Einführungsveranstaltung: Data Warehouse

Größe: px
Ab Seite anzeigen:

Download "Einführungsveranstaltung: Data Warehouse"

Transkript

1 Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring Visualisierung Data Mining 2 Dr. J. Raimann 1

2 Was ist ein? Eine Sammlung von Werkzeugen für Sammeln von Daten Datenbereinigung, Datenintegration, Abfrage, Reporting, Analyse Data Mining Monitoring und Administration des Data Warehouse 3 Übersicht 4 Dr. J. Raimann 2

3 Typische Abfragen Wie hoch sind die Umsätze der Produkte A, B, C in den Regionen Süd, Nord und West in den Jahren 2010 und 2011? Welcher Verkäufer hatte den höchsten Umsatz in diesem Monat? Wie haben sich die Umsätze in den Regionen A, B und N in den letzten 3 Jahren entwickelt? Welche Produkte verkaufen sich am besten/am schlechtesten? 5 Multidimensionales Datenmodell ( Cube /Datenwürfel) 6 Dr. J. Raimann 3

4 Begriffsdefinition A data warehouse is a subject-oriented, integrated, time-variant, nonvolatile collection of data in support of management s decision-making process. Ein Data-Warehouse ist eine themenorientierte, integrierte, zeitraumbezogene und nicht-volatile Sammlung von Daten, um das Management bei seinen Entscheidungsprozessen zu unterstützen. Quelle: Inmon Definitionsmerkmale subject-oriented (Themenorientierung): Die Auswahl der in das Data-Warehouse zu übernehmenden Daten geschieht nach bestimmten Datenobjekten (Produkt, Kunde, Firma, ), die für die Analysen von Kennzahlen für Entscheidungsprozesse relevant sind, nicht hingegen nach operativen Prozessen (wie in OLTP-Systemen) integrated (Vereinheitlichung): Die in verschiedenen (operativen) Quellsystemen unterschiedlich strukturierten Daten werden im Data-Warehouse in einheitlicher Form gespeichert. time-variant (Zeitorientierung): Analysen über zeitliche Veränderungen und Entwicklungen sollen im Data-Warehouse ermöglicht werden; daher ist die langfristige Speicherung der Daten im Data-Warehouse nötig (Einführung der Dimension Zeit ). nonvolatile (Beständigkeit): Daten werden dauerhaft (nichtflüchtig) gespeichert. 8 Dr. J. Raimann 4

5 Entwicklungsgeschichte (1) Wurzeln 60er Jahre: Executive Information Systems (EIS) qualitative Informationsversorgung von Entscheidern kleine, verdichtete Extrakte der operativen Datenbestände Aufbereitung in Form statischer Berichte Mainframe 80er Jahre: Management Information Systems (MIS) meist statische Berichtsgeneratoren Einführung von Hierarchieebenen für Auswertung von Kennzahlen (Roll-Up, Drill-Down) Client-Server-Architekturen, GUI (Windows, Apple) 9 Entwicklungsgeschichte (2) 1992: Einführung des Data-Warehouse-Konzeptes durch W.H. Inmon redundante Haltung von Daten, losgelöst von Quellsystemen Beschränkung der Daten auf Analysezwecke 1993: Definition des Begriffs OLAP durch E.F. Codd Dynamische, multidimensionale Analyse Weitere Einflussgebiete Verbreitung geschäftsprozessorientierter Transaktionssysteme (SAP R/3) - > Bereitstellung von entscheidungsrelevanten Informationen allg. technische Entwicklung (Speicher, Datenbanken, ) Entwicklung von (Industrie)Standards: OLE DB for OLAP, XML for Analysis, Internet/World Wide Web Portaltechnologie aber auch Einflüsse aufgrund von Veränderungen im Unternehmensumfeld (Globalisierung, Stakeholder, gesetzliche Vorgaben, ) 10 Dr. J. Raimann 5

6 Abgrenzung zu OLTP-Systemen Klassische operative Informationssysteme = Online Transactional Processing (OLTP) Erfassung und Verwaltung von Daten Verarbeitung unter Verantwortung der jeweiligen Abteilung Transaktionale Verarbeitung: kurze Lese-/ Schreibzugriffe auf wenige Datensätze Analyse im Mittelpunkt lange Lesetransaktionen auf vielen Datensätzen Integration, Konsolidierung und Aggregation der Daten 11 Trennung operativer und analytischer Systeme Gründe Antwortzeitverhalten: Analyse auf operativen Quelldatensystemen -> schlechte Performance Langfristige Speicherung der Daten -> Zeitreihenanalyse Zugriff auf Daten unabhängig von operativen Datenquellen (Verfügbarkeit, Integrationsproblematik) Einheitliche Datenbasis für Reporting und Analyse ( single point of truth ) Vereinheitlichung des Datenformats im DWH Gewährleistung der Datenqualität im DWH 12 Dr. J. Raimann 6

