Data Warehousing: Anwendungsbeispiel

Größe: px
Ab Seite anzeigen:

Download "Data Warehousing: Anwendungsbeispiel"

Transkript

1 Frühjahrsemester 2012 cs242 Data Warehousing / cs243 Datenbanken Kapitel 1: Einführung H. Schuldt Data Warehousing: Anwendungsbeispiel Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale Liestal Anfragen: Welches Produkt hat sich am in der Filiale Allschwil am besten verkauft? Was wird in der Filiale Muttenz zusammen mit Chips verkauft?... SQL FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung 1-2 1

2 Anwendungsbeispiel Weitere Anfragen: Wie viele Flaschen Bier wurden insgesamt im letzten Monat (im letzen Jahr) verkauft? Wie hat sich der Verkauf von Vanilleglace im letzten Quartal entwickelt? Wer sind unsere Top-Kunden mit Kumulier-Karte? Von welchem Lieferanten beziehen wir die meisten Produkte? Probleme Zusätzlich zu den operativen Tresgros-Datenbanken müssen noch externe Quellen (Kundendatenbank, Lieferantendatenbank, ) genutzt werden Daten mit historischem Bezug sind nötig (evtl. nicht mehr im Produktivsystem) Immer schneller wachsende Datenmengen in einelnen Anwendungen bis zu mehrern PetaBytes (10 15 ) FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung 1-3 Informationssysteme Informationssysteme in Unternehmen bauen in den seltensten Fällen auf einer zentralen Datenbank auf Vielmehr bestehen solche Informationssysteme aus einer Vielzahl von zumeist verteilten, heterogenen operationalen Datenbanksystemen (und zugehörigen Anwendungen) Lagerverwaltung Verkäufe Buchhaltung Human Resources Einkauf FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung 1-4 2

3 Anwendungsbeispiel Weitere Anfragen Verkaufen wir in Gelterkinden mehr Dosenbier als in Lausen? Wie viel Vanilleglace wurde im Sommer im ganzen Kanton (in der ganzen Deutschschweiz) verkauft? Wie verhalten sich die Verkaufszahlen von Vollmilchschokolade zu Edelbitterschokolade, in welchem Monat war welche Sorte beliebter? Problem Es sind nun Anfragen über mehreren operativen Filial-Datenbanken nötig FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung 1-5 Anwendungsbeispiel Wie lassen sich diese Probleme lösen? Variante 1: Verteilte Datenbank Jede Anfrage wird als globale Anfrage über mehreren Datenbanken behandelt. Also muss bei jeder Anfrage auf eine Reihe von Systemen zugegriffen werden, Ergebnisse müssen zusammengeführt werden, etc. Nachteil: verteilte Anfrageausführung ist sehr aufwändig! Variante 2: Zentrale Datenbank Anstelle von unabhängigen Filialdatenbanken betreibt Tresgros eine zentrale Datenbank. Alle Änderungen finden nicht lokal statt sondern gehen zu dieser zentralen Datenbank Nachteil: dies ist mit langen Antwortzeiten im operativen Betrieb verbunden Variante 3: Data Warehouse FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung 1-6 3

4 Verteilte, Heterogene Umgebungen Verteilte Anwendungen und Informationssysteme (T Vorlesung im Master-Programm) Unterschiedliche Datenmodelle Lagerverwaltung Verkäufe Buchhaltung Human Resources Einkauf FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung 1-7 Verteilte, Heterogene Umgebungen Datenintegration Datenqualität Lagerverwaltung Verkäufe Buchhaltung Human Resources Einkauf FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung 1-8 4

5 Anwendungsbeispiel Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale Liestal Asynchrone Aktualisierung (Warehouse Update) Data Warehouse Redundante Datenhaltung, Transformierte, vorberechnete Daten FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung 1-9 Anwendungsbeispiel Weitere Anfragen Überprüfung des Warensortiments: Was sind unsere Ladenhüter bzw. Verkaufsschlager? Müssen Waren von einer Filiale (weil dort Ladenhüter) zu einer anderen (weil dort Verkaufsschlager) transportiert werden Standortanalyse: ist eine Niederlassung in XYZ rentabel? Hatte die letzte Marketing-Aktion den erwünschten Erfolg? Wann/wo fallen besonders häufig Reklamationen an? In welcher Filiale muss der Lagerbestand aufgefüllt werden? Welche Klassen von Kunden haben wir (basierend auf Warenkorbanalyse mit Hilfe der Kassenbons bzw. mit Hilfe der Kumulier-Karte)? Welche Umsätze wurden in den Jahren 2010 und 2011 in den Abteilungen Non-Food (Haushaltswaren) und Do-It-Yourself (Heimwerker) in den Kantonen Obwalden und Nidwalden generiert? FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung

6 Analytische Auswertungen auf Daten In vielen Anwendungen wird zwischen operationaler Verwendung (Online Transaction Processing, ) dem eigentlichen Tagesgeschäft und analytischen Auswertungen (Online Analytical Processing, OLAP) unterschieden. Zur Unterstützung von OLAP-Anfragen wird ein Data Warehouse verwendet, das mit Daten der unterschiedlichen operativen Systeme versorgt wird Data Warehouse OLAP FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung 1-11 Data Warehousing Zugriff auf und Kombination von Daten aus mehreren unterschiedlichen Quellen Komplexe Datenanalyse über mehreren Quellen Multidimensionale Sichten auf die Daten, die die jeweilige Perspektive reflektieren, Analyse der zeitlichen Entwicklung, auch wenn Datenquellen sich auf aktuellen Datenbank-Zustand beschränken Data Warehouse OLAP FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung

