Big Data und Predictive Analytics
|
|
- Christina Pohl
- vor 2 Jahren
- Abrufe
Transkript
1 Big Data und Predictive Analytics Frühzeitiges Erkennen von Chancen und Risiken Referat Herbstfachtagung Die-DING 15. Oktober Seite 1
2 Big Data und predictive Analytics Analytik von nice to have zu unverzichtbar Datenbasierte Unternehmenssteuerung Die Nutzung von neuen Analytik -Technologien zur Prozessoptimierung und Entscheidungsfindung ist von höchstem strategischem Wert für die Unternehmensführung Seite 2
3 Big Data und predictive Analytics Analytik Stellenwert Zitat Samuel J. Palmisano Chairman IBM.Big data will help to solve the world s problems. The information is already out there. You just have to do some predictive modeling and solve problems which face us every day. Samuel J. Palmisano, Chairman IBM, The Economic Times, New Dehli, Friday, 14th September 2012 Seite 3
4 Inhalt Begriffsdefinitionen Big Data Predictive Analytics Anwendungsbereiche Herausforderungen, Lösungen und Projektbeispiele Nutzen Seite 4
5 Big Data Begriffsdefinition Wikipedia Big Data bezeichnet Daten-Mengen, die zu groß, oder zu komplex sind, oder sich zu schnell ändern, um sie mit händischen und klassischen Methoden der Datenverarbeitung auszuwerten. 3 Dimensionen: Datenvolumen Komplexität der Datenstrukturen Anzahl Felder pro Datensatz strukturierte / unstrukturierte Daten Dynamik der Änderung: Zeitdimension Seite 5
6 Predictive Analytics Begriffsdefinition Wikipedia Predictive analytics encompasses a variety of statistical techniques from modeling, machine learning and data mining that analyze current and historical facts to make predictions about future, or otherwise unknown, events. In business, predictive models exploit patterns found in historical and transactional data to identify risks and opportunities. Models capture relationships among many factors to allow assessment of risk or potential associated with a particular set of conditions, Guiding decision making for candidate transactions. Predictive analytics is used in actuarial science, marketing, financial Services, insurance, telecommunications, retail, travel, healthcare, pharmaceuticals and other fields. Seite 6
7 Big Data und predictive Analytics Beispiele von Anwendungsbereichen Nutzen von Chancen Identifikation und Nutzung von Chancen Potenzialorientierte Prozesse in Marketing und Vertrieb Kampagnenoptimierung Minimierung von Streuverlusten Erkennung und Nutzung von cross selling und upselling Potenzialen Kundenwertanalysen Kundenbindung Personalisierte Kundeninteraktion- und kommunikation Individualisierte Services Produkte Produktpositionierung Ermittlung von Kaufwahrscheinlichkeiten risikobasiertes Pricing Optimierte Preise durch Modellierung von Preissensitivitäten Seite 7
8 Big Data und predictive Analytics Beispiele von Anwendungsbereichen Früherkennung von Risiken (1) Früherkennung von Risiken Marketing und Vertrieb Früherkennung von absprunggefährdeten Kunden Schadenrisiken Früherkennung von Schadenrisiken Betrugsverhinderung von z.b.: Falschdeklarationen Abrechungsmanipulationen Betrug im elektronischen Zahlungsverkehr (z.b. Kartengeschäft) Betrug im Internet (z.b. Betrug im Onlinehandel oder in Bewertungsportalen) Seite 8