7 Business Intelligence (BI) Im Oktober 1958 erschien der Beitrag A Business Intelligence System von Hans Peter Luhn im IBM Journal, mit hoher Wahrscheinlichkeit die Geburtsstunde des Begriffes Business Intelligence. Ab 1989 machte sich Howard Dresner, ein Analyst der Gartner Group den Begriff Business Intelligence zu eigen. Vielfalt an Definitionen: enges BI-Verständnis Lediglich wenige Kernapplikationen, die eine Entscheidungsfindung unmittelbar unterstützen (z.b. OLAP, MIS, EIS) Quelle: Kemper et al analyseorientiertes BI- Verständnis Alle Anwendungen bei denen ein Nutzer direkten Zugriff auf eine (interaktive) Benutzeroberfläche mit Analysefunktionalität besitzt weites BI-Verständnis Alle direkt und indirekt für die Entscheidungsunterst ützung eingesetzten Anwendungen (Auswertung, Präsentation, Datenaufbereitung, Speicherung) 13 Abgrenzung zu Business Intelligence (BI) Quelle: Kemper et al Dr. J. Raimann 7

8 Weitere Begriffe System (DWS) Ein System ist ein von den operativen Datenbeständen getrenntes logisch zentralisiertes dispositives Datenhaltungssystem. Idealtypisch dient ein DWS als einheitliche und konsistente Datenbasis für alle Arten von Managementunterstützungssystemen. Data Warehousing Data-Warehouse-Prozess, d.h. alle Schritte der Datenbeschaffung (Extraktion, Transformation, Laden), des Speicherns und der Analyse Data Mart kleinerer Datenpool innerhalb des anwendungsbereichsspezifisch 15 Weitere Begriffe OLAP (Online Analytical Processing) explorativer, interaktiver Analyseprozess auf Basis des zugrunde liegenden multidimensionalen Datenmodells ETL-Prozess Schritte der Datenbeschaffung (Extraktion, Transformation, Laden) 16 Dr. J. Raimann 8

9 Markübersicht: Business Intelligence 17 BI-Softwareangebot (nach Umsatz der BI-Hersteller) Quelle: Lünendonk Dr. J. Raimann 9

10 BI-Markt: Unternehmensbereiche in denen BI eingesetzt wird Quelle: Lünendonk Zusammenfassung Anwendungsbeispiele DWH-Begriffsdefinition OLAP-Cube Abfragebeispiele DWH-Historie Abgrenzung OLAP/OLTP Begriffe aus dem DWH-Umfeld Markt 20 Dr. J. Raimann 10

11 Fragen? 21 Dr. J. Raimann 11

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

fi Data Warehouse: Sammlung von Technologien zur Unterstützung von Entscheidungsprozessen fi Herausforderung an Datenbanktechnologien

fi Data Warehouse: Sammlung von Technologien zur Unterstützung von Entscheidungsprozessen fi Herausforderung an Datenbanktechnologien Einführung Gegenstand der Vorlesung fi Data Warehouse: Sammlung von Technologien zur Unterstützung von Entscheidungsprozessen fi Herausforderung an Datenbanktechnologien Datenvolumen (effiziente Speicherung

Mehr

WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE'

WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE' Take control of your decision support WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE' Sommersemester 2008 Gliederung Business Intelligence und Data Warehousing On-Line Analytical Processing Ziel

Mehr

Data Warehousing: Anwendungsbeispiel

Data Warehousing: Anwendungsbeispiel Frühjahrsemester 2012 cs242 Data Warehousing / cs243 Datenbanken Kapitel 1: Einführung H. Schuldt Data Warehousing: Anwendungsbeispiel Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale

Mehr

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII

Vorwort zur zweiten Auflage...V. Vorwort zur ersten Auflage... VIII Vorwort zur zweiten Auflage...V Vorwort zur ersten Auflage... VIII 1 Management Support Systeme und Business Intelligence Anwendungssysteme zur Unterstützung von Managementaufgaben...1 1.1 Computergestützte

Mehr

Kapitel 2 Terminologie und Definition

Kapitel 2 Terminologie und Definition Kapitel 2 Terminologie und Definition In zahlreichen Publikationen und Fachzeitschriften tauchen die Begriffe Data Warehouse, Data Warehousing, Data-Warehouse-System, Metadaten, Dimension, multidimensionale

Mehr

1. Einführung. Szenario: Getränkemarkt. DB-Schema. Motivation Überblick Anwendungen Abgrenzung Begriff Data Warehouse DW-Architektur Benchmarks

1. Einführung. Szenario: Getränkemarkt. DB-Schema. Motivation Überblick Anwendungen Abgrenzung Begriff Data Warehouse DW-Architektur Benchmarks . Einführung Motivation Überblick Anwendungen Abgrenzung Begriff Data Warehouse DW-Architektur Benchmarks Sattler / Saake Data-Warehouse-Technologien Szenario: Getränkemarkt Umsatz, Portfolio SSaufland