7 Daten-Analyse 1. Benutzer extrahiert Daten mit Anfrage aus der Datenbank 2. die Daten werden analysiert Spread Sheet Table 3. und visualisiert (z.b. mit Desktop Tools) Size vs Speed Price vs Speed 10 4 Nearline Cache Tape Offline Tape Main 10 2 Disc Secondary Size(B) 10 9 Online Online $/MB Secondary Tape Disc Tape Main Nearline Tape Offline Tape Cache Access Time (seconds) Access Time (seconds) FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung 1-13 Aufbau von Data Warehouse-Systemen DW Monitoring & Administration Quellsysteme Metadaten- Repository OLAP-Server Externe Quellen Operative Datenbanken Extraktion Transformation Laden Data Warehouse Analyse Query/Reporting Data Mining Werkzeuge Data Marts FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung

8 Aufbau von Data Warehouse-Systemen Quellsysteme Alle Systeme oder Dateien, die direkt oder indirekt als Datenlieferanten auftreten Daten werden in einem Extraktionsvorgang aus den Quellsystemen extrahiert und in das Data Warehouse eingefügt (Transformation) Extraktion, Transformation, Laden Monitore überwachen die Quellsysteme auf Veränderungen. Änderungen werden entweder direkt in das Data Warehouse eingespielt oder (häufiger) temporär gesammelt und offline in das Data Warehouse eingefügt ( Warehouse Update ) Extraktoren: Selektion und Transport der Daten aus Quellen in das Data Warehouse Transformatoren: Vereinheitlichung und Bereinigung der Daten (unter Zuhilfenahme von Metadaten) FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung 1-15 Aufbau von Data Warehouse-Systemen Data Warehouse A Data Warehouse is a subject-oriented, integrated, non-volatile, and time variant collection of data in support of managements decisions [ISG 08] Ein Data Warehouse ermöglicht eine globale Sicht auf heterogene und verteilte Datenbestände, indem die für die globale Sicht relevanten Daten aus den Datenquellen zu einem gemeinsamen konsistenten Datenbestand zusammengeführt werden Das Data Warehouse ist die Basis für die Aggregation von Daten innerhalb mehrdimensionaler Strukturen (OLAP-Cube), dem so genannten Online Analytical Processing (OLAP) OLAP Explorative, interaktive Datenanalyse, meist aufbauend auf multidimensionalem Datenmodell FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung

9 Aufbau von Data Warehouse-Systemen Data Mart Meist anwendungsspezifische Auszüge, die durch Kopieren von Daten aus dem Data Warehouse entstehen Analysekomponenten Analyse und Präsentation der Daten mit Hilfe geeigneter (Desktop-) Werkzeuge Im Data Warehouse erfolgt eine klare Trennung zwischen operativen und analytischen Systemen Antwortzeitverhalten: Analyse auf operativen Quelldatensystemen würde zur Verschlechterung der Performance führen Langfristige Speicherung der Daten im DW ermöglicht Zeitreihenanalyse Verfügbarkeit: Zugriff auf Daten unabhängig von operativen Datenquellen Einheitliches Datenformat im DW trotz möglicherweise heterogener operativen Systemen Datenqualität: Data Cleansing während des Ladeprozesses FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung 1-17 Data Warehouse: Eigenschaften Subject-oriented: Fachorientierung Zweck des Systems ist nicht Erfüllung einer speziellen Aufgabe (z.b. Materialverwaltung), sondern Modellierung eines spezifischen Anwendungsziels Integrated: Integrierte Datenbasis Verarbeitung von Daten aus mehreren verschiedenen Datenquellen (intern und extern) Non-volatile: Nicht-flüchtige Datenbasis stabile, persistente Datenbasis Daten im DW werden nicht mehr entfernt oder geändert Time-variant: Historische Daten Vergleich der Daten über Zeit möglich (Zeitreihenanalyse) Speicherung über längeren Zeitraum FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung

10 vs. OLAP (Online Transaction Processing) Transaktionsorientierte Datenzugriffe, typischerweise Erfassen von Daten und Lesezugriffe auf diesen Kurze Lese-/ Schreibzugriffe auf wenige Datensätze Tagesgeschäft bedienen Beispiel aus dem Bankbereich: Wie hoch ist mein Kontostand? Beispiele für -Systeme: Buchungssysteme, Lagerverwaltung, Aktien-/ Wertpapierhandel OLAP (On-line Analytical Processing) Konsolidierung, Viewing und Analyse der Daten in mehreren Dimensionen, Berichtsgenerierung (RPG, Decision Support) Lange Lesetransaktionen auf vielen Datensätzen strategische Entscheidungen unterstützen Beispiel: Was ist der Zusammenhang zwischen Kontostand und Häufigkeit von Buchungen? They (the users) don t even know what they want! How can we provide it? FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung 1-19 Operationale Datenbanken vs. Data Warehouses Operationale Datenbanken Data Warehouses Entstehung jeweils für Anwendungsklasse oder aus bestimmter Perspektive heraus Anforderungen bekannt vage mehrere Perspektiven gleichzeitig Bedeutung alltägliche Geschäftsabläufe Entscheidungen des Managements, die sich auf Profitabilität auswirken Datenzugriff Tuning Datenvolumen Ein Aufruf greift auf kurz zuvor erzeugte Daten zu ( liegt nur wenige Zeilen zurück ). Optimiert für häufige Zugriffe auf kleinen Datenmengen Datenbestand wird für operationales Geschäft gebraucht Grosse Datenmengen werden zugegriffen um das Ergebnis zu ermitteln. Optimiert für eher seltene Zugriffe auf grosse Datenmengen Grosser Datenbestand wird für statistische Analysen, Vorhersagen, ad hoc-reports, etc. benötigt FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung

