Big Data und Predictive Analytics

Größe: px
Ab Seite anzeigen:

Download "Big Data und Predictive Analytics"

Transkript

1 Big Data und Predictive Analytics Frühzeitiges Erkennen von Chancen und Risiken Referat Herbstfachtagung Die-DING 15. Oktober Seite 1

2 Big Data und predictive Analytics Analytik von nice to have zu unverzichtbar Datenbasierte Unternehmenssteuerung Die Nutzung von neuen Analytik -Technologien zur Prozessoptimierung und Entscheidungsfindung ist von höchstem strategischem Wert für die Unternehmensführung Seite 2

3 Big Data und predictive Analytics Analytik Stellenwert Zitat Samuel J. Palmisano Chairman IBM.Big data will help to solve the world s problems. The information is already out there. You just have to do some predictive modeling and solve problems which face us every day. Samuel J. Palmisano, Chairman IBM, The Economic Times, New Dehli, Friday, 14th September 2012 Seite 3

4 Inhalt Begriffsdefinitionen Big Data Predictive Analytics Anwendungsbereiche Herausforderungen, Lösungen und Projektbeispiele Nutzen Seite 4

5 Big Data Begriffsdefinition Wikipedia Big Data bezeichnet Daten-Mengen, die zu groß, oder zu komplex sind, oder sich zu schnell ändern, um sie mit händischen und klassischen Methoden der Datenverarbeitung auszuwerten. 3 Dimensionen: Datenvolumen Komplexität der Datenstrukturen Anzahl Felder pro Datensatz strukturierte / unstrukturierte Daten Dynamik der Änderung: Zeitdimension Seite 5

6 Predictive Analytics Begriffsdefinition Wikipedia Predictive analytics encompasses a variety of statistical techniques from modeling, machine learning and data mining that analyze current and historical facts to make predictions about future, or otherwise unknown, events. In business, predictive models exploit patterns found in historical and transactional data to identify risks and opportunities. Models capture relationships among many factors to allow assessment of risk or potential associated with a particular set of conditions, Guiding decision making for candidate transactions. Predictive analytics is used in actuarial science, marketing, financial Services, insurance, telecommunications, retail, travel, healthcare, pharmaceuticals and other fields. Seite 6

7 Big Data und predictive Analytics Beispiele von Anwendungsbereichen Nutzen von Chancen Identifikation und Nutzung von Chancen Potenzialorientierte Prozesse in Marketing und Vertrieb Kampagnenoptimierung Minimierung von Streuverlusten Erkennung und Nutzung von cross selling und upselling Potenzialen Kundenwertanalysen Kundenbindung Personalisierte Kundeninteraktion- und kommunikation Individualisierte Services Produkte Produktpositionierung Ermittlung von Kaufwahrscheinlichkeiten risikobasiertes Pricing Optimierte Preise durch Modellierung von Preissensitivitäten Seite 7

8 Big Data und predictive Analytics Beispiele von Anwendungsbereichen Früherkennung von Risiken (1) Früherkennung von Risiken Marketing und Vertrieb Früherkennung von absprunggefährdeten Kunden Schadenrisiken Früherkennung von Schadenrisiken Betrugsverhinderung von z.b.: Falschdeklarationen Abrechungsmanipulationen Betrug im elektronischen Zahlungsverkehr (z.b. Kartengeschäft) Betrug im Internet (z.b. Betrug im Onlinehandel oder in Bewertungsportalen) Seite 8

9 Big Data und predictive Analytics Projektbeispiel: Verhinderung von Missbrauch im Kartengeschäft Benchmark musterbasierte Erkennung gegen regelbasiertes System Resultat Erhöhung der Betrugserkennungsrate: 100% 79% der betrügerischen Transaktionen erkannt, welche das regelbasierte System nicht erkannt hat Mehr als 70% der Verluste verhindert Seite 9

10 Big Data und predictive Analytics Projektbeispiel: Verhinderung von Missbrauch im Kartengeschäft -warum ist die musterbasierte Erkennung besser? Transactions of Customer2 executed over a period of 3 days PAN Score Alert UID BillingAmount ResponseCode MerchantName AvailableAmount TxnDate_d Country MCC MCC_Groupe ACC_blocked CUSTOMER :38: UnitedKingdom 8999 Other 0 CUSTOMER PAYPAL :38: Singapore 8699 Other 0 CUSTOMER PAYPAL *NPESZHOU :39: Singapore 8999 Other 0 CUSTOMER :44: UnitedKingdom 4814 Telephone 0 CUSTOMER Apple Asia LLC,Taiwan :01: Taiwan 4816 Internet 0 CUSTOMER EA STORE :11: UnitedStates 5734 Retail 0 CUSTOMER :15: UnitedKingdom 8999 Other 0 CUSTOMER :15: UnitedKingdom 7994 Leisure 0 CUSTOMER EA STORE :16: UnitedStates 5734 Retail 0 CUSTOMER SQUARE ENIX/PLAY ONLIN :41: UnitedStates 7372 Office Service 0 CUSTOMER SQUARE ENIX/PLAY ONLIN :41: UnitedStates 7372 Office Service 0 CUSTOMER :48: UnitedKingdom 4814 Telephone 0 CUSTOMER SQUARE ENIX/PLAY ONLIN :31: UnitedStates 7372 Office Service 0 Transaction of Customer3 executed 6 days later PAN Score Alert UID BillingAmount ResponseCode MerchantName AvailableAmount TxnDate_d Country MCC MCC_Groupe ACC_blocked CUSTOMER SQUARE ENIX/PLAY ONLIN :15: UnitedStates 7372 Office Service 1 Transactions of Customer1 executed another 2 and 6 days later PAN Score Alert UID BillingAmount ResponseCode MerchantName AvailableAmount TxnDate_d Country MCC MCC_Groupe ACC_blocked CUSTOMER AMAZON EU :13: UnitedKingdom 5969 Mail 0 CUSTOMER AMAZON SVCS EU-DE :27: UnitedKingdom 5942 Retail 0 CUSTOMER :54: UnitedKingdom 8999 Other 0 CUSTOMER EA STORE :47: UnitedStates 5734 Retail 0 CUSTOMER EA STORE :52: UnitedStates 5734 Retail 0 CUSTOMER SQUARE ENIX/PLAY ONLIN :53: UnitedStates 7372 Office Service 0 CUSTOMER SQUARE ENIX/PLAY ONLIN :53: UnitedStates 7372 Office Service 0 Detectionparameters/ patterns Increased velocity of transactions Pattern of a firstsmallamount smallamount (fortesting) and an immediate subsequenthigherone High risk merchant (parameter that will be realtime updated by permanent merchand profiling) Solution characteristics On 1 st st day, 1 st st and 3 rd rd pattern have already been automatically recognized derived from Customer2, profiles been updated and transactions been detected After 1 st st day, suspicious transactionshave beendetectedfrom Customer1 basedon profiles derivedfrompatterns of Customer2 11 Betrugstransaktionen von unterschiedlichen Kunden werden aufgrund von in Echtzeit angepassten, verdächtigen Profilen erkannt 72 Seite 10