Mehr

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Übersicht über Business Intelligence Josef Kolbitsch Manuela Reinisch Übersicht Beispiel: Pantara Holding Der Begriff Business Intelligence Übersicht über ein klassisches BI-System

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining 2 Data Warehousing und Data Mining Kapitel 1: Data-Warehousing-Architektur von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser Umsatz im Vergleich zum letzten Jahr? In welchen Regionen

Mehr

Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH)

Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Verteilung und Integration von Informationen im Verkehrsbereich Thema: OLAP in verteilten Data-Warehouse- Umgebungen Vortrag: Christian

Mehr

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit BI Konsolidierung: Anspruch & Wirklichkeit Jacqueline Bloemen in Kooperation mit Agenda: Anspruch BI Konsolidierung Treiber Was sind die aktuellen Treiber für ein Konsolidierungsvorhaben? Kimball vs. Inmon

Mehr

1 Einleitung. Betriebswirtschaftlich administrative Systeme

1 Einleitung. Betriebswirtschaftlich administrative Systeme 1 1 Einleitung Data Warehousing hat sich in den letzten Jahren zu einem der zentralen Themen der Informationstechnologie entwickelt. Es wird als strategisches Werkzeug zur Bereitstellung von Informationen

Mehr

Business Intelligence Data Warehouse. Jan Weinschenker

Business Intelligence Data Warehouse. Jan Weinschenker Business Intelligence Data Warehouse Jan Weinschenker 28.06.2005 Inhaltsverzeichnis Einleitung eines Data Warehouse Data Warehouse im Zusammenfassung Fragen 3 Einleitung Definition: Data Warehouse A data

Mehr

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 MIS Glossar by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 Aggregat Data Cube Data Marts Data Mining Data Warehouse (DWH) Daten Decision Support Systeme (DSS)

Mehr

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery Kapitel II Datenbereitstellung 2004 AIFB / FZI 1 II. Datenbereitstellung 2004 AIFB / FZI 2 II. Datenbereitstellung Collect Initial Data identify relevant attributes identify inconsistencies between sources

Mehr

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -

Mehr

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel Data Warehousing Kapitel 1: Data-Warehousing-Architektur Folien teilweise übernommen von Matthias Gimbel 2 Analyse von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser Umsatz im Vergleich

Mehr

Business Intelligence im Krankenhaus

Business Intelligence im Krankenhaus Business Intelligence im Krankenhaus Dr. Thomas Lux Holger Raphael IT-Trends in der Medizin 03.September 2008 Essen Gliederung Herausforderungen für das Management im Krankenhaus Business Intelligence

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

Erzielen von Wettbewerbsvorteilen durch Data Mining in Produktion und Logistik

Erzielen von Wettbewerbsvorteilen durch Data Mining in Produktion und Logistik Erzielen von Wettbewerbsvorteilen durch Data Mining in Produktion und Logistik von Yasin Yakut Erstauflage disserta Verlag 2015 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 95425 896 3 schnell

Mehr

Data-Warehouse-Systeme

Data-Warehouse-Systeme Vorlesung im Wintersemester 2008/09 Data-Warehouse-Systeme Dr. Stefanie Rinderle-Ma Institut für Datenbanken und Informationssysteme Universität Ulm stefanie.rinderle@uni-ulm.de Übersicht 1) Einführung

Mehr

10. Vorlesung: Datenorganisation SS 2007

10. Vorlesung: Datenorganisation SS 2007 10. Vorlesung: Datenorganisation SS 2007 8 Parallele Transaktionen 9 9.1 Drei-Ebenen Ebenen-Architektur 9.2 Verteilte Datenbanken 9.3 Client-Server Server-Datenbanken 9.4 Föderierte Datenbanken 9.5 Das

Mehr

Kapitel II. Datenbereitstellung. II. Datenbereitstellung. II.1 Grundlagen. II. Datenbereitstellung. Collect Initial Data. II.

Kapitel II. Datenbereitstellung. II. Datenbereitstellung. II.1 Grundlagen. II. Datenbereitstellung. Collect Initial Data. II. II. bereitstellung Kapitel II bereitstellung 1 2 II. bereitstellung II.1 Grundlagen Collect Initial Data identify relevant attributes identify inconsistencies between sources Describe Data characterize

Mehr

Logische Modellierung von Data Warehouses

Logische Modellierung von Data Warehouses Logische Modellierung von Data Warehouses Vertiefungsarbeit von Karin Schäuble Gliederung. Einführung. Abgrenzung und Grundlagen. Anforderungen. Logische Modellierung. Methoden.. Star Schema.. Galaxy-Schema..