11 OLAP vs. Anfrage transaktional analytisch Fokus Transaktionsdauer und typ Lesen, Schreiben, Modifizieren, Löschen kurze Lese-/ Schreibtransaktionen Lesen, periodisches Hinzufügen lange Lesetransaktionen Anfragestruktur einfach strukturiert komplex Datenvolumen einer Anfrage wenige Datensätze viele Datensätze Datenmodell anfrageflexibel analysebezogen FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung 1-21 Abgrenzung zu : Daten Daten transaktional analytisch Datenquellen meist eine Eigentlich mehrere. Durch Data Warehouse zentraler Einstiegspunkt Eigenschaften Datenvolumen nicht abgeleitet, zeitaktuell, autonom, dynamisch In der Regel im GByte- Bereich abgeleitet/konsolidiert, nicht zeitaktuell, integriert, stabil In der Regel im TByte- Bereich Zugriffe Einzeltupelzugriff Tabellenzugriff FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung

12 Abgrenzung zu : Anwender Anwender transaktional analytisch Anwendertyp Ein-/Ausgabe durch Angestellte oder Applikationssoftware Manager, Controller Analyst Anwenderzahl sehr viele wenige (bis einige hundert) Antwortzeit Im Bereich von ms bis zu wenigen sec Im Bereich von sec bis hin zu mehreren min FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung 1-23 Literatur [ISG 08] W. Inmon, D. Strauss, G. Neushloss: DW 2.0 The Architecture for the Next Generation of Data Warehousing. Morgan Kaufmann, [Leh 03] W. Lehner: Datenbanktechnologie für Data-Warehouse-Systeme Konzepte und Methoden. dpunkt.verlag, FS 2012 Data Warehousing (CS242) / Datenbanken (CS243) Einführung

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

fi Data Warehouse: Sammlung von Technologien zur Unterstützung von Entscheidungsprozessen fi Herausforderung an Datenbanktechnologien

fi Data Warehouse: Sammlung von Technologien zur Unterstützung von Entscheidungsprozessen fi Herausforderung an Datenbanktechnologien Einführung Gegenstand der Vorlesung fi Data Warehouse: Sammlung von Technologien zur Unterstützung von Entscheidungsprozessen fi Herausforderung an Datenbanktechnologien Datenvolumen (effiziente Speicherung

Mehr

Kapitel 4: Data Warehouse Architektur

Kapitel 4: Data Warehouse Architektur Data Warehousing, Motivation Zugriff auf und Kombination von Daten aus mehreren unterschiedlichen Quellen, Kapitel 4: Data Warehousing und Mining 1 komplexe Datenanalyse über mehrere Quellen, multidimensionale

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

1. Einführung. Szenario: Getränkemarkt. DB-Schema. Motivation Überblick Anwendungen Abgrenzung Begriff Data Warehouse DW-Architektur Benchmarks

1. Einführung. Szenario: Getränkemarkt. DB-Schema. Motivation Überblick Anwendungen Abgrenzung Begriff Data Warehouse DW-Architektur Benchmarks . Einführung Motivation Überblick Anwendungen Abgrenzung Begriff Data Warehouse DW-Architektur Benchmarks Sattler / Saake Data-Warehouse-Technologien Szenario: Getränkemarkt Umsatz, Portfolio SSaufland

Mehr

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel Data Warehousing Kapitel 1: Data-Warehousing-Architektur Folien teilweise übernommen von Matthias Gimbel 2 Analyse von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser Umsatz im Vergleich

Mehr

Kapitel 2 Terminologie und Definition

Kapitel 2 Terminologie und Definition Kapitel 2 Terminologie und Definition In zahlreichen Publikationen und Fachzeitschriften tauchen die Begriffe Data Warehouse, Data Warehousing, Data-Warehouse-System, Metadaten, Dimension, multidimensionale

Mehr

Data-Warehouse-Systeme

Data-Warehouse-Systeme Vorlesung im Wintersemester 2008/09 Data-Warehouse-Systeme Dr. Stefanie Rinderle-Ma Institut für Datenbanken und Informationssysteme Universität Ulm stefanie.rinderle@uni-ulm.de Übersicht 1) Einführung

Mehr

Data-Warehouse-Technologien

Data-Warehouse-Technologien Data-Warehouse-Technologien Prof. Dr.-Ing. Kai-Uwe Sattler 1 Prof. Dr. Gunter Saake 2 Dr. Veit Köppen 2 1 TU Ilmenau FG Datenbanken & Informationssysteme 2 Universität Magdeburg Institut für Technische

Mehr

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube Fragen des Marketingleiters Data Warehousing Wie viele Bestellungen haben wir jeweils im Monat vor Weihnachten, aufgeschlüsselt nach? Aufbau eines DWH OLAP OLTP Datacube Beispiel: : Amazon Technisch