11 Big Data und predictive Analytics Projektbeispiel: Verhinderung von Missbrauch im Kartengeschäft - Erkenntnis Erkenntnis Regelbasierte Systeme stossen an Grenzen Komplexe verdächtige Muster müssen erkannt werden der kritische Zeitfaktor erfordert eine automatisierte Anpassung und Kalibrierung der Erkennungslogik in Echtzeit Seite 11

12 Big Data und predictive Analytics Beispiele von Anwendungsbereichen Früherkennung von Risiken (2) Früherkennung von Risiken Monitoring von Prozessen mit Früherkennung von z.b.: Qualitätsrisiken Engpässen Ausfallrisiken (Kreditgeschäft, für vorbeugende Instandhaltung) Lieferverzögerungen Diagnostische Klassifikation Krankheitsrisiken Biomarker Frühwarnungsystem für die Verbesserung der Diagnose- und Servicequalität und effizienz) Geeignetste Heilungsverfahren Seite 12

13 Big Data und predictive Analytics Projektbeispiel: Kredit Rating Vergleich von Frühwarnmodell gegen existierendes Ratingmodell Seite 13

14 Big Data und predictive Analytics Projektbeispiel: Kredit Rating Vergleich von Frühwarnmodell gegen existierendes Ratingmodell Seite 14

15 Big Data und predictive Analytics Projektbeispiel: Kredit Rating Vergleich von Frühwarnmodell gegen existierendes Ratingmodell analytische Erkenntnis Analytische Erkenntnis Alles berücksichtigen, was für die Analysefrage Relevanz haben könnte Der musterbasierte analytische Ansatz kann komplexe Datenstrukturen analysieren und verborgene und nicht-lineare Zusammenhänge aufdecken der Mehrgehalt an Evidenz führt zu besseren Modellen und businessrelevanten Erkenntnissen Seite 15

16 Big Data und predictive Analytics Die generelle Herausforderung Komplexität beherrschen durch Mustererkennung PROSPERO Seite 16

17 Big Data und predictive Analytics Herausforderungen und Lösung Datenqualität und aufbereitung leistungsfähiges Modul Datenqualität, -bereinigung und -aggregation Modul für Datenbereinigung, -anreicherung und -aggregation Behandlung und Transformation von Daten (z.b. missing Values, Ausreisser) Mehr als 80 Methoden und Verfahren zur Datentransformation und anreicherung; Bibliothek mit Templates Verarbeitung von komplexen Datenstrukturen Zeitreihen Aggregation von gruppenbasierten Daten Aufdecken von versteckten Abhängigkeiten Anreicherung mit abgeleiteten Attributen Definition von Simulationsszenarien Berücksichtigung von beliebigen Inputdaten (intern, extern, Makro-, Mikrodaten) absolute Änderungen probabilistisch ermittelte Änderungen basierend auf Verteilungsannahmen Definition von Zufallsvariablen, Generierung von Zufallsdaten auf Basis von prototypischen Datensätzen, Entrauschen der existierenden Daten z.b. für die Anwendung der Monte Carlo Simulation Seite 17

18 Big Data und Predictive Analytics Herausforderungen und Lösung Prognosequalität Prognosequaliät Intelligente Mustererkennung Kombinierte Anwendung von unterschiedlichen Methoden der Mustererkennung und des maschinellen Lernens auf der Basis eines evolutionären Optimierungsprozesses Mehrschichtiger Ansatz, in welchem die beste Methodenkombination und -parametrisierung vom System automatisch gefunden wird Die relevanten Muster werden in einem selbst lernenden Prozess gefunden Analyse der Evidenz und des Verhaltens in den Daten inklusive Peergroup- und Linkanalysen Finden der relevanten Businesstreiber Automatisiertes Feedback Lernen Maximierte Richtigerkennungen bei gleichzeitig minimierten Falscherkennungen Seite 18

19 Big Data und predictive Analytics Projektbeispiel: Intensivmedizin Benchmark gegen SAPS2 Score Modellqualitäten ROC-Kurve Model: SAPS2_Score Model: Prospero integrated Area under ROC: Area under ROC: Gini: Gini: Seite 19

20 Big Data und predictive Analytics Projektbeispiel: Intensivmedizin Benchmark gegen SAPS2 Score Aussagen für sicher überleben und sicher sterben 90.00% 80.00% 81.70% 70.00% Prospero integrated model SAPS2_Score 60.00% 50.00% 40.00% 39.32% 30.00% 20.00% 10.00% 0.00% 1.87% Definitely alive 7.28% Definitely dead Seite 20

21 Big Data und predictive Analytics Projektbeispiel: Intensivmedizin Benchmark gegen SAPS2 Score Erkenntnis Erkenntnis Die Leistungsfähigkeit der Analytik ist für den Businessnutzen entscheidend Die Kombination von Multilevel- und Multimethoden liefert signifikant bessere Ergebnisse als eine einzelne Methode Der musterbasierte analytische Ansatz findet verborgene Abhängigkeiten und identifiziert bisher unbekannte relevante Einflussfaktoren der Mehrgehalt an Evidenz führt zu besseren Modellen und businessrelevanten Erkenntnissen Seite 21

22 Big Data und Predictive Analytics Herausforderungen und Lösung Volumen und Dynamik grosse Datenvolumen verteilte, parallele Verarbeitung in-memory Technologie Echtzeit Monitoring Grid Technologie Cloud enabled Dynamik Das automatisierte Feedback Lernen kalibriert und verbessert die Qualität in einem laufenden Prozess Die Modelle, Profile und Muster adaptieren in Echtzeit Seite 22

23 Big Data und predictive Analytics Projektbeispiel: Gridcomputing Grid Computing Pharmaindustrie Projekt: Identifikation von freuquent Hittern im F&E - Prozess Datensätze mit 1800 Feldern (Attributen) pro Datensatz Anforderung: Bildung von Modell mit best möglicher Qualität und gleichzeitig möglichst wenig relevante Attributen Modellbildung in Grid mit 500 vernetzten PC s Resultat: in drei Stunden wurden mehr als Modellvarianten durchgerechnet und robuste Modelle gefunden mit über 87% Vorhersagequalität, welche nur zwischen 18 und 48 relevante Attribute haben Seite 23

24 Big Data und Predictive Analytics Herausforderungen und Lösung Komplexität der Datenstrukturen Komplexe Datenstrukturen Evolutionärer Optimierungsprozess zur Lösung des Dimensionalitätsproblems ermöglicht die Kombination von heterogenen Inputinformationen und die Integration des Modellierungs Outputs Die higher Level Modelle werden automatisiert vom System durch die Integration der Resultate von mehreren Modellen oder manuell auf Basis vom Anwender definierter Regeln erstellt (definierte Anwenderstrategien) Seite 24

25 Big Data und Predictive Analytics Modellbildung Schritt 1 und 2: Definition der Analysefrage und der Ausgangsdaten Schritt 1 Fragestellung: Wie hoch ist die Wahrscheinlichkeit, dass ein Kunde das Produkt 2 in den nächsten sechs Monaten kauft? Schritt 2 Ausgangsdaten (Rohdaten) Parameter = Kundenbestands- und Bewegungsdaten Seite 25