Mehr

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung

Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Asklepius-DA Die intelligente Technologie für die umfassende Analyse medizinischer Daten Leistungsbeschreibung Datei: Asklepius DA Flyer_Leistung_2 Seite: 1 von:5 1 Umfassende Datenanalyse Mit Asklepius-DA

Mehr

Business Intelligenceein Überblick

Business Intelligenceein Überblick Exkurs Business Intelligenceein Überblick Folie 1 Januar 06 Literatur Kemper, Hans-Georg; Mehanna, Walid; Unger, Carsten (2004): Business Intelligence: Grundlagen und praktische Anwendungen Eine Einführung

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation 27. Juni 2013 Hinweis Diese Folien ersetzen keinesfalls den Übungsstoff des zugehörigen e-learning-kurses.

Mehr

Einsatz von Anwendungssystemen

Einsatz von Anwendungssystemen Einsatz von Anwendungssystemen WS 2013/14 7 Führungssysteme 7.1 Data Warehouse 7.2 Planungssysteme 7.3 Balanced Scorecard (BSC) 7.4 Business Intelligence 7 Führungssysteme 7.1 Data Warehouse Ein Data Warehouse

Mehr

Frühjahrsemester 2011. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil

Frühjahrsemester 2011. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil Frühjahrsemester Data Warehousing Kapitel 5: Data Warehousing H. Schuldt Wiederholung aus Kapitel 5. Einführung Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale Liestal Anfragen: Welches

Mehr

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware 14. März 2013, IHK Osnabrück-Emsland-Grafschaft Bentheim Geschichte Kassenbuch des Liederkranz, 1886 Hutmachergesangvereins

Mehr

Entscheidungsunterstützungssysteme

Entscheidungsunterstützungssysteme Vorlesung WS 2013/2014 Christian Schieder Professur Wirtschaftsinformatik II cschie@tu-chemnitz.eu Literatur zur Vorlesung Gluchowski, P.; Gabriel, R.; Dittmar, C.: Management Support Systeme und Business

Mehr

Informationssysteme: Neuere Konzepte Teil II

Informationssysteme: Neuere Konzepte Teil II Informationssysteme: Neuere Konzepte Kapitel 1: Data-Warehousing-Architektur Folien teilweise übernommen von Matthias Gimbel 2 von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser

Mehr

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator Agenda Was ist Business Intelligence? Was ist OLAP? Unterschied zwischen OLAP und OLTP? Bestandteile

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen

Komponenten und Architekturen von Analytischen Informationssystemen Komponenten und Architekturen von Analytischen Informationssystemen Sommersemester 2013 Prof Dr. Peter Gluchowski Literatur zur Vorlesung AIS/BIS Gluchowski, Peter; Gabriel, Roland; Dittmar, Carsten: Management

Mehr

Kapitel 6 Managementunterstützungssysteme und Business Intelligence

Kapitel 6 Managementunterstützungssysteme und Business Intelligence ProKSy - EBSS Institut AIFB WS 2013/2014 Programmierung kommerzieller Systeme Einsatz betrieblicher Standardsoftware (ProKSy EBSS) Kapitel 6 Managementunterstützungssysteme und Business Intelligence Institut

Mehr

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing Seminar in der Seminarreihe Business Intelligence 1 OLAP und Datawarehousing OLAP & Warehousing Die wichtigsten Produkte Die Gliederung Produkt Bewertung & Vergleiche Die Marktentwicklung Der aktuelle

Mehr

Data-Warehouse-Technologien

Data-Warehouse-Technologien Data-Warehouse-Technologien Prof. Dr.-Ing. Kai-Uwe Sattler 1 Prof. Dr. Gunter Saake 2 Dr. Veit Köppen 2 1 TU Ilmenau FG Datenbanken & Informationssysteme 2 Universität Magdeburg Institut für Technische

Mehr

Data Warehouse Technologien

Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............

Mehr

Frühjahrsemester 2010. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil

Frühjahrsemester 2010. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil Frühjahrsemester Data Warehousing Kapitel 5: Data Warehousing H. Schuldt Wiederholung aus Kapitel 5. Einführung Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale Liestal Anfragen: Welches

Mehr

Folien zum Textbuch. Kapitel 6: Managementunterstützungssysteme. Teil 2: Textbuch-Seiten 794-825

Folien zum Textbuch. Kapitel 6: Managementunterstützungssysteme. Teil 2: Textbuch-Seiten 794-825 Folien zum Textbuch Kapitel 6: Managementunterstützungssysteme Teil 2: Managementunterstützung auf strategischer Ebene Datenverwaltung und -auswertung Textbuch-Seiten 794-825 WI 1 MUS MUS auf strategischer

Mehr

Erfolgreiche Unternehmensführung durch den Einsatz von Corporate Performance Management

Erfolgreiche Unternehmensführung durch den Einsatz von Corporate Performance Management Andrei Buhrymenka Erfolgreiche Unternehmensführung durch den Einsatz von Corporate Performance Management Für Unternehmen mit Business Intelligence Diplomica Verlag Andrei Buhrymenka Erfolgreiche Unternehmensführung

Mehr

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...