Mehr

1 Einleitung. Betriebswirtschaftlich administrative Systeme

1 Einleitung. Betriebswirtschaftlich administrative Systeme 1 1 Einleitung Data Warehousing hat sich in den letzten Jahren zu einem der zentralen Themen der Informationstechnologie entwickelt. Es wird als strategisches Werkzeug zur Bereitstellung von Informationen

Mehr

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 MIS Glossar by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 Aggregat Data Cube Data Marts Data Mining Data Warehouse (DWH) Daten Decision Support Systeme (DSS)

Mehr

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery Kapitel II Datenbereitstellung 2004 AIFB / FZI 1 II. Datenbereitstellung 2004 AIFB / FZI 2 II. Datenbereitstellung Collect Initial Data identify relevant attributes identify inconsistencies between sources

Mehr

Kapitel 6 Einführung in Data Warehouses

Kapitel 6 Einführung in Data Warehouses Kapitel 6 Einführung in Data Warehouses Skript zur Vorlesung: Datenbanksysteme II Sommersemester 2008, LMU München 2008 Dr. Peer Kröger Dieses Skript basiert zu einem Teil auf dem Skript zur Vorlesung

Mehr

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -

Mehr

Frühjahrsemester 2013. CS243 Datenbanken Kapitel 7: Data Warehousing-Anfragen. H. Schuldt. 7.1 Einführung. Filiale Allschwil

Frühjahrsemester 2013. CS243 Datenbanken Kapitel 7: Data Warehousing-Anfragen. H. Schuldt. 7.1 Einführung. Filiale Allschwil Frühjahrsemester 3 CS43 Datenbanken Kapitel 7: Data Warehousing-Anfragen H. Schuldt Wiederholung aus Kapitel 7. Einführung Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale Liestal Anfragen:

Mehr

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII Vorwort zur zweiten Auflage...V Vorwort zur ersten Auflage... VIII 1 Management Support Systeme und Business Intelligence Anwendungssysteme zur Unterstützung von Managementaufgaben...1 1.1 Computergestützte

Mehr

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien 1 Einführung in Data- Warehouse-Systeme Die Verwaltung großer Datenbestände ist seit vielen Jahren im Bereich der Datenbanken

Mehr

Data Warehouses. Alexander Fehr. 23. Dezember 2002

Data Warehouses. Alexander Fehr. 23. Dezember 2002 Data Warehouses Alexander Fehr 23. Dezember 2002 Inhaltsverzeichnis 1 Einführung 1 1.1 Motivation.............................. 1 1.2 Definitionen.............................. 1 1.3 Abgrenzung von operativen

Mehr

Business Intelligence Data Warehouse. Jan Weinschenker

Business Intelligence Data Warehouse. Jan Weinschenker Business Intelligence Data Warehouse Jan Weinschenker 28.06.2005 Inhaltsverzeichnis Einleitung eines Data Warehouse Data Warehouse im Zusammenfassung Fragen 3 Einleitung Definition: Data Warehouse A data

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen

Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen SAS PharmaHealth & Academia Gabriele Smith KIS-Tagung 2005 in Hamburg: 3. März 2005 Copyright 2003, SAS Institute Inc. All rights

Mehr

Data Warehouse Version: June 26, 2007. Andreas Geyer-Schulz und Anke Thede

Data Warehouse Version: June 26, 2007. Andreas Geyer-Schulz und Anke Thede Data Warehouse Version: June 26, 2007 Andreas Geyer-Schulz und Anke Thede Schroff-Stiftungslehrstuhl Informationsdienste und Elektronische Märkte Fakultät für Wirtschaftswissenschaften Gebäude 20.20 Rechenzentrum,

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Friedrich-Schiller-Universität Jena

Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena Seminararbeit zum Thema Data Warehousing Abgrenzung, Einordnung und Anwendungen von Sebastian Hentschel Matrikelnummer 55281 Seminar Data Warehousing Sommersemester

Mehr

Kapitel II. Datenbereitstellung. II. Datenbereitstellung. II.1 Grundlagen. II. Datenbereitstellung. Collect Initial Data. II.

Kapitel II. Datenbereitstellung. II. Datenbereitstellung. II.1 Grundlagen. II. Datenbereitstellung. Collect Initial Data. II. II. bereitstellung Kapitel II bereitstellung 1 2 II. bereitstellung II.1 Grundlagen Collect Initial Data identify relevant attributes identify inconsistencies between sources Describe Data characterize

Mehr

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06 Business Intelligence Data Warehouse / Analyse Sven Elvers 2005-07-06 Einleitung Dieses Dokument beschreibt einen für das Verständnis relevanten Teil der Präsentation. Business Intelligence Motivation

Mehr

Business Intelligence

Business Intelligence Business Intelligence Anwendung 1 MInf1 HAW Hamburg Betreuender Professor: Prof. Dr. Zukunft by Jason Hung Vuong [12] Gliederung 1. Hamburg Energie Kooperation 2. Motivation 3. Business Intelligence 4.

Mehr

Logische Modellierung von Data Warehouses

Logische Modellierung von Data Warehouses Logische Modellierung von Data Warehouses Vertiefungsarbeit von Karin Schäuble Gliederung. Einführung. Abgrenzung und Grundlagen. Anforderungen. Logische Modellierung. Methoden.. Star Schema.. Galaxy-Schema..