26 Wie geht es? Schritt 3: Modellerstellung mit Historiedaten für Lernen und Validieren Historiedaten Kunde mit Produkt 2 Kunde ohne Produkt 2 lernen validieren Seite 26

27 Big Data und Predictive Analytics Iterativer Lernprozess im multidimensionalen Datenraum Erkennungsqualität Modell n optimiertes, fehlerminimiertes Modell Modell 2 Modell 1 Iterativer Lernprozess Seite 27

28 Big Data und Predictive Analytics Die Herausforderung des Dimensionaltätenproblems: Die Vielzahl möglicher Modelle zeigt die hohe Komplexität n n = Anzahl Parameter pro Datensatz, mit n = Mio. mögliche Modelle n = E29 n = E300 n = E3009 Formel: 2^(N-1)-1 Seite 28

29 Big Data und Predictive Analytics Projektbeispiel komplexe Datenstrukturen Komplexe Datenstrukturen Projekt: Life Science: Proteomik/Genomik Anzahl Attribute (=Felder) pro Datensatz (= Person): Analysefrage: welche Attribute sind relevant für eine Krankheit? Das System hat 22 Attribute identifiziert und ein prädiktives Modell für die Vorhersage des Risikos dieser Krankheit gebildet Seite 29

30 Big Data und Predictive Analytics Herausforderungen und Lösung kontrollierte Anwendung Kontrollierte Anwendung Administration versionsgeführtes Modell-, Filter- und Listenmanagement Parameterisierung und Konfiguration Management der Anwenderberechtigungen Notifikationsmanagement Simulationsumgebung Transparenz und Nachvollziehbarkeit Alle Aktionen, Modelle und Resultate sind gespeichert für die komplette Transparenz und Nachvollziehbarkeit keine Black Box Datenverarbeitung und Monitoring Automatisierter Datenverarbeitungs und monitoring Workflow inklusive Feedback Lernen Seite 30

31 Big Data und Predictive Analytics Herausforderungen und Lösung Einbindung in bestehende Umgebungen Scoring Infrastruktur Web basiertes online Scoring Hoch performantes Echtzeit - Monitoring von Transaktionen Batch Scoring Infrastruktur Datenverarbeitung und Datenmonitoring Automatisierter Datenverarbeitungs und monitoring Workflow inklusive Feedback Lernen Integrations Services Web Services TCP/IP DB basiert via Staging Area Rohdatenfile Exchange Seite 31

32 Nutzenbeispiele Beispiele von Nutzen mit predictive Analytics Betrugsprävention: Kartengeschäft mit secured internet Transaktionen im Vergleich mit regelbasiertem System Erhöhung der Bertrugserkennungsrate: 100% 79% der bertügerischen Transaktionen erkannt Mehr als 70% der Verluste verhindert Vertriebsoptimierung: Erkennung von upselling und cross-selling Potenzialen Erhöhung der Erfolgsraten um 16% bis 52% Kredit Rating: Optimierung von existierenden Ratingmodellen Reduktion der Ausfallraten um 15% - 45% Seite 32

33 Big Data und predictive Analytics Ausblick wohin geht die Reise? Ausblick Systeme werden selber Hypothesen formulieren und diese überprüfen Systeme werden nicht nur Chancen und Risiken aufzeigen, sondern selber geeignete Massnahmen einleiten, um die Chancen zu nutzen bzw. Schäden zu verhindern Seite 33

34 Business Nutzen Zusammenfassung der Business Nutzen von Big Data und predictive Analytics optimierte Kosteneffizienz höhere Erträge Prozesssicherheit Know How Vorsprung Seite 34

35 Big Data und predictive Analytics Pilotprojekt: Proof of Value Durchlaufzeit ab Datenbereitstelllung ca. 4 Wochen Projektschritt / Aufgabe Konzeption Kick-off, Ausgangslage, Zieldefinition, Datenanalyse, Definition des Dateninputs Bereitstellung Datenbereitstellung Durchführung der Modellierung Datenübernahme und -transformation, Erstellung der Scoring-/Ratingmodelle Durchführung des Scorings/Ratings Prospero X X X Kunde X X Ergebnisaufbereitung Ergebnispräsentation ev. Benchmarkvergleich X X X X Seite 35

36 Kundenaussagen Was unsere Kunden sagen Die Qualität der Erkenntnisgewinnung von Prospero führt uns in eine neue Dimension von Effektivität in unseren Vertriebsprozessen. Thomas Bahc, Head of Multichannel Management, Member of the Board Switzerland, Swiss Life Insurance In unserem Benchmarktest in der Anbieterevaluation erzielte Prospero signifikant die besten Ergebnisse. Die Qualität der Erkennungsraten zusammen mit dem anwenderfreundlichen Workflow optimieren unsere Prozesse. Beat Hess, Business Analyst Partnersysteme, Zürich Financial Services Die kompetente Unterstützung durch Prospero war ein Schlüsselfaktor für die schnelle und erfolgreiche Projekteinführung. Albert Vendrami, Leiter Verkaufs-Services, Generali Die Lösung der Prospero hat uns ermöglicht, eine optimal trennende Ratingfunktion zu entwickeln, welche sich sowohl in der Anwendung bei den Banken als auch in der Modellvalidierung bestens bewährt hat. Professor Dr. Markus Heusler, CEO, RSN Risk Solution Network Seite 36

37 Kontakt Kontakt Christian Schaefle phone: Mobile: Seite 37

Thementisch Anwendungsgebiete und

Thementisch Anwendungsgebiete und Thementisch Anwendungsgebiete und b Erfolgsgeschichten KMUs und Big Data Wien 08. Juni 2015 Hermann b Stern, Know-Center www.know-center.at Know-Center GmbH Know-Center Research Center for Data-driven

Mehr

ibpm - intelligent Business Process Management: WWW.AXONIVY.COM

ibpm - intelligent Business Process Management: WWW.AXONIVY.COM ibpm - intelligent Business Process Management: ein neues Zeitalter bricht an. Peter Wiedmann 14.11.2014 WWW.AXONIVY.COM AGENDA 2 Vorstellung und Einführung Produktvorstellung ibpm die neue Dimension Anwendungsszenario

Mehr

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen Frank Irnich SAP Deutschland SAP ist ein globales Unternehmen... unser Fokusgebiet... IT Security für... 1 globales Netzwerk > 70 Länder, >

Mehr

Vorhersagetechniken für zukünftiges Verhalten von Kunden

Vorhersagetechniken für zukünftiges Verhalten von Kunden IBM 360 Grad-Sicht auf den Kunden: Vorhersagetechniken für zukünftiges Verhalten von Kunden Sven Fessler, sven.fessler@de.ibm.com Solution Architect, IBM Germany Business Analytics & Optimization Das Spektrum

Mehr

Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015

Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015 Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015 b Wien 08. Juni 2015 Stefanie Lindstaedt, b Know-Center www.know-center.at Know-Center GmbH Know-Center Research Center