Mehr

Merkblatt DWH. Mittwoch, 6. Januar 2016 13:55. Info Seite 1

Merkblatt DWH. Mittwoch, 6. Januar 2016 13:55. Info Seite 1 Info Seite 1 Merkblatt DWH Mittwoch, 6. Januar 2016 13:55 Version: 1.0.0 Study: 3. Semester, Bachelor in Business and Computer Science School: Hochschule Luzern - Wirtschaft Author: Janik von Rotz (http://janikvonrotz.ch)

Mehr

Data Warehouses. Alexander Fehr. 23. Dezember 2002

Data Warehouses. Alexander Fehr. 23. Dezember 2002 Data Warehouses Alexander Fehr 23. Dezember 2002 Inhaltsverzeichnis 1 Einführung 1 1.1 Motivation.............................. 1 1.2 Definitionen.............................. 1 1.3 Abgrenzung von operativen

Mehr

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Prof. Dr. Anett Mehler-Bicher Fachhochschule Mainz, Fachbereich Wirtschaft Prof. Dr. Klaus Böhm health&media GmbH 2011 health&media

Mehr

Data Warehouse und ETL. Einführung und Überblick

Data Warehouse und ETL. Einführung und Überblick Data Warehouse und ETL Einführung und Überblick Data Warehouse Definition I A subject-oriented, integrated, non-volatile, time-variant collection of data organized to support management needs Inmon, Database

Mehr

Management Cockpits. Business Intelligence für Entscheider. Oliver Röniger EMEA Business Intelligence ORACLE Deutschland GmbH

Management Cockpits. Business Intelligence für Entscheider. Oliver Röniger EMEA Business Intelligence ORACLE Deutschland GmbH Management Cockpits Business Intelligence für Entscheider Oliver Röniger EMEA Business Intelligence ORACLE Deutschland GmbH email: oliver.roeniger@oracle.com Tel.: 0211 / 74839-588 DOAG, Mannheim, 15.

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

1 Einführung. Unbekannte Begriffe: Business Intelligence, Knowledge Management, Unternehmensportale, Information Warehouse.

1 Einführung. Unbekannte Begriffe: Business Intelligence, Knowledge Management, Unternehmensportale, Information Warehouse. 1 Einführung mysap Business Intelligence stellt mit Hilfe von Knowledge Management die Verbindung zwischen denen, die etwas wissen und denen, die etwas wissen müssen her. mysap Business Intelligence integriert

Mehr

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube Fragen des Marketingleiters Data Warehousing Wie viele Bestellungen haben wir jeweils im Monat vor Weihnachten, aufgeschlüsselt nach? Aufbau eines DWH OLAP OLTP Datacube Beispiel: : Amazon Technisch

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische

Mehr

Mala Bachmann September 2000

Mala Bachmann September 2000 Mala Bachmann September 2000 Wein-Shop (1) Umsatz pro Zeit und Produkt Umsatz Jan Feb Mrz Q1 Apr 2000 Merlot 33 55 56 144 18 760 Cabernet-S. 72 136 117 325 74 1338 Shiraz 85 128 99 312 92 1662 Rotweine

Mehr

1Ralph Schock RM NEO REPORTING

1Ralph Schock RM NEO REPORTING 1Ralph Schock RM NEO REPORTING Bereit für den Erfolg Business Intelligence Lösungen Bessere Entscheidungen Wir wollen alle Mitarbeiter in die Lage versetzen, bessere Entscheidungen schneller zu treffen

Mehr

Friedrich-Schiller-Universität Jena

Friedrich-Schiller-Universität Jena Friedrich-Schiller-Universität Jena Seminararbeit zum Thema Data Warehousing Abgrenzung, Einordnung und Anwendungen von Sebastian Hentschel Matrikelnummer 55281 Seminar Data Warehousing Sommersemester

Mehr

SAP BI Business Information

SAP BI Business Information Aus der Praxis für die Praxis. SAP BI Business Information Thomas Wieland Berlin, 24. November 2006 SAP BW Architektur Seite 2 Business Intelligence Aufgaben Bereitstellung harmonisierter Daten, Informationen

Mehr

Intelligence (BI): Von der. Nürnberg, 29. November 2011

Intelligence (BI): Von der. Nürnberg, 29. November 2011 Modelle für Business Intelligence (BI): Von der Anforderung zum Würfel Nürnberg, 29. November 2011 Warum Modelle für Business Intelligence (BI)? Warum Modelle für Business Intelligence (BI)? Bis zur Auswertung

Mehr

Online Analytical Processing

Online Analytical Processing Online Analytical Processing Online Analytical Processing Online Analytical Processing (OLAP) ermöglicht die multidimensionale Betrachtung von Daten zwecks E rmittlung eines entscheidungsunterstützenden

Mehr

Agenda. Hype oder Mehrwert. Herausforderungen. Methoden Werkzeuge. Kosten Nutzen. Definition Ziele