Mehr

Seminar. Data Warehousing im Verkehrsbereich. Grundlagen und Architektur

Seminar. Data Warehousing im Verkehrsbereich. Grundlagen und Architektur Stärkung der SelbstOrganisationsfähigkeit im Verkehr durch I+K-gestützte Dienste Seminar Data Warehousing im Verkehrsbereich Sommersemester 2003 Grundlagen und Architektur Bearbeiter: Ting Zheng Betreuer:

Mehr

1. Data Warehouses - Einführung

1. Data Warehouses - Einführung 1. s - Einführung Definition Einsatzbeispiele OLTP vs. OLAP Grobarchitektur Virtuelle vs. physische Datenintegration Mehrdimensionale Datensicht Star-Schema, -Anfragen Data Mining Prof. E. Rahm 1-1 y yy

Mehr

WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE'

WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE' Take control of your decision support WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE' Sommersemester 2008 Gliederung Business Intelligence und Data Warehousing On-Line Analytical Processing Ziel

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses

Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses Exposé zur Diplomarbeit Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Fakultät II Institut

Mehr

Data Warehouse. für den Microsoft SQL SERVER 2000/2005

Data Warehouse. für den Microsoft SQL SERVER 2000/2005 Warehouse für den Microsoft SQL SERVER 2000/2005 Begriffe 1 DWH ( Warehouse) ist eine fachübergreifende Zusammenfassung von Datentabellen. Mart ist die Gesamtheit aller Datentabellen für einen fachlich

Mehr

Data Warehouse Technologien

Data Warehouse Technologien mitp Professional Data Warehouse Technologien von Veit Köppen, Gunter Saake, Kai-Uwe Sattler 2. Auflage 2014 Data Warehouse Technologien Köppen / Saake / Sattler schnell und portofrei erhältlich bei beck-shop.de

Mehr

1. Data Warehouses - Einführung

1. Data Warehouses - Einführung Grobarchitektur 1. Data Warehouses - Einführung Definition Data Warehouse Einsatzbeispiele OLTP vs. OLAP Virtuelle vs. physische Datenintegration Mehrdimensionale Datensicht Star-Schema -Anfragen Data

Mehr

1. Data Warehouses - Einführung

1. Data Warehouses - Einführung 1. Data Warehouses - Einführung Definition Data Warehouse Einsatzbeispiele OLTP vs. OLAP Grobarchitektur Virtuelle vs. physische Datenintegration Mehrdimensionale Datensicht Star-Schema -Anfragen Data

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit BI Konsolidierung: Anspruch & Wirklichkeit Jacqueline Bloemen in Kooperation mit Agenda: Anspruch BI Konsolidierung Treiber Was sind die aktuellen Treiber für ein Konsolidierungsvorhaben? Kimball vs. Inmon

Mehr

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2005 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Übersicht über Business Intelligence Josef Kolbitsch Manuela Reinisch Übersicht Beispiel: Pantara Holding Der Begriff Business Intelligence Übersicht über ein klassisches BI-System

Mehr

Survival Guide für Ihr Business Intelligence-Projekt

Survival Guide für Ihr Business Intelligence-Projekt Survival Guide für Ihr Business Intelligence-Projekt Sven Bosinger Solution Architect BI Survival Guide für Ihr BI-Projekt 1 Agenda Was ist Business Intelligence? Leistungsumfang Prozesse Erfolgsfaktoren

Mehr

Self Service BI. - Business Intelligence im Mittelstand - schnelle Ergebnisse, nachhaltige Erfolge

Self Service BI. - Business Intelligence im Mittelstand - schnelle Ergebnisse, nachhaltige Erfolge Self Service BI - Business Intelligence im Mittelstand - schnelle Ergebnisse, nachhaltige Erfolge 04. Juli 2013 Cubeware GmbH zu Gast im Hause der Raber+Märcker GmbH Referent: Uwe van Laak Presales Consultant

Mehr

Data Warehousing Kapitel 1: Einführung

Data Warehousing Kapitel 1: Einführung Data Warehousing Kapitel 1: Einführung Michael Hartung Sommersemester 2011 Universität Leipzig Institut für Informatik http://dbs.uni-leipzig.de SS11 Prof. Dr. E. Rahm 1-1 Grobarchitektur 1. Data Warehouses

Mehr

Data Warehousing. Kapitel 1: Einführung. 1. Data Warehouses - Einführung. Dr. Andreas Thor Wintersemester 2009/10

Data Warehousing. Kapitel 1: Einführung. 1. Data Warehouses - Einführung. Dr. Andreas Thor Wintersemester 2009/10 Data Warehousing Kapitel 1: Einführung Dr. Andreas Thor Wintersemester 2009/10 Universität Leipzig Institut für Informatik http://dbs.uni-leipzig.de WS09/10 Prof. Dr. E. Rahm 1-1 Grobarchitektur 1. Data

Mehr

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware 14. März 2013, IHK Osnabrück-Emsland-Grafschaft Bentheim Geschichte Kassenbuch des Liederkranz, 1886 Hutmachergesangvereins

Mehr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Copyright 2007 Infor. Alle Rechte vorbehalten. Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Hubertus Thoma Presales Consultant PM Schalten Sie bitte während

Mehr

Visual Business Intelligence Eine Forschungsperspektive

Visual Business Intelligence Eine Forschungsperspektive Visual Business Intelligence Eine Forschungsperspektive Dr. Jörn Kohlhammer Fraunhofer-Institut für Graphische Datenverarbeitung IGD Fraunhoferstraße 5 64283 Darmstadt Tel.: +49 6151 155 646 Fax.: +49