Mehr

Analytisches CRM in der Automobilindustrie

Analytisches CRM in der Automobilindustrie Analytisches CRM in der Automobilindustrie Dr. Frank Säuberlich Practice Manager European Customer Solutions Urban Science International GmbH Automobilhersteller müssen neue Wege gehen Anforderungen in

Mehr

Visual Business Analytics Visueller Zugang zu Big Data

Visual Business Analytics Visueller Zugang zu Big Data Visual Business Analytics Visueller Zugang zu Big Data Dr.-Ing. Jörn Kohlhammer Fraunhofer-Institut für Graphische Datenverarbeitung (IGD) Fraunhoferstraße 5 64283 Darmstadt Tel.: +49 6151 155-646 Fax:

Mehr

SAP Technologien für die Telematik Chancen für die Versicherungsbranche. Dr. Alfred Geers, SAP Schweiz 28. Oktober 2014

SAP Technologien für die Telematik Chancen für die Versicherungsbranche. Dr. Alfred Geers, SAP Schweiz 28. Oktober 2014 SAP Technologien für die Telematik Chancen für die Versicherungsbranche Dr. Alfred Geers, SAP Schweiz 28. Oktober 2014 Der Markt ist bezüglich Telematik bereits in Bewegung Versicherungen Kunden Automobilhersteller

Mehr

Making Things Right mit Industry Services

Making Things Right mit Industry Services Dirk Hoke, CEO Customer Services Making Things Right mit Industry Services siemens.com/hannovermesse Making Things Right mit Industry Services Services Seite 2 18. Februar 2014 Wachsende Herausforderungen

Mehr

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller Was ist? Hannover, CeBIT 2014 Patrick Keller Business Application Research Center Historie 1994: Beginn der Untersuchung von Business-Intelligence-Software am Lehrstuhl Wirtschaftsinformatik der Universität

Mehr

Big Data Eine Einführung ins Thema

Big Data Eine Einführung ins Thema Joachim Hennebach Marketing Manager IBM Analytics 11. Februar 2016 Big Data Eine Einführung ins Thema Nur kurz: Was ist Big Data? (Die 5 Vs.) Volumen Vielfalt Geschwindigkeit Datenwachstum Von Terabytes

Mehr

Business Analytics Die Finanzfunktion auf dem Weg zur Strategieberatung? IBM Finance Forum, 20. März 2013 Prof. Dr.

Business Analytics Die Finanzfunktion auf dem Weg zur Strategieberatung? IBM Finance Forum, 20. März 2013 Prof. Dr. v Business Analytics Die Finanzfunktion auf dem Weg zur Strategieberatung? IBM Finance Forum, 20. März 2013 Prof. Dr. Gerhard Satzger Agenda 1. Wie sieht die erfolgreiche Finanzfunktion von morgen aus?

Mehr

Mit Risk Analytics Kundenrisiken aktiv steuern

Mit Risk Analytics Kundenrisiken aktiv steuern Mit Risk Analytics Kundenrisiken aktiv steuern Was sind Risk Analytics? Unter Risk Analytics versteht man statistische Analysen und Data Mining-Verfahren. Sie untersuchen Risiken im Zusammenhang mit Kundenbeziehungen

Mehr

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden Jens Kaminski ERP Strategy Executive IBM Deutschland Ungebremstes Datenwachstum > 4,6 Millarden

Mehr

LOG AND SECURITY INTELLIGENCE PLATFORM

LOG AND SECURITY INTELLIGENCE PLATFORM TIBCO LOGLOGIC LOG AND SECURITY INTELLIGENCE PLATFORM Security Information Management Logmanagement Data-Analytics Matthias Maier Solution Architect Central Europe, Eastern Europe, BeNeLux MMaier@Tibco.com

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

NICE Performance Management. Albert Bossart, Sales Manager DACH, NICE Switzerland AG

NICE Performance Management. Albert Bossart, Sales Manager DACH, NICE Switzerland AG NICE Performance Management Albert Bossart, Sales Manager DACH, NICE Switzerland AG Performance Verbesserung für Mitarbeiter mit Kundenbeziehungen Aussendienst Tele- Sales Interner Verkauf Neuakuisition

Mehr

Analysen sind nur so gut wie die Datenbasis

Analysen sind nur so gut wie die Datenbasis Analysen sind nur so gut wie die Datenbasis Datenaufbereitung und Sicherung der Datenqualität durch den kontextbasierten MIOsoft Ansatz. Daten gelten längst als wichtiger Produktionsfaktor in allen Industriebereichen.

Mehr

Education Day 2012. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! Education Day 2012 11.10.

Education Day 2012. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! Education Day 2012 11.10. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! 11.10.2012 1 BI PLUS was wir tun Firma: BI plus GmbH Giefinggasse 6/2/7 A-1210 Wien Mail: office@biplus.at

Mehr

SAS Predictive Analytics Factory The SAS approach for the production and maintenance of analytical models

SAS Predictive Analytics Factory The SAS approach for the production and maintenance of analytical models Predictive Analytics Factory The approach for the production and maintenance of analytical models Dr. Gerhard Svolba Austria Forum Finnland Helsinki September24 h, 2013 Agenda Rationale and idea of a Predictive

Mehr

Mining top-k frequent itemsets from data streams

Mining top-k frequent itemsets from data streams Seminar: Maschinelles Lernen Mining top-k frequent itemsets from data streams R.C.-W. Wong A.W.-C. Fu 1 Gliederung 1. Einleitung 2. Chernoff-basierter Algorithmus 3. top-k lossy counting Algorithmus 4.

Mehr

MHP Inventory Management Ihre Lösung für ein optimiertes und effizientes Bestandsmanagement!

MHP Inventory Management Ihre Lösung für ein optimiertes und effizientes Bestandsmanagement! MHP Inventory Management Ihre Lösung für ein optimiertes und effizientes Bestandsmanagement! Business Solutions 2015 Mieschke Hofmann und Partner Gesellschaft für Management- und IT-Beratung mbh Agenda

Mehr

Internet of things. Copyright 2016 FUJITSU

Internet of things. Copyright 2016 FUJITSU Internet of things 0 Fujitsu World Tour 2016 Human Centric Innovation in Action Wie das Internet der Dinge den Handel verändert Ralf Schienke Leitung Vertrieb Handel Deutschland 1 2X Cost of SENSORS Past

Mehr

DISCOVER BIG DATA & PREDICTIVE ANALYTICS DISCOVER INSIGHTS

DISCOVER BIG DATA & PREDICTIVE ANALYTICS DISCOVER INSIGHTS BIG DATA & PREDICTIVE ANALYTICS BIG DATA & PREDICTIVE ANALYTICS Turn communication into usable data. In einer zunehmend vernetzten, digitalen Service-Ökonomie müssen Sie die Wünsche Ihrer Kunden laufend

Mehr

Big Data & High-Performance Analytics: Anwendungsszenarien

Big Data & High-Performance Analytics: Anwendungsszenarien Big Data & High-Performance Analytics: Anwendungsszenarien Dr. Thomas Keil, Program Manager Business Analytics Frankfurt 26.4.2012 McKinsey-Studie zeigt Big Value Quelle: McKinsey Global Institute, May

