Data Analytics & Self Service BI 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015 Symbiose hybrider Architekturen im Zeitalter digitaler Transformation Hannover, 18.03.2015 Business Application Research Center (BARC) B (Analystengruppe Europas führendes IT-Analysten- und -Beratungshaus

Mehr

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Oracle DWH-Konferenz 21. März 2012 Dr. Carsten Bange Gründer & Geschäftsführer BARC Big Data bietet Methoden und Technologien

Mehr

ODI und Big Data Möglichkeiten und ein Erfahrungsbericht Dr. Holger Dresing Oracle Deutschland B.V. & Co. KG Hannover

ODI und Big Data Möglichkeiten und ein Erfahrungsbericht Dr. Holger Dresing Oracle Deutschland B.V. & Co. KG Hannover ODI und Big Data Möglichkeiten und ein Erfahrungsbericht Dr. Holger Dresing Oracle Deutschland B.V. & Co. KG Hannover Schlüsselworte Oracle Data Integrator ODI, Big Data, Hadoop, MapReduce,, HDFS, PIG,

Mehr

Textanalyse mit UIMA und Hadoop.!! Hans-Peter Zorn data2day, Karlsruhe, 27.11.2014

Textanalyse mit UIMA und Hadoop.!! Hans-Peter Zorn data2day, Karlsruhe, 27.11.2014 Textanalyse mit UIMA und Hadoop Hans-Peter Zorn data2day, Karlsruhe, 27.11.2014 Über mich seit 2014: Big Data Scientist @ Inovex 2011-2013: TU Darmstadt, UKP Lab Etablierung der Hadoop-Infrastruktur Unterstützung

Mehr

einfach. gut. beraten. Oracle Big Data Konnektoren: Hadoop und die Oracle DB DOAG Konferenz + Ausstellung 2016 Nürnberg Philipp Loer

einfach. gut. beraten. Oracle Big Data Konnektoren: Hadoop und die Oracle DB DOAG Konferenz + Ausstellung 2016 Nürnberg Philipp Loer einfach. gut. beraten. Oracle Big Data Konnektoren: Hadoop und die Oracle DB DOAG Konferenz + Ausstellung 2016 Nürnberg Philipp Loer info@ordix.de www.ordix.de Agenda Hadoop Hive OLH: Oracle Loader for

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

on Azure mit HDInsight & Script Ac2ons

on Azure mit HDInsight & Script Ac2ons Willkommen beim #GAB 2015! on Azure mit HDInsight & Script Ac2ons Lokale Sponsoren: HansPeter Grahsl Netconomy Entwickler & Berater FH CAMPUS 02 Twi9er: @hpgrahsl Überblick Inhalte Was ist HDInsight? Wozu

Mehr

TOP 8 TRENDS FÜR 2016 BIG DATA

TOP 8 TRENDS FÜR 2016 BIG DATA In der Welt der Big Data war 2015 ein wichtiges Jahr. Was als Hype begann, wurde zum Standard, da immer mehr Unternehmen erkannten, dass Daten in allen Formaten und Größen die zentrale Grundlage für bestmögliche

Mehr

Logical Data Warehouse SQL mit Oracle DB und Hadoop

Logical Data Warehouse SQL mit Oracle DB und Hadoop Logical Data Warehouse SQL mit Oracle DB und Hadoop Matthias Fuchs DWH Architekt ISE Information Systems Engineering GmbH Ingo Reisky Senior Consultant Opitz Consulting Deutschland GmbH ISE Information

Mehr

Vorwort zur 5. Auflage... 15 Über den Autor... 16

Vorwort zur 5. Auflage... 15 Über den Autor... 16 Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung

Mehr

Einführung in Big Data und Hadoop (mit verschiedenen Live Demos) Eintägiges Intensivseminar

Einführung in Big Data und Hadoop (mit verschiedenen Live Demos) Eintägiges Intensivseminar Einführung in Big Data und Hadoop (mit verschiedenen Live Demos) Eintägiges Intensivseminar Die Referenten sind keine exklusiven Trainer, sondern Berater aus dem Projektgeschäft, die auch Trainings durchführen.