Mehr

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Datei: Asklepius DA Flyer_Leistung_2 Seite: 1 von:5 1 Umfassende Datenanalyse Mit Asklepius-DA

Mehr

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische

Mehr

Aufbau eines Data Warehouse für den Lebensmitteleinzelhandel

Aufbau eines Data Warehouse für den Lebensmitteleinzelhandel Die Fallstudie aus der Wirtschaftsinformatik: Aufbau eines Data Warehouse für den Lebensmitteleinzelhandel Dipl.-Kfm. Carsten Bange, Dr. Heiko Schinzer, Würzburg 1. Ausgangssituation Der hohe Wettbewerbsdruck

Mehr

Business Intelligence. Business Intelligence Seminar, WS 2007/08

Business Intelligence. Business Intelligence Seminar, WS 2007/08 Business Intelligence Seminar, WS 2007/08 Prof. Dr. Knut Hinkelmann Fachhochschule Nordwestschweiz knut.hinkelmann@fhnw.ch Business Intelligence Entscheidungsorientierte Sammlung, Aufbereitung und Darstellung

Mehr

1 Einführung. Unbekannte Begriffe: Business Intelligence, Knowledge Management, Unternehmensportale, Information Warehouse.

1 Einführung. Unbekannte Begriffe: Business Intelligence, Knowledge Management, Unternehmensportale, Information Warehouse. 1 Einführung mysap Business Intelligence stellt mit Hilfe von Knowledge Management die Verbindung zwischen denen, die etwas wissen und denen, die etwas wissen müssen her. mysap Business Intelligence integriert

Mehr

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Architektur und Konzepte Josef Kolbitsch Manuela Reinisch Übersicht Mehrstufiges BI-System Architektur eines Data Warehouses Architektur eines Reporting-Systems Benutzerrollen in

Mehr

1Ralph Schock RM NEO REPORTING

1Ralph Schock RM NEO REPORTING 1Ralph Schock RM NEO REPORTING Bereit für den Erfolg Business Intelligence Lösungen Bessere Entscheidungen Wir wollen alle Mitarbeiter in die Lage versetzen, bessere Entscheidungen schneller zu treffen

Mehr

The Need for Speed. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

The Need for Speed. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor The Need for Speed CeBIT 2011 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor The Need for Speed Industrialisierung, Agilität und Compliance die Rolle von Performance Management

Mehr

Umsetzung der Anforderungen - analytisch

Umsetzung der Anforderungen - analytisch Umsetzung der Anforderungen - analytisch Titel des Lernmoduls: Umsetzung der Anforderungen - analytisch Themengebiet: New Economy Gliederungspunkt im Curriculum: 4.2.5.5 Zum Inhalt: In diesem Modul wird

Mehr

1. Data Warehouses - Einführung

1. Data Warehouses - Einführung 1. Data Warehouses - Einführung Definitionen und Merkmale Grobdefinition Einsatzbeispiele DW-Merknmale nah Imnon OLTP vs. OLAP Grobarchitektur Virtuelle vs. phsische Datenintegration Mehrdimensionale Datensicht

Mehr

Business Intelligence im Krankenhaus

Business Intelligence im Krankenhaus Business Intelligence im Krankenhaus Dr. Thomas Lux Holger Raphael IT-Trends in der Medizin 03.September 2008 Essen Gliederung Herausforderungen für das Management im Krankenhaus Business Intelligence

Mehr

Einsatz von Anwendungssystemen

Einsatz von Anwendungssystemen Einsatz von Anwendungssystemen WS 2013/14 7 Führungssysteme 7.1 Data Warehouse 7.2 Planungssysteme 7.3 Balanced Scorecard (BSC) 7.4 Business Intelligence 7 Führungssysteme 7.1 Data Warehouse Ein Data Warehouse

Mehr

Data-Warehouse-Systeme

Data-Warehouse-Systeme Data-Warehouse-Systeme Architektur, Entwicklung, Anwendung von Andreas Bauer, Holger Günzel 3., überarb. u. aktualis. Aufl. Data-Warehouse-Systeme Bauer / Günzel schnell und portofrei erhältlich bei beck-shop.de

Mehr

Integration Services Übersicht

Integration Services Übersicht Integration Services Übersicht Integration Services Übersicht Integration Services stellt umfangreiche integrierte Tasks, Container, Transformationen und Datenadapter für die En t- wicklung von Geschäftsanwendungen

Mehr

Business Intelligence - Wie passt das zum Mainframe?

Business Intelligence - Wie passt das zum Mainframe? Business Intelligence - Wie passt das zum Mainframe? IBM IM Forum, 15.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Ressourcen bei BARC für Ihr Projekt Durchführung von internationalen Umfragen,

Mehr

Datenbanktechnologie für Data-Warehouse-Systeme

Datenbanktechnologie für Data-Warehouse-Systeme Wolfgang Lehner Datenbanktechnologie für Data-Warehouse-Systeme Konzepte und Methoden dpunkt.verlag 1 1.1 1.2 1.3 1.4 1. 5 2 2.1 2.2 2.3 Einleitung 1 Betriebswirtschaftlicher Ursprung des Data Warehousing...