Mehr

Big Data in der Automobilindustrie Eine Managementperspektive

Big Data in der Automobilindustrie Eine Managementperspektive München, März 2015 Big Data in der Automobilindustrie Eine Managementperspektive Eine Studie von Berylls Strategy Advisors Big Data bietet für die Automobilindustrie enorme Potenziale dennoch steht die

Mehr

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired make connections share ideas be inspired Data Guido Oswald Solution Architect @SAS Switzerland BIG Data.. Wer? BIG Data.. Wer? Wikipedia sagt: Als Big Data werden besonders große Datenmengen bezeichnet,

Mehr

Enterprise 2.0 Wie Social Software den Wissenstransfer bei Cisco revolutionierte

Enterprise 2.0 Wie Social Software den Wissenstransfer bei Cisco revolutionierte Enterprise 2.0 Wie Social Software den Wissenstransfer bei Cisco revolutionierte Willi Kaczorowski Internet Business Solutions Group KNOW TECH 2011, 28./29. September 2011, Bad Homburg I believe we are

Mehr

Direktmarketing im Zentrum digitaler Vertriebsstrategien

Direktmarketing im Zentrum digitaler Vertriebsstrategien Direktmarketing im Zentrum digitaler Vertriebsstrategien Standortbestimmung und Key Learnings für Verlage Hamburg, September 2014 Im Zentrum digitaler Vertriebsstrategien steht zunehmend die Analyse komplexer

Mehr

The Day in the Life of a Business Manager @ Microsoft

The Day in the Life of a Business Manager @ Microsoft The Day in the Life of a Business Manager @ Microsoft A look at analytics in action inside Microsoft Frank.Stolley@Microsoft.com Daniel.Weinmann@microsoft.com Microsoft Deutschland GmbH Big Data: Die Management-Revolution?

Mehr

DATEN - Das Gold des 21. Jahrhunderts? Dr. Oliver Riedel, AUDI AG

DATEN - Das Gold des 21. Jahrhunderts? Dr. Oliver Riedel, AUDI AG DATEN - Das Gold des 21. Jahrhunderts? Dr. Oliver Riedel, AUDI AG Inhalt Globale und unternehmensspezifische Herausforderungen Von Big Data zu Smart Data Herausforderungen und Mehrwert von Smart Data 2

Mehr

Treffsichere Absatzprognosen durch Predictive Analytics

Treffsichere Absatzprognosen durch Predictive Analytics Treffsichere Absatzprognosen durch Predictive Analytics Prof. Dr. Michael Feindt, Karlsruhe Institute of Technology KIT Chief Scientific Advisor, Phi-T GmbH und Blue Yonder GmbH & Co KG 3. Europäischer

Mehr

Cloud Architektur Workshop

Cloud Architektur Workshop Cloud Architektur Workshop Ein Angebot von IBM Software Services for Cloud & Smarter Infrastructure Agenda 1. Überblick Cloud Architektur Workshop 2. In 12 Schritten bis zur Cloud 3. Workshop Vorgehensmodell

Mehr

Executive Summary BIG DATA Future Chancen und Herausforderungen für die deutsche Industrie

Executive Summary BIG DATA Future Chancen und Herausforderungen für die deutsche Industrie Executive Summary BIG DATA Future Chancen und Herausforderungen für die deutsche Industrie BIG DATA Future Opportunities and Challanges in the German Industry Zusammenfassung Die Menge der verfügbaren

Mehr

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Adam Stambulski Project Manager Viessmann R&D Center Wroclaw Dr. Moritz Gomm Business Development Manager Zühlke Engineering

Mehr

SAP HANA eine Plattform für innovative Anwendungen

SAP HANA eine Plattform für innovative Anwendungen SAP HANA eine Plattform für innovative Anwendungen Top Intelligence: Big Data & SAP HANA Zürich, Frankfurt, Hamburg, München, Mülheim/R Februar 2014 Dr. Wolfgang Martin Analyst und Mitglied im Boulder

Mehr

POINT OF ORIGIN MARKETING CONSULTING MARKETING BERATUNG & TECHNOLOGIE

POINT OF ORIGIN MARKETING CONSULTING MARKETING BERATUNG & TECHNOLOGIE POINT OF ORIGIN MARKETING CONSULTING MARKETING BERATUNG & TECHNOLOGIE FÜNF DINGE ÜBER UNS Marketing & Technologie I. Spezialagentur für Marketingberatung und -technologie II. Sitz in Wien, Marketing Labs

Mehr

CENIT Beschwerdemanagement Beschwerden bearbeiten, analysieren und vermeiden. Stefan Jamin, Leiter ECM Zürich, 25.11.2014

CENIT Beschwerdemanagement Beschwerden bearbeiten, analysieren und vermeiden. Stefan Jamin, Leiter ECM Zürich, 25.11.2014 CENIT Beschwerdemanagement Beschwerden bearbeiten, analysieren und vermeiden Stefan Jamin, Leiter ECM Zürich, 25.11.2014 Beschwerden allgemein Beschwerden können in vielen verschiedenen Bereichen auftreten

Mehr

Industrie 4.0 Predictive Maintenance. Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014

Industrie 4.0 Predictive Maintenance. Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014 Industrie 4.0 Predictive Maintenance Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014 Anwendungsfälle Industrie 4.0 Digitales Objektgedächtnis Adaptive Logistik Responsive Manufacturing Intelligenter

Mehr

Mehr Leistung.. nur mit Daten. www.pepite.biz info@pepite.biz

Mehr Leistung.. nur mit Daten. www.pepite.biz info@pepite.biz Mehr Leistung.. nur mit Daten www.pepite.biz info@pepite.biz bietet oftware und Dienstleistungen PEPITe.A. für eine vollkommen neue Art der Datennutzung um Änderungen in der Betriebsweise, in der Wartung

Mehr

Social Media als Bestandteil der Customer Journey

Social Media als Bestandteil der Customer Journey Social Media als Bestandteil der Customer Journey Gregor Wolf Geschäftsführer Experian Marketing Services Frankfurt, 19.6.2015 Experian and the marks used herein are service marks or registered trademarks

Mehr

Rainer Klapper QS solutions GmbH

Rainer Klapper QS solutions GmbH Rainer Klapper QS solutions GmbH Der Handlungsbedarf Die CRM-Welt ist umgeben von Social Media Foren Communities Netzwerke CRM Blogs Fehlende Prozessintegration wird zunehmend zum Problem Wir bauen Brücken

Mehr

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining mit der SEMMA Methodik Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining Data Mining: Prozeß der Selektion, Exploration und Modellierung großer Datenmengen, um Information

Mehr

Explosionsartige Zunahme an Informationen. 200 Mrd. Mehr als 200 Mrd. E-Mails werden jeden Tag versendet. 30 Mrd.