Mehr

MySQL High Availability. DOAG 2013 Datenbank. 14. Mai 2013, Düsseldorf. Oli Sennhauser

MySQL High Availability. DOAG 2013 Datenbank. 14. Mai 2013, Düsseldorf. Oli Sennhauser MySQL High Availability DOAG 2013 Datenbank 14. Mai 2013, Düsseldorf Oli Sennhauser Senior MySQL Berater, FromDual GmbH oli.sennhauser@fromdual.com 1 / 23 Über FromDual GmbH FromDual bietet neutral und

Mehr

Hadoop. Simon Prewo. Simon Prewo

Hadoop. Simon Prewo. Simon Prewo Hadoop Simon Prewo Simon Prewo 1 Warum Hadoop? SQL: DB2, Oracle Hadoop? Innerhalb der letzten zwei Jahre hat sich die Datenmenge ca. verzehnfacht Die Klassiker wie DB2, Oracle usw. sind anders konzeptioniert

Mehr

Big Data. Mit DVD. Was ist wichtig im Hadoop-Ökosystem? Hadoop 2 als universelle Data Processing Platform

Big Data. Mit DVD. Was ist wichtig im Hadoop-Ökosystem? Hadoop 2 als universelle Data Processing Platform Mit DVD Jobs im Wandel: Was für Informatiker bedeutet 2/2015 Auf der Heft-DVD Über 8 GByte Software für Entwickler Multimedia: 5 Videos zur Hoch leistungsdatenbank EXASolution Hadoop: Cloudera s Distribution

Mehr

Datenbanken & Informationssysteme (WS 2015/2016)

Datenbanken & Informationssysteme (WS 2015/2016) Datenbanken & Informationssysteme (WS 2015/2016) Klaus Berberich (klaus.berberich@htwsaar.de) Wolfgang Braun (wolfgang.braun@htwsaar.de) 0. Organisatorisches Dozenten Klaus Berberich (klaus.berberich@htwsaar.de)

Mehr

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Konrad Linner, solvistas GmbH Nürnberg, 20.November 2012 Inhaltsverzeichnis Vorstellung solvistas

Mehr

Schneller als Hadoop?

Schneller als Hadoop? Schneller als Hadoop? Einführung in Spark Cluster Computing 19.11.2013 Dirk Reinemann 1 Agenda 1. Einführung 2. Motivation 3. Infrastruktur 4. Performance 5. Ausblick 19.11.2013 Dirk Reinemann 2 EINFÜHRUNG

Mehr

Oracle Data Integrator Ein Überblick

Oracle Data Integrator Ein Überblick Oracle Data Integrator Ein Überblick Uwe Barz Christoph Jansen Hamburg, 15.04.2008 Basel Baden Bern Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg München Stuttgart Wien Agenda Überblick

Mehr

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zettabyte CeBIT 2011 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zetabyte: analytische Datenbanken Die Datenflut. Analytische Datenbanken: Was ist neu? Analytische Datenbanken:

Mehr

Spark, Impala und Hadoop in der Kreditrisikoberechnung

Spark, Impala und Hadoop in der Kreditrisikoberechnung Spark, Impala und Hadoop in der Kreditrisikoberechnung Big Data In-Memory-Technologien für mittelgroße Datenmengen TDWI München, 22. Juni 2015 Joschka Kupilas, Data Scientist, Adastra GmbH 2 Inhalt Vorwort

Mehr

Hadoop Administrator Training Viertägiges Intensivseminar

Hadoop Administrator Training Viertägiges Intensivseminar Hadoop Administrator Training Viertägiges Intensivseminar Die Referenten sind keine exklusiven Trainer, sondern Berater aus dem Projektgeschäft, die auch Trainings durchführen. Das kann man nicht hoch

Mehr

Bernd Fondermann brainlounge. Blaue oder rote Pille: SQL oder MapReduce?