Agenda. Hype oder Mehrwert. Herausforderungen. Methoden Werkzeuge. Kosten Nutzen. Definition Ziele Agenda Definition Ziele Methoden Werkzeuge Herausforderungen Kosten Nutzen Hype oder Mehrwert Definition / Ziele Google Suche: define:business Intelligence Mit Business Intelligence können alle informationstechnischen

Mehr

The integration of business intelligence and knowledge management

The integration of business intelligence and knowledge management The integration of business intelligence and knowledge management Seminar: Business Intelligence Ketevan Karbelashvili Master IE, 3. Semester Universität Konstanz Inhalt Knowledge Management Business intelligence

Mehr

Datenbanktechnologie für Data-Warehouse-Systeme

Datenbanktechnologie für Data-Warehouse-Systeme Wolfgang Lehner Datenbanktechnologie für Data-Warehouse-Systeme Konzepte und Methoden dpunkt.verlag 1 1.1 1.2 1.3 1.4 1. 5 2 2.1 2.2 2.3 Einleitung 1 Betriebswirtschaftlicher Ursprung des Data Warehousing...

Mehr

Michael Bauer Niederlassungsleiter Köln

Michael Bauer Niederlassungsleiter Köln Click to edit Master title style 1 Michael Bauer Niederlassungsleiter Köln Hamburg, 18. Juni 2009 2009 IBM Corporation Agenda Click to edit Master title style 2 zur Person Wo, Warum.., Was - CPM liefert

Mehr

BI für Jedermann. Neue Möglichkeiten durch die Oracle BI-Suite Enterprise Edition

BI für Jedermann. Neue Möglichkeiten durch die Oracle BI-Suite Enterprise Edition BI für Jedermann Neue Möglichkeiten durch die Oracle BI-Suite Enterprise Edition Wolfgang Rütter Bereichsleiter Informationssysteme OPITZ CONSULTING Gummersbach GmbH 1 Warum BI für Jedermann? 1. Historie

Mehr

BICC, Organisation und Kompetenz Das Raiffeisen Solution SAS Competence Center

BICC, Organisation und Kompetenz Das Raiffeisen Solution SAS Competence Center BICC, Organisation und Kompetenz Das Raiffeisen Solution SAS Competence Center Ing. Polzer Markus öffentlich Inhaltsverzeichnis 1 2 3 4 5 6 7 Kurzvorstellung Raiffeisen Solution Business Intelligence Strategie

Mehr

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Data Warehouse ??? Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle ??? Zusammenfassung, Ergänzung, Querverbindungen, Beispiele A.Kaiser; WU-Wien MIS 188 Data Warehouse Ein Data Warehouse ist keine von der Stange zu kaufende Standardsoftware, sondern immer eine unternehmensindividuelle

Mehr

Umsetzung der Anforderungen - analytisch

Umsetzung der Anforderungen - analytisch Umsetzung der Anforderungen - analytisch Titel des Lernmoduls: Umsetzung der Anforderungen - analytisch Themengebiet: New Economy Gliederungspunkt im Curriculum: 4.2.5.5 Zum Inhalt: In diesem Modul wird

Mehr

SQL/OLAP und Multidimensionalität in der Lehre

SQL/OLAP und Multidimensionalität in der Lehre SQL/OLAP und Multidimensionalität in der Lehre Vortrag auf der DOAG 2008 Prof. Dr. Reinhold von Schwerin Hochschule Ulm, Fakultät für Informatik 1. Dezember 2008 Prof. Dr. Reinhold von Schwerin SQL/OLAP

Mehr

BUSINESS INTELLIGENCE IM MITTELSTAND EIN PRAXISBERICHT

BUSINESS INTELLIGENCE IM MITTELSTAND EIN PRAXISBERICHT BUSINESS INTELLIGENCE IM MITTELSTAND EIN PRAXISBERICHT Meik Truschkowski Architekt für Business Intelligence und Data Warehousing nobilia-werke J. Stickling GmbH & Co. KG Verl, den 31. Oktober 2011 UNTERNEHMENSPROFIL

Mehr

Survival Guide für Ihr Business Intelligence-Projekt

Survival Guide für Ihr Business Intelligence-Projekt Survival Guide für Ihr Business Intelligence-Projekt Sven Bosinger Solution Architect BI Survival Guide für Ihr BI-Projekt 1 Agenda Was ist Business Intelligence? Leistungsumfang Prozesse Erfolgsfaktoren

Mehr

Business Intelligence

Business Intelligence Business Intelligence Anwendungssysteme (BIAS) Lösung Aufgabe 1 Übung WS 2012/13 Business Intelligence Erläutern Sie den Begriff Business Intelligence. Gehen Sie bei der Definition von Business Intelligence