Explosionsartige Zunahme an Informationen. 200 Mrd. Mehr als 200 Mrd. E-Mails werden jeden Tag versendet. 30 Mrd. Warum viele Daten für ein smartes Unternehmen wichtig sind Gerald AUFMUTH IBM Client Technical Specialst Data Warehouse Professional Explosionsartige Zunahme an Informationen Volumen. 15 Petabyte Menge

Mehr

Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg, 16.09.2014 www.boak.ch

Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg, 16.09.2014 www.boak.ch Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg, 16.09.2014 www.boak.ch Unstrukturierte Daten spielen eine immer bedeutender Rolle in Big Data-Projekten. Zunächst gilt es

Mehr

Visual Business Intelligence Eine Forschungsperspektive

Visual Business Intelligence Eine Forschungsperspektive Visual Business Intelligence Eine Forschungsperspektive Dr. Jörn Kohlhammer Fraunhofer-Institut für Graphische Datenverarbeitung IGD Fraunhoferstraße 5 64283 Darmstadt Tel.: +49 6151 155 646 Fax.: +49

Mehr

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28.

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28. PPC und Data Mining Seminar aus Informatik LV-911.039 Michael Brugger Fachbereich der Angewandten Informatik Universität Salzburg 28. Mai 2010 M. Brugger () PPC und Data Mining 28. Mai 2010 1 / 14 Inhalt

Mehr

Big Data Performance Management

Big Data Performance Management Big Data Performance Management Überblick Big Data Im Kontext der Performance Relevanz Big Data Big Data Big data is a buzzword and a "vague term", but at the same time an "obsession" with entrepreneurs,

Mehr

Operational Intelligence

Operational Intelligence Operational Intelligence Eric Müller Wenn Sie diesen Text lesen können, müssen Sie die Folie im Post-Menü mit der Funktion «Folie einfügen» erneut einfügen. Sonst kann kein Bild hinter die Fläche gelegt

Mehr

Vorhersage mit CA CleverPath Predictive Analysis Server. Laszlo Mihalka Senior Consultant Laszlo.Mihalka@ca.com

Vorhersage mit CA CleverPath Predictive Analysis Server. Laszlo Mihalka Senior Consultant Laszlo.Mihalka@ca.com Vorhersage mit CA CleverPath Predictive Analysis Server Laszlo Mihalka Senior Consultant Laszlo.Mihalka@ca.com Agenda Herausforderung CP PAS Neugents Modelle Mustererkennung Tools CA World 1 Herausforderung

Mehr

Big & Smart Data. bernard.bekavac@htwchur.ch

Big & Smart Data. bernard.bekavac@htwchur.ch Big & Smart Data Prof. Dr. Bernard Bekavac Schweizerisches Institut für Informationswissenschaft SII Studienleiter Bachelor of Science in Information Science bernard.bekavac@htwchur.ch Quiz An welchem

Mehr

Advanced Analytics. Michael Ridder. Copyright 2000-2014 TIBCO Software Inc.

Advanced Analytics. Michael Ridder. Copyright 2000-2014 TIBCO Software Inc. Advanced Analytics Michael Ridder Was ist Advanced Analytics? 2 Was heißt Advanced Analytics? Advanced Analytics ist die autonome oder halbautonome Prüfung von Daten oder Inhalten mit ausgefeilten Techniken

Mehr

Business Intelligence. Bereit für bessere Entscheidungen

Business Intelligence. Bereit für bessere Entscheidungen Business Intelligence Bereit für bessere Entscheidungen Business Intelligence Besserer Einblick in Geschäftsabläufe Business Intelligence ist die Integration von Strategien, Prozessen und Technologien,

Mehr

Make your day a sales day

Make your day a sales day Make your day a sales day Axivas Group Axivas IT Solutions I C T M a n a g e m e n t S a l e s P o r t a l S o f t w a r e Ihr Technologiepartner für Marketing- und Vertrieb. S y s t e m I n t e g r a

Mehr

Digital. Digital Customer Experience Management Ein integrierter Lösungsansatz mit der Adobe Marketing Cloud

Digital. Digital Customer Experience Management Ein integrierter Lösungsansatz mit der Adobe Marketing Cloud Digital Digital Customer Experience Management Ein integrierter Lösungsansatz mit der Adobe Marketing Cloud Jürgen Kübler, Leiter Realisierung Digitales Leistungsangebot #digitaljourney Inhaltsverzeichnis

Mehr

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Kundenwissen für den Energieversorger der Zukunft

Kundenwissen für den Energieversorger der Zukunft Kundenwissen für den Energieversorger der Zukunft Dr. Leading Tobias customer Graml insights CTO company tobias.graml@ben-energy.com for utilities in Europe Sechs Jahre Expertise in Datenanalyse und Kundenverhalten

Mehr

Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1

Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1 Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1 2.800.000.000.000.000.000.000 Bytes Daten im Jahr 2012* * Wenn jedes Byte einem Buchstaben entspricht und wir 1000 Buchstaben auf

Mehr

Einladung zu den IBM SPSS Data und Text Mining Tagen. Auch in Ihrer Nähe! Gewinnen Sie entscheidungsrelevantes Wissen mit Data und Text Mining

Einladung zu den IBM SPSS Data und Text Mining Tagen. Auch in Ihrer Nähe! Gewinnen Sie entscheidungsrelevantes Wissen mit Data und Text Mining Einladung zu den IBM SPSS Data und Text Mining Tagen Auch in Ihrer Nähe! Gewinnen Sie entscheidungsrelevantes Wissen mit Data und Text Mining Lassen Sie Daten und Texte für sich arbeiten mit Smarter Analytics

Mehr

acatech DEUTSCHE AKADEMIE DER TECHNIKWISSENSCHAFTEN Cloud Computing und der Weg in die digitale Gesellschaft

acatech DEUTSCHE AKADEMIE DER TECHNIKWISSENSCHAFTEN Cloud Computing und der Weg in die digitale Gesellschaft acatech DEUTSCHE AKADEMIE DER TECHNIKWISSENSCHAFTEN Cloud Computing und der Weg in die digitale Gesellschaft Henning Kagermann Fachtagung Future Business Clouds Berlin, 6. Juni 2013 Zwei konvergente Technologieentwicklungen

Mehr

Motivation. Themenblock: Data Preprocessing. Einsatzgebiete für Data Mining I. Modell von Gianotti und Pedreschi

Motivation. Themenblock: Data Preprocessing. Einsatzgebiete für Data Mining I. Modell von Gianotti und Pedreschi Motivation Themenblock: Data Preprocessing We are drowning in information, but starving for knowledge! (John Naisbett) Was genau ist Datenanalyse? Praktikum: Data Warehousing und Data Mining Was ist Data

Mehr

Data Driven Marketing Eine Verortung

Data Driven Marketing Eine Verortung Data Driven Marketing Eine Verortung Gregor Wolf Geschäftsführer Experian Marketing Services Frankfurt, 29.01.2015 Experian and the marks used herein are service marks or registered trademarks of Experian

Mehr

Big Data & High-Performance Analytics

Big Data & High-Performance Analytics Big Data & High-Performance Analytics Wolfgang Schwab, Senior Business Advisor Berlin 20.4.2012 PROJECTING THE GROWTH OF BIG DATA Source: IDC Digital Universe Study, sponsored by EMC, May 2010 THRIVING

Mehr

Mining the Web. Analyse von Benutzerpfaden und Nutzertypen im Internet. Business Unit CRM Solutions SAS Deutschland. Dr.