Mehr

INVEST projects. Besseres Investitionscontrolling mit INVESTprojects

INVEST projects. Besseres Investitionscontrolling mit INVESTprojects Besseres Investitionscontrolling mit Der Investitionsprozess Singuläres Projekt Idee, Planung Bewertung Genehmigung Realisierung Kontrolle 0 Zeit Monate, Jahre Perioden Der Investitionsprozess Singuläres

Mehr

Big Data Vom Hype zum Geschäftsnutzen

Big Data Vom Hype zum Geschäftsnutzen Big Data Vom Hype zum Geschäftsnutzen IBM IM Forum, Berlin, 16.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Hype 15.04.2013 BARC 2013 2 1 Interesse an Big Data Nature 09-2008 Economist 03-2010

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

The integration of business intelligence and knowledge management

The integration of business intelligence and knowledge management The integration of business intelligence and knowledge management Seminar: Business Intelligence Ketevan Karbelashvili Master IE, 3. Semester Universität Konstanz Inhalt Knowledge Management Business intelligence

Mehr

1 Einführung 1 1.1 SAP Business Information Warehouse... 3. 1.1.1 BW Version 3.0...5. Architekturplanung... 9

1 Einführung 1 1.1 SAP Business Information Warehouse... 3. 1.1.1 BW Version 3.0...5. Architekturplanung... 9 vii 1 Einführung 1 1.1 SAP Business Information Warehouse... 3 1.1.1 BW Version 3.0...5 Architekturplanung.................................... 9 2 BW-Basissystem 11 2.1 Client/Server-Architektur... 12

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

CRM Architektur. New Economy CRM Architektur Page 1

CRM Architektur. New Economy CRM Architektur Page 1 CRM Architektur Titel des Lernmoduls: CRM Architektur Themengebiet: New Economy Gliederungspunkt im Curriculum: 4.2.4.2 Zum Inhalt: Dieses Modul beschreibt mögliche Architekturen von CRM-Systemen. Insbesondere

Mehr

Kapitel 6 Managementunterstützungssysteme und Business Intelligence

Kapitel 6 Managementunterstützungssysteme und Business Intelligence ProKSy - EBSS Institut AIFB WS 2013/2014 Programmierung kommerzieller Systeme Einsatz betrieblicher Standardsoftware (ProKSy EBSS) Kapitel 6 Managementunterstützungssysteme und Business Intelligence Institut

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

Möglichkeiten für bestehende Systeme

Möglichkeiten für bestehende Systeme Möglichkeiten für bestehende Systeme Marko Filler Bitterfeld, 27.08.2015 2015 GISA GmbH Leipziger Chaussee 191 a 06112 Halle (Saale) www.gisa.de Agenda Gegenüberstellung Data Warehouse Big Data Einsatz-

Mehr

Die Rolle von Stammdaten-Management in einer SOA

Die Rolle von Stammdaten-Management in einer SOA Die Rolle von Stammdaten-Management in einer SOA Frankfurt, Sept. 2007 Dr. Wolfgang Martin Analyst, ibond Partner, Ventana Research Advisor und Research Advisor am Institut für Business Intelligence Rolle

Mehr

Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen

Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen (Folien von A. Kemper zum Buch 'Datenbanksysteme') Online Transaction Processing Betriebswirtschaftliche Standard- Software (SAP

Mehr

Business Intelligence Data Warehouse für den Ferienclub

Business Intelligence Data Warehouse für den Ferienclub Business Intelligence Data Warehouse für den Ferienclub Jan Weinschenker 8. Juli 2005 Im Rahmen der Vortragsreihe im Fach Anwendungen I beschäftigt sich diese Ausarbeitung mit dem Thema Data Warehousing.

Mehr

BARC-Studie Data Warehousing und Datenintegration

BARC-Studie Data Warehousing und Datenintegration Ergebnisse der BARC-Studie Data Warehouse Plattformen Dr. Carsten Bange BARC-Studie Data Warehousing und Datenintegration Data-Warehouse -Plattformen und Datenintegrationswerkzeuge im direkten Vergleich

Mehr

Business Intelligence

Business Intelligence Business Intelligence Anwendungssysteme (BIAS) Lösung Aufgabe 1 Übung WS 2012/13 Business Intelligence Erläutern Sie den Begriff Business Intelligence. Gehen Sie bei der Definition von Business Intelligence

Mehr

Einführung in Business Intelligence

Einführung in Business Intelligence Einführung in Business Intelligence Grundlagen und Anwendungsmöglichkeiten Prof. Dr. Wolfram Höpken wolfram.hoepken@eloum.net eloum @ Hochschule Ravensburg-Weingarten Informationsveranstaltung ebusiness-lotse

Mehr

Michael Bauer Niederlassungsleiter Köln

Michael Bauer Niederlassungsleiter Köln Click to edit Master title style 1 Michael Bauer Niederlassungsleiter Köln Hamburg, 18. Juni 2009 2009 IBM Corporation Agenda Click to edit Master title style 2 zur Person Wo, Warum.., Was - CPM liefert

Mehr

Informationssysteme für das Management

Informationssysteme für das Management FHBB l Departement Wirtschaft l Informationssysteme für das Management Michael Pülz, Hanspeter Knechtli Lernziele Den Unterschied zwischen operativen und analytischen Informationssystemen beschreiben können

Mehr

Data Warehouse und ETL. Einführung und Überblick

Data Warehouse und ETL. Einführung und Überblick Data Warehouse und ETL Einführung und Überblick Data Warehouse Definition I A subject-oriented, integrated, non-volatile, time-variant collection of data organized to support management needs Inmon, Database

Mehr

Wolfgang Martin (Hrsg.) Data Warehousing. Data Mining - OLAP. An International Thomson Publishing Company