Mehr

4. WORKSHOP - OSBI Big Data und Datenvirtualisierung. Dr. Sebastian Streit & Maxim Zehe

4. WORKSHOP - OSBI Big Data und Datenvirtualisierung. Dr. Sebastian Streit & Maxim Zehe 4. WORKSHOP - OSBI Big Data und Datenvirtualisierung Dr. Sebastian Streit & Maxim Zehe F. Hoffmann-La Roche AG Gegründet 1896 in Basel Über 80.000 Mitarbeitende Führende Position in Pharma Fokussierung

Mehr

SQL Server 2012. Administration, Entwicklung und Business Intelligence. Roland Bauch. 1. Ausgabe, Mai 2012. Der kompakte Einstieg SQL2012A

SQL Server 2012. Administration, Entwicklung und Business Intelligence. Roland Bauch. 1. Ausgabe, Mai 2012. Der kompakte Einstieg SQL2012A SQL Server 2012 Roland Bauch 1. Ausgabe, Mai 2012 Administration, Entwicklung und Business Intelligence Der kompakte Einstieg SQL2012A 2 SQL Server 2012 - Administration, Entwicklung und Business Intelligence

Mehr

2.8. Business Intelligence

2.8. Business Intelligence 2.8. Zulieferer BeschaffungProduktion Kunde E-Procurement Customer Relationship (CRM) Supply Chain (SCM) Enterprise Resource Planning (ERP) Executive Information (EIS) Executive Support (ESS) Chef-Informations-

Mehr

DWH Szenarien. www.syntegris.de

DWH Szenarien. www.syntegris.de DWH Szenarien www.syntegris.de Übersicht Syntegris Unser Synhaus. Alles unter einem Dach! Übersicht Data-Warehouse und BI Projekte und Kompetenzen für skalierbare BI-Systeme. Vom Reporting auf operativen

Mehr

Data Warehouse Technologien

Data Warehouse Technologien mitp Professional Data Warehouse Technologien von Veit Köppen, Gunter Saake, Kai-Uwe Sattler 2. Auflage 2014 Data Warehouse Technologien Köppen / Saake / Sattler schnell und portofrei erhältlich bei beck-shop.de

Mehr

Objektorientierte Datenbanken

Objektorientierte Datenbanken OODB 11 Slide 1 Objektorientierte Datenbanken Vorlesung 11 vom 01.07.2004 Dr. Sebastian Iwanowski FH Wedel OODB 11 Slide 2 Inhalt heute: Datenbanken in betriebswirtschaftlichen Anwendungen OTLP (SAP) Data

Mehr

Business Intelligence - Wie passt das zum Mainframe?

Business Intelligence - Wie passt das zum Mainframe? Business Intelligence - Wie passt das zum Mainframe? IBM IM Forum, 15.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Ressourcen bei BARC für Ihr Projekt Durchführung von internationalen Umfragen,

Mehr

BARC-Studie Data Warehousing und Datenintegration

BARC-Studie Data Warehousing und Datenintegration Ergebnisse der BARC-Studie Data Warehouse Plattformen Dr. Carsten Bange BARC-Studie Data Warehousing und Datenintegration Data-Warehouse -Plattformen und Datenintegrationswerkzeuge im direkten Vergleich

Mehr

Data Warehouse. für den Microsoft SQL SERVER 2000/2005

Data Warehouse. für den Microsoft SQL SERVER 2000/2005 Warehouse für den Microsoft SQL SERVER 2000/2005 Begriffe 1 DWH ( Warehouse) ist eine fachübergreifende Zusammenfassung von Datentabellen. Mart ist die Gesamtheit aller Datentabellen für einen fachlich

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Unterstützung des PersonalControlling durch flexible IuK-Technologie Präsentation für die Tagung der IuK-Leiter am 23.09.2003

Unterstützung des PersonalControlling durch flexible IuK-Technologie Präsentation für die Tagung der IuK-Leiter am 23.09.2003 Data-Warehouse Unterstützung des PersonalControlling durch flexible IuK-Technologie Präsentation für die Tagung der IuK-Leiter am 23.09.2003 23.09.2003, Folie: 1 Data Warehouse Historie Architekturprinzip

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation Zusammenfassung OPAL 6. Übung Juni 2015 Agenda Hinweise zur Klausur Zusammenfassung OPAL Übungen / Kontrollfragen

Mehr

Management Support Systeme

Management Support Systeme Folie 1 Management Support Systeme Literatur zur Vorlesung MSS Gluchowski, Peter; Gabriel, Roland; Chamoni, Peter (1997): Management Support Systeme. Computergestützte Informationssysteme für Führungskräfte

Mehr

Forum Kommune 21, DiKOM Nord Hannover, 17. Februar 2011

Forum Kommune 21, DiKOM Nord Hannover, 17. Februar 2011 Forum Kommune 21, DiKOM Nord Hannover, 17. Februar 2011 Trends, Muster und Korrelationen erkennen und die richtigen Schlüsse daraus ziehen: MACH BI der für öffentliche Einrichtungen passende Zugang zur

Mehr

Ihre PRAXIS Software AG. a t o s. - nalytisch. - aktisch. - perativ. - trategisch. Unser atos Konzept für Ihren Erfolg