Bernd Fondermann brainlounge. Blaue oder rote Pille: SQL oder MapReduce? Bernd Fondermann brainlounge Blaue oder rote Pille: SQL oder MapReduce? TODOs pills on all pages upd source code 1 Blaue oder rote Pille - SQL oder MapReduce? Bernd Fondermann, BigDataCon/JAX 2012 2 Rote

Mehr

Hadoop & SQL Wie Hadoop um SQL erweitert werden kann. Oracle/metafinanz Roadshow 11./18. Februar

Hadoop & SQL Wie Hadoop um SQL erweitert werden kann. Oracle/metafinanz Roadshow 11./18. Februar Hadoop & SQL Wie Hadoop um SQL erweitert werden kann Oracle/metafinanz Roadshow 11./18. Februar Head of Data Warehousing DWH Principal Consultant DWH Senior Consultant Wir fokussieren mit unseren Services

Mehr

!! Waldemar Reger Köln,

!! Waldemar Reger Köln, Analyse und Evaluierung von Parameterabhängigkeiten anhand der Laufzeit von MapReduce-Jobs zur Konzeptionierung von Hadoop-Clustern Waldemar Reger Köln, 23.07.2014 Agenda 1. Hadoop Grundlagen 2. Cluster

Mehr

Big Data für die Internet Sicherheit

Big Data für die Internet Sicherheit Big Data für die Internet Sicherheit Ralph Kemperdick Hans Wieser Microsoft 1 Mobile-first Data-driven Cloud-first 2 2 3 Messenger Wi nd ow s Liv e 4 5 Anwendung: Das Microsoft Cybercrime Center 6 Betrug

Mehr

Optimierung von Analytischen Abfragen über Statistical Linked Data mit MapReduce

Optimierung von Analytischen Abfragen über Statistical Linked Data mit MapReduce Optimierung von Analytischen Abfragen über Statistical Linked Data mit MapReduce Sébastien Jelsch 1, Benedikt Kämpgen 1 und Stefan Igel 2 1 FZI Forschungszentrum Informatik sebastien.jelsch@fzi.de, kaempgen@fzi.de

Mehr

Big Data Mythen und Fakten

Big Data Mythen und Fakten Big Data Mythen und Fakten Mario Meir-Huber Research Analyst, IDC Copyright IDC. Reproduction is forbidden unless authorized. All rights reserved. About me Research Analyst @ IDC Author verschiedener IT-Fachbücher

Mehr

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit BI Konsolidierung: Anspruch & Wirklichkeit Jacqueline Bloemen in Kooperation mit Agenda: Anspruch BI Konsolidierung Treiber Was sind die aktuellen Treiber für ein Konsolidierungsvorhaben? Kimball vs. Inmon

Mehr

Hadoop Ecosystem Vorstellung der Komponenten. Oracle/metafinanz Roadshow Februar 2014

Hadoop Ecosystem Vorstellung der Komponenten. Oracle/metafinanz Roadshow Februar 2014 Hadoop Ecosystem Vorstellung der Komponenten Oracle/metafinanz Roadshow Februar 2014 Head of Data Warehousing DWH Principal Consultant DWH Senior Consultant Wir fokussieren mit unseren Services die Herausforderungen

Mehr

Der Weg zum datengetriebenen Unternehmen

Der Weg zum datengetriebenen Unternehmen Der Weg zum datengetriebenen Unternehmen Big Data als Chance und Herausforderung mainit Keynote 25.9.2014 Alexander Kagoshima Alexander Kagoshima Data Scientist Big Data Trend Wachsende Daten 40.000 Quelle:

Mehr

Dokumentation QuickHMI-Schnittstelle für Oracle Datenbanken

Dokumentation QuickHMI-Schnittstelle für Oracle Datenbanken Dokumentation QuickHMI-Schnittstelle für Oracle Datenbanken Version 2.0 D-28359 Bremen info@indi-systems.de Tel + 49 421-989703-30 Fax + 49 421-989703-39 Inhaltsverzeichnis Was ist die QuickHMI-Schnittstelle

Mehr

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer Big in Azure Ein Beispiel mit HD Insight Ralf Stemmer Agenda owas ist Big? Was ist HD Insight? owelche Probleme kann man damit lösen? odemo Was ist Big? Was ist HD Insight? Datenexplosion - Rasanter Zuwachs

Mehr

MapReduce und Datenbanken Thema 15: Strom bzw. Onlineverarbeitung mit MapReduce

MapReduce und Datenbanken Thema 15: Strom bzw. Onlineverarbeitung mit MapReduce MapReduce Jan Kristof Nidzwetzki MapReduce 1 / 17 Übersicht 1 Begriffe 2 Verschiedene Arbeiten 3 Ziele 4 DEDUCE: at the intersection of MapReduce and stream processing Beispiel 5 Beyond online aggregation:

Mehr

Copyright 2014 Oracle and/or its affiliates. All rights reserved.