Mining the Web. Analyse von Benutzerpfaden und Nutzertypen im Internet. Business Unit CRM Solutions SAS Deutschland. Dr. Mining the Web Analyse von Benutzerpfaden und Nutzertypen im Internet Dr. Frank Säuberlich Business Unit CRM Solutions SAS Deutschland Agenda 1. Einleitung: Der Lebenszyklus eines e-kunden Begriffsdefinition

Mehr

MehrWert durch IT. REALTECH Assessment Services für SAP Kosten und Performance Optimierung durch Marktvergleich

MehrWert durch IT. REALTECH Assessment Services für SAP Kosten und Performance Optimierung durch Marktvergleich MehrWert durch IT REALTECH Assessment Services für SAP Kosten und Performance Optimierung durch Marktvergleich REALTECH Consulting GmbH Hinrich Mielke Andreas Holy 09.10.2014 Unschärfen bei typischem Benchmarking

Mehr

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH

Lars Priebe Senior Systemberater. ORACLE Deutschland GmbH Lars Priebe Senior Systemberater ORACLE Deutschland GmbH Data Mining als Anwendung des Data Warehouse Konzepte und Beispiele Agenda Data Warehouse Konzept und Data Mining Data Mining Prozesse Anwendungs-Beispiele

Mehr

Künstliche Neuronale Netze und Data Mining

Künstliche Neuronale Netze und Data Mining Künstliche Neuronale Netze und Data Mining Catherine Janson, icasus GmbH Heidelberg Abstract Der Begriff "künstliche Neuronale Netze" fasst Methoden der Informationstechnik zusammen, deren Entwicklung

Mehr

Large Scale Data Management

Large Scale Data Management Large Scale Data Management Beirat für Informationsgesellschaft / GOING LOCAL Wien, 21. November 2011 Prof. Dr. Wolrad Rommel FTW Forschungszentrum Telekommunikation Wien rommel@ftw.at Gartner's 2011 Hype

Mehr

VisualCockpit. agile business analytics

VisualCockpit. agile business analytics VisualCockpit agile business analytics Agile Business Analytics mit VisualCockpit Für Unternehmen wird es immer wichtiger die gesamte Wertschöpfungskette aus Daten, sowohl für das operative Geschäft als

Mehr

IBM Demokratischere Haushalte, bessere Steuerung, fundierte Entscheidungen? Was leisten das neue kommunale Finanzwesen und Business Intelligence?

IBM Demokratischere Haushalte, bessere Steuerung, fundierte Entscheidungen? Was leisten das neue kommunale Finanzwesen und Business Intelligence? Das IBM Leistungsversprechen zum Führungsinformationssystems IBM Demokratischere Haushalte, bessere Steuerung, fundierte Entscheidungen? Was leisten das neue kommunale Finanzwesen und Business Intelligence?

Mehr

Technologie für eine bessere Welt mit Sicherheit smarter

Technologie für eine bessere Welt mit Sicherheit smarter Technologie für eine bessere Welt mit Sicherheit smarter Dr. Lothar Mackert Vortrag beim IT-Sicherheitskongress 2011 Bonn, 12. April 2011 Technologie für eine bessere Welt - ein er Planet Supply Chains

Mehr

SOZIALES" BRANCHENGEFLÜSTER ANALYSIERT DER SOCIAL MEDIA-MONITOR FÜR BANKEN

SOZIALES BRANCHENGEFLÜSTER ANALYSIERT DER SOCIAL MEDIA-MONITOR FÜR BANKEN SOZIALES" BRANCHENGEFLÜSTER ANALYSIERT DER SOCIAL MEDIA-MONITOR FÜR BANKEN CHRISTIAN KÖNIG BUSINESS EXPERT COMPETENCE CENTER CUSTOMER INTELLIGENCE Copyr i g ht 2012, SAS Ins titut e Inc. All rights res

Mehr

Executive Summary: Banken und Versicherungen Wettbewerbsfaktor Analytics - Reifegrad ermitteln, Wirtschaftlichkeitspotenziale entdecken

Executive Summary: Banken und Versicherungen Wettbewerbsfaktor Analytics - Reifegrad ermitteln, Wirtschaftlichkeitspotenziale entdecken Executive Summary: Banken und Versicherungen Wettbewerbsfaktor Analytics - Reifegrad ermitteln, Wirtschaftlichkeitspotenziale entdecken Lehrstuhl für Wirtschaftsinformatik und Electronic Government Universität

Mehr

Governance, Risk & Compliance für den Mittelstand

Governance, Risk & Compliance für den Mittelstand Governance, Risk & Compliance für den Mittelstand Die Bedeutung von Steuerungs- und Kontrollsystemen nimmt auch für Unternehmen aus dem Mittelstand ständig zu. Der Aufwand für eine effiziente und effektive

Mehr

Mit In-Memory Technologie zu neuen Business Innovationen. Stephan Brand, VP HANA P&D, SAP AG May, 2014

Mit In-Memory Technologie zu neuen Business Innovationen. Stephan Brand, VP HANA P&D, SAP AG May, 2014 Mit In-Memory Technologie zu neuen Business Innovationen Stephan Brand, VP HANA P&D, SAP AG May, 2014 SAP Medical Research Insights : Forschung und Analyse in der Onkologie SAP Sentinel : Entscheidungsunterstützung

Mehr

BIG DATA: EXPECT THE UNEXPECTED. T-SYSTEMS AUSTRIA 2014 Dipl.-Ing. Axel Quitt @ Bundestagung der Jungen Wirtschaft

BIG DATA: EXPECT THE UNEXPECTED. T-SYSTEMS AUSTRIA 2014 Dipl.-Ing. Axel Quitt @ Bundestagung der Jungen Wirtschaft BIG DATA: EXPECT THE UNEXPECTED T-SYSTEMS AUSTRIA 2014 Dipl.-Ing. Axel Quitt @ Bundestagung der Jungen Wirtschaft Big Data Ein Wort wie eine Grippeepidemie Quelle: Google Trends Unternehmen werden mit

Mehr

Smart Cities wie Informationen das städtische Leben nachhaltig verbessern können

Smart Cities wie Informationen das städtische Leben nachhaltig verbessern können Smart Cities wie Informationen das städtische Leben nachhaltig verbessern können Gavin Dupré Big Data Business Development Manager ORACLE Deutschland B.V. & Co. KG Dataport Hausmesse, 28.04.2015 Was macht

Mehr

Vertrauen und Sicherheit im Banking 2.0

Vertrauen und Sicherheit im Banking 2.0 Ole Petersen Partner, IBM Global Business Services Executive, IBM Deutschland GmbH Vertrauen und Sicherheit im Banking 2.0 Frankfurt, 16. November 2010 im Rahmen der Euro Finance Week 2010 / Retail Banking

Mehr

We have a plan, it s called: Making the strategy operable.