Ihre PRAXIS Software AG. a t o s. - nalytisch. - aktisch. - perativ. - trategisch. Unser atos Konzept für Ihren Erfolg Ihre PRAXIS Software AG a t o s - nalytisch - aktisch - perativ - trategisch Unser atos Konzept für Ihren Erfolg Das atos Konzept macht geschäftskritische Daten und Abläufe transparent ermöglicht einfache

Mehr

OLAP mit dem SQL-Server

OLAP mit dem SQL-Server Hartmut Messerschmidt Kai Schweinsberg OLAP mit dem SQL-Server Eine Einführung in Theorie und Praxis IIIBibliothek V dpunkt.verlag Teil OLAP undder Microsoft SQL-Server 1 1 Theoretische Grundlagen 3 1.1

Mehr

Unterstützung des strategischen Öko-Controllings durch den Einsatz von Data-Warehouse-Systemen

Unterstützung des strategischen Öko-Controllings durch den Einsatz von Data-Warehouse-Systemen EnviroInfo 2013: Environmental Informatics and Renewable Energies Unterstützung des strategischen Öko-Controllings durch den Einsatz von Data-Warehouse-Systemen Miada Naana 1, Horst Junker 2 Abstract Das

Mehr

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Architektur und Konzepte Josef Kolbitsch Manuela Reinisch Übersicht Mehrstufiges BI-System Architektur eines Data Warehouses Architektur eines Reporting-Systems Benutzerrollen in

Mehr

Zeitgemäße Verfahren für ganzheitliche Auswertungen

Zeitgemäße Verfahren für ganzheitliche Auswertungen Intelligente Vernetzung von Unternehmensbereichen Zeitgemäße Verfahren für ganzheitliche Auswertungen Sächsische Industrie- und Technologiemesse Chemnitz, 27. Juni 2012, Markus Blum 2012 TIQ Solutions

Mehr

David gegen Goliath Excel 2010 in Verbindung mit Datawarehouse und im Vergleich zu Business Objects

David gegen Goliath Excel 2010 in Verbindung mit Datawarehouse und im Vergleich zu Business Objects Thema: David gegen Goliath Excel 2010 in Verbindung mit Datawarehouse und im Vergleich zu Business Objects Autor: Dipl. Wirtsch.-Inf. Torsten Kühn PRAXIS-Consultant PRAXIS EDV- Betriebswirtschaft- und

Mehr

Modellierung von OLAP- und Data- Warehouse-Systemen

Modellierung von OLAP- und Data- Warehouse-Systemen Andreas Totok Modellierung von OLAP- und Data- Warehouse-Systemen Mit einem Geleitwort von Prof. Dr. Burkhard Huch Deutscher Universitäts-Verlag Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis

Mehr

Historie der analyseorientierten Informationssysteme

Historie der analyseorientierten Informationssysteme Gliederung MSS 1. Einführung in die Management Support Systeme (MSS) 2. Data Warehouse als Basis-Konzept aktueller MSS 3. Business Intelligence (BI) als Weiterführung des DW-Ansatzes 1. Grundlagen zum

Mehr

ENTERBRAIN Reporting & Business Intelligence

ENTERBRAIN Reporting & Business Intelligence Überblick Vorhandene Listen/Analysen in ENTERBRAIN Die Daten in ENTERBRAIN Das Fundament des BI - Hauses Details zur ENTERBRAIN Staging Area Reports und Cubes auf Basis der Staging Area Data Mining mit

Mehr

1. Data Warehouses - Einführung

1. Data Warehouses - Einführung 1. s - Einführung Definition Einsatzbeispiele OLTP vs. OLAP Grobarchitektur Virtuelle vs. physische Datenintegration Mehrdimensionale Datensicht Star-Schema, -Anfragen Data Mining Prof. E. Rahm 1-1 y yy

Mehr

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle 40. Congress der Controller, Themenzentrum C, München Steffen Vierkorn, Geschäftsführer Qunis GmbH, Neubeuern Die

Mehr

Business Intelligence für Controller

Business Intelligence für Controller Controllers Best Practice Fachbuch Business Intelligence für Controller Hermann Hebben und Dr. Markus Kottbauer Verlag für ControllingWissen ÄG, Freiburg und Wörthsee Ein Unternehmen der Haufe Mediengruppe

Mehr

Social Media trifft Business

Social Media trifft Business Social Media trifft Business Intelligence Social Media Analysis als Teil der Unternehmenssteuerung Tiemo Winterkamp, VP Global Marketing Agenda Social Media trifft Business Intelligence Business Intelligence

Mehr

GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013

GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013 OPEN SYSTEMS CONSULTING IT-KOMPLETTDIENSTLEISTER IM MITTELSTAND GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013 Business Analytics Sascha Thielke AGENDA Die Geschichte des Reporting Begriffe im BA Umfeld

Mehr