Wolfgang Martin (Hrsg.) Data Warehousing. Data Mining - OLAP. An International Thomson Publishing Company Wolfgang Martin (Hrsg.) Data Warehousing Data Mining - OLAP Technische Universität Darmsiadt Fachbereich 1 Betriebswirtschaftliche Bibliothek Inventar-Nr.: Abstell-Nr.: s. An International Thomson Publishing

Mehr

BICC, Organisation und Kompetenz Das Raiffeisen Solution SAS Competence Center

BICC, Organisation und Kompetenz Das Raiffeisen Solution SAS Competence Center BICC, Organisation und Kompetenz Das Raiffeisen Solution SAS Competence Center Ing. Polzer Markus öffentlich Inhaltsverzeichnis 1 2 3 4 5 6 7 Kurzvorstellung Raiffeisen Solution Business Intelligence Strategie

Mehr

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator Agenda Was ist Business Intelligence? Was ist OLAP? Unterschied zwischen OLAP und OLTP? Bestandteile

Mehr

Nach Data Warehousing kommt Business Intelligence

Nach Data Warehousing kommt Business Intelligence Nach Data Warehousing kommt Business Intelligence Andrea Kennel Trivadis AG Glattbrugg, Schweiz Schlüsselworte: Business Intelligence, Data Warehouse Zusammenfassung Data Warehouse bedeutet, dass operative

Mehr

Data Warehouse. dem Kunden auf der Spur. 4.SAP-Anwenderforum FH NON Lüneburg 16. März 2001. Dr. Anselm Schultze GS Versicherungen Nord CSC PLOENZKE

Data Warehouse. dem Kunden auf der Spur. 4.SAP-Anwenderforum FH NON Lüneburg 16. März 2001. Dr. Anselm Schultze GS Versicherungen Nord CSC PLOENZKE Data Warehouse dem Kunden auf der Spur 4.SAP-Anwenderforum FH NON Lüneburg 16. März 2001 Dr. Anselm Schultze GS Versicherungen Nord CSC PLOENZKE Copyright CSC PLOENZKE AG 1 Inhalt Agenda Data Warehouse

Mehr

REAL-TIME DATA WAREHOUSING

REAL-TIME DATA WAREHOUSING REAL-TIME DATA WAREHOUSING Lisa Wenige Seminarvortrag Data Warehousing und Analytische Datenbanken Friedrich-Schiller-Universität Jena - 19.01.12 Lisa Wenige 19.01.2012 2 Agenda 1. Motivation 2. Begriffsbestimmung

Mehr

2.8. Business Intelligence

2.8. Business Intelligence 2.8. Zulieferer BeschaffungProduktion Kunde E-Procurement Customer Relationship (CRM) Supply Chain (SCM) Enterprise Resource Planning (ERP) Executive Information (EIS) Executive Support (ESS) Chef-Informations-

Mehr

Von BI zu Analytik. bessere Entscheidungen basiert auf Fakten. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

Von BI zu Analytik. bessere Entscheidungen basiert auf Fakten. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Von BI zu Analytik bessere Entscheidungen basiert auf Fakten Webinar Mai 2010 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Von Business Intelligence zu Analytik Die Bedeutung

Mehr

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen:

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen: Kapitel 17 Data Warehouse OLTP Online Transaction Processing OLAP Online Analytical Processing Decision Support-Anfragen Data Mining opera- tionale DB opera- tionale DB opera- tionale DB Data Warehouse

Mehr

Eine Einführung in OLAP

Eine Einführung in OLAP Eine Einführung in OLAP Einleitung... 1 Wofür wird OLAP benötigt?... 1 Was ist OLAP?... 3 OLAP Charakteristika... 3 Dimensionen... 3 Hierarchien... 3 Flexible Präsentation... 4 OLAP und Data Warehousing...

Mehr

Zukunftsträchtige Potentiale: Predictive Analysis mit SAP HANA & SAP BO

Zukunftsträchtige Potentiale: Predictive Analysis mit SAP HANA & SAP BO innovation@work Zukunftsträchtige Potentiale: Predictive Analysis mit SAP HANA & SAP BO thinkbetter AG Florian Moosmann 8. Mai 2013 1 Agenda Prädiktive Analyse Begriffsdefinition Herausforderungen Schwerpunktbereiche

Mehr

Welche Daten gehören ins Data Warehouse?

Welche Daten gehören ins Data Warehouse? Welche Daten gehören ins Warehouse? Dani Schnider Principal Consultant 9. Januar 2012 In vielen DWH-Projekten stellt sich die Frage, welche Daten im Warehouse gespeichert werden sollen und wie dieser Datenumfang

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

Einsatz des Microsoft SQL-Servers bei der KKH

Einsatz des Microsoft SQL-Servers bei der KKH Einsatz des Microsoft SQL-Servers bei der KKH Reporting Services und Analysis Services Kontaktdaten Detlef André Abteilungsleiter Data Warehouse E-Mail detlef.andre@kkh.de Telefon 0511 2802-5700 Dr. Reinhard

Mehr

Datenintegration mit Informatica PowerCenter

Datenintegration mit Informatica PowerCenter Datenintegration mit Informatica PowerCenter Mein Weg vom Studenten zum Consultant Christoph Arnold 03.07.2013 1 Agenda Von der THM zu Infomotion Datenschieberei oder doch mehr? Die weite Welt von Informatica

Mehr