Copyright 2014 Oracle and/or its affiliates. All rights reserved. The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material,

Mehr

MySQL Replikation. Erkan Yanar erkan.yanar@linsenraum.de linsenraum.de 19.11.2013. linsenraum.de

MySQL Replikation. Erkan Yanar erkan.yanar@linsenraum.de linsenraum.de 19.11.2013. linsenraum.de MySQL Replikation Erkan Yanar erkan.yanar@linsenraum.de linsenraum.de linsenraum.de 19.11.2013 Erkan Yanar erkan.yanar@linsenraum.de linsenraum.de (linsenraum.de) MySQL Replikation 19.11.2013 1 / 37 Who

Mehr

Datenaustausch Hadoop & Oracle DB. DOAG Konferenz 2013 Nürnberg, 19.-21. November 2013 Carsten Herbe metafinanz Informationssysteme GmbH

Datenaustausch Hadoop & Oracle DB. DOAG Konferenz 2013 Nürnberg, 19.-21. November 2013 Carsten Herbe metafinanz Informationssysteme GmbH DOAG Konferenz 2013 Nürnberg, 19.-21. November 2013 Carsten Herbe metafinanz Informationssysteme GmbH Wir fokussieren mit unseren Services die Herausforderungen des Marktes und verbinden Mensch und IT.

Mehr

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution EXASOL @ Symposium on Scalable Analytics Skalierbare Analysen mit EXASolution EXASOL AG Wer sind wir R&D: + seit 2000 + laufend Forschungsprojekte Produkt: Analytische Datenbank EXASolution Focus auf Komplexität

Mehr

Social Business, Einsatz von Collaboration und Office Apps im Unternehmen

Social Business, Einsatz von Collaboration und Office Apps im Unternehmen NACHLESE zur Microsoft Synopsis 2013 Social Business, Einsatz von Collaboration und Office Apps im Unternehmen SharePoint 2013 und seine Social Features Alegri International Group, 2013 Social Business,

Mehr

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache Lucene Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org 1 Apache Apache Software Foundation Software free of charge Apache Software

Mehr

R Statistik im Oracle Produktstack

R Statistik im Oracle Produktstack R Statistik im Oracle Produktstack Matthias Fuchs DWH Architect ISE Information Systems Engineering GmbH ISE Information Systems Engineering Gegründet 1991 Mitarbeiteranzahl: 50 Hauptsitz in Gräfenberg,

Mehr

Urs Meier (urs.meier@trivadis.com) Art der Info Technical Info (Februar 2002) Aus unserer Projekterfahrung und Forschung

Urs Meier (urs.meier@trivadis.com) Art der Info Technical Info (Februar 2002) Aus unserer Projekterfahrung und Forschung Betrifft Optimizer Autor Urs Meier (urs.meier@trivadis.com) Art der Info Technical Info (Februar 2002) Quelle Aus unserer Projekterfahrung und Forschung Einführung Mit jedem Oracle Release nimmt die Anzahl

Mehr

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing Seminar in der Seminarreihe Business Intelligence 1 OLAP und Datawarehousing OLAP & Warehousing Die wichtigsten Produkte Die Gliederung Produkt Bewertung & Vergleiche Die Marktentwicklung Der aktuelle

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

Google Caffeine. Was ist es, was ändert sich, wie bereite ich mich vor?

Google Caffeine. Was ist es, was ändert sich, wie bereite ich mich vor? Google Caffeine Was ist es, was ändert sich, wie bereite ich mich vor? Wer ist das? Johannes Beus, SISTRIX Suchmaschinenoptimierung seit 5 Monaten Betrieb eigener Webprojekte unterschiedlichster Themengebiete

Mehr