We have a plan, it s called: Making the strategy operable. Bochum, 20. Februar 2015 We have a plan, it s called: Making the strategy operable. HOW WE WORK Bochum, Screen 20. Februar - Identify 2015 - Prototype Unser SIP-Prozess transformiert digitale Strategie

Mehr

Die neue Enterprise Project Management Strategie von Microsoft. Microsoft Deutschland GmbH

Die neue Enterprise Project Management Strategie von Microsoft. Microsoft Deutschland GmbH Die neue Enterprise Project Strategie von Microsoft Microsoft Deutschland GmbH Enterprise Project Eine vollständige Lösung, die es Unternehmen ermöglicht, die richtigen strategischen Entscheidungen zu

Mehr

Data Mining-Projekte

Data Mining-Projekte Data Mining-Projekte Data Mining-Projekte Data Mining stellt normalerweise kein ei nmaliges Projekt dar, welches Erkenntnisse liefert, die dann nur einmal verwendet werden, sondern es soll gewöhnlich ein

Mehr

BPM: Integrierte Prozesse im ecommerce

BPM: Integrierte Prozesse im ecommerce BPM: Integrierte Prozesse im ecommerce Vom Geschäftsprozess bis zur lauffähigen Applikation. Thomas Grömmer Head of Business Process Solutions Ulf Ackermann Consultant Business Process Solutions Solution

Mehr

Integration mit Service Repositories zur SOA Governance

Integration mit Service Repositories zur SOA Governance Integration mit Service Repositories zur SOA Governance Nürnberg, 10.11.2009 I N H A L T 1. SOA Governance 2. Service Repository 3. Modelle und Service Repository 4. Modell-Driven SOA I N H A L T 1. SOA

Mehr

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß Fachgruppe Statistik, Risikoanalyse & Computing STAT672 Data Mining Sommersemester 2007 Prof. Dr. R. D. Reiß Überblick Data Mining Begrifflichkeit Unter Data Mining versteht man die Computergestützte Suche

Mehr

ADVANCED ANALYTICS. Auswirkungen auf das Controlling und Unternehmenssteuerung

ADVANCED ANALYTICS. Auswirkungen auf das Controlling und Unternehmenssteuerung ADVANCED ANALYTICS Auswirkungen auf das Controlling und Unternehmenssteuerung Unternehmen im Zeitalter der Digitalisierung Was bedeutet Digitalisierung der Welt? Digitale Fußabdrücke in allen Branchen

Mehr

Modell- und evidenzbasierte Medizin durch digitale Patientenmodelle

Modell- und evidenzbasierte Medizin durch digitale Patientenmodelle 14.04.2015 Modell- und evidenzbasierte Medizin durch digitale Patientenmodelle Dr. Kerstin Denecke April 2015 ICCAS Innovation Center for Computer-Assisted Surgery Gegründet im März 2005 als zentrale Eintrichtung

Mehr

Exercise (Part II) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

Exercise (Part II) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1 Exercise (Part II) Notes: The exercise is based on Microsoft Dynamics CRM Online. For all screenshots: Copyright Microsoft Corporation. The sign ## is you personal number to be used in all exercises. All

Mehr

Komplexität der Information - Ausgangslage

Komplexität der Information - Ausgangslage Intuition, verlässliche Information, intelligente Entscheidung ein Reisebericht Stephan Wietheger Sales InfoSphere/Information Management Komplexität der Information - Ausgangslage Liefern von verlässlicher

Mehr

PREDICT BRINGEN SIE IHRE KUNDEN MIT PRODUKTEN ZUSAMMEN, DIE SIE LIEBEN WERDEN.

PREDICT BRINGEN SIE IHRE KUNDEN MIT PRODUKTEN ZUSAMMEN, DIE SIE LIEBEN WERDEN. PREDICT BRINGEN SIE IHRE KUNDEN MIT PRODUKTEN ZUSAMMEN, DIE SIE LIEBEN WERDEN. PREDICT Bringen Sie Ihre Kunden mit Produkten zusammen, die sie lieben werden. Personalisierte Produktempfehlungen Diese intelligente

Mehr

Digital Customer Experience Notwendiges Übel oder überlebenswichtige Notwendigkeit? Datalympics, 2. Juli 2014

Digital Customer Experience Notwendiges Übel oder überlebenswichtige Notwendigkeit? Datalympics, 2. Juli 2014 Digital Customer Experience Notwendiges Übel oder überlebenswichtige Notwendigkeit? Datalympics, 2. Juli 2014 Digitale Realität Die Welt verändert sich in rasantem Tempo Rom, Petersplatz, März 2013 Franziskus

Mehr

Die Renaissance von Unified Communication in der Cloud. Daniel Jonathan Valik UC, Cloud and Collaboration

Die Renaissance von Unified Communication in der Cloud. Daniel Jonathan Valik UC, Cloud and Collaboration Die Renaissance von Unified Communication in der Cloud Daniel Jonathan Valik UC, Cloud and Collaboration AGENDA Das Program der nächsten Minuten... 1 2 3 4 Was sind die derzeitigen Megatrends? Unified

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

Recommendation Engines im E Commerce

Recommendation Engines im E Commerce Recommendation Engines im E Commerce Funktionsweise Einsatzgebiete Wirtschaftlichkeit Silvio Steiger, prudsys AG www.prudsys.de Ziele mehr Kunden die mehr kaufen Persönlich relevante: Angebote Inhalte

Mehr

Continuous Auditing eine gut gemeinte aber schlechte Idee kommt zurück

Continuous Auditing eine gut gemeinte aber schlechte Idee kommt zurück Continuous Auditing eine gut gemeinte aber schlechte Idee kommt zurück Michel Huissoud Lic.iur, CISA, CIA 5. November 2012 - ISACA/SVIR-Fachtagung - Zürich Überwachung Continuous Monitoring Continuous

Mehr

R im Enterprise-Modus

R im Enterprise-Modus R im Enterprise-Modus Skalierbarkeit, Support und unternehmensweiter Einsatz Dr. Eike Nicklas HMS Konferenz 2014 Was ist R? R is a free software environment for statistical computing and graphics - www.r-project.org

Mehr

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle 40. Congress der Controller, Themenzentrum C, München Steffen Vierkorn, Geschäftsführer Qunis GmbH, Neubeuern Die

Mehr

Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen

Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen SAS PharmaHealth & Academia Gabriele Smith KIS-Tagung 2005 in Hamburg: 3. März 2005 Copyright 2003, SAS Institute Inc. All rights

Mehr

Insight Driven Health. Effizientes Versorgungsmanagement durch Gesundheitsanalytik. conhit Berlin, 24. April 2012

Insight Driven Health. Effizientes Versorgungsmanagement durch Gesundheitsanalytik. conhit Berlin, 24. April 2012 Insight Driven Health Effizientes Versorgungsmanagement durch Gesundheitsanalytik conhit Berlin, 24. April 2012 Agenda Vorstellung Accenture und Trends der Gesundheitsanalytik Beispiel Analytik Krankenversicherung

Mehr

Automatisierung mit der Line of Business verbinden. Ralf Paschen

Automatisierung mit der Line of Business verbinden. Ralf Paschen Automatisierung mit der Line of Business verbinden Ralf Paschen Agenda Die Herausforderung Was wollen wir? Was hindert uns? Was müssen wir lösen? Wir automatisieren 3 Property of Automic Software. All

Mehr