9 Big Data und predictive Analytics Projektbeispiel: Verhinderung von Missbrauch im Kartengeschäft Benchmark musterbasierte Erkennung gegen regelbasiertes System Resultat Erhöhung der Betrugserkennungsrate: 100% 79% der betrügerischen Transaktionen erkannt, welche das regelbasierte System nicht erkannt hat Mehr als 70% der Verluste verhindert Seite 9
10 Big Data und predictive Analytics Projektbeispiel: Verhinderung von Missbrauch im Kartengeschäft -warum ist die musterbasierte Erkennung besser? Transactions of Customer2 executed over a period of 3 days PAN Score Alert UID BillingAmount ResponseCode MerchantName AvailableAmount TxnDate_d Country MCC MCC_Groupe ACC_blocked CUSTOMER :38: UnitedKingdom 8999 Other 0 CUSTOMER PAYPAL :38: Singapore 8699 Other 0 CUSTOMER PAYPAL *NPESZHOU :39: Singapore 8999 Other 0 CUSTOMER :44: UnitedKingdom 4814 Telephone 0 CUSTOMER Apple Asia LLC,Taiwan :01: Taiwan 4816 Internet 0 CUSTOMER EA STORE :11: UnitedStates 5734 Retail 0 CUSTOMER :15: UnitedKingdom 8999 Other 0 CUSTOMER :15: UnitedKingdom 7994 Leisure 0 CUSTOMER EA STORE :16: UnitedStates 5734 Retail 0 CUSTOMER SQUARE ENIX/PLAY ONLIN :41: UnitedStates 7372 Office Service 0 CUSTOMER SQUARE ENIX/PLAY ONLIN :41: UnitedStates 7372 Office Service 0 CUSTOMER :48: UnitedKingdom 4814 Telephone 0 CUSTOMER SQUARE ENIX/PLAY ONLIN :31: UnitedStates 7372 Office Service 0 Transaction of Customer3 executed 6 days later PAN Score Alert UID BillingAmount ResponseCode MerchantName AvailableAmount TxnDate_d Country MCC MCC_Groupe ACC_blocked CUSTOMER SQUARE ENIX/PLAY ONLIN :15: UnitedStates 7372 Office Service 1 Transactions of Customer1 executed another 2 and 6 days later PAN Score Alert UID BillingAmount ResponseCode MerchantName AvailableAmount TxnDate_d Country MCC MCC_Groupe ACC_blocked CUSTOMER AMAZON EU :13: UnitedKingdom 5969 Mail 0 CUSTOMER AMAZON SVCS EU-DE :27: UnitedKingdom 5942 Retail 0 CUSTOMER :54: UnitedKingdom 8999 Other 0 CUSTOMER EA STORE :47: UnitedStates 5734 Retail 0 CUSTOMER EA STORE :52: UnitedStates 5734 Retail 0 CUSTOMER SQUARE ENIX/PLAY ONLIN :53: UnitedStates 7372 Office Service 0 CUSTOMER SQUARE ENIX/PLAY ONLIN :53: UnitedStates 7372 Office Service 0 Detectionparameters/ patterns Increased velocity of transactions Pattern of a firstsmallamount smallamount (fortesting) and an immediate subsequenthigherone High risk merchant (parameter that will be realtime updated by permanent merchand profiling) Solution characteristics On 1 st st day, 1 st st and 3 rd rd pattern have already been automatically recognized derived from Customer2, profiles been updated and transactions been detected After 1 st st day, suspicious transactionshave beendetectedfrom Customer1 basedon profiles derivedfrompatterns of Customer2 11 Betrugstransaktionen von unterschiedlichen Kunden werden aufgrund von in Echtzeit angepassten, verdächtigen Profilen erkannt 72 Seite 10
11 Big Data und predictive Analytics Projektbeispiel: Verhinderung von Missbrauch im Kartengeschäft - Erkenntnis Erkenntnis Regelbasierte Systeme stossen an Grenzen Komplexe verdächtige Muster müssen erkannt werden der kritische Zeitfaktor erfordert eine automatisierte Anpassung und Kalibrierung der Erkennungslogik in Echtzeit Seite 11
12 Big Data und predictive Analytics Beispiele von Anwendungsbereichen Früherkennung von Risiken (2) Früherkennung von Risiken Monitoring von Prozessen mit Früherkennung von z.b.: Qualitätsrisiken Engpässen Ausfallrisiken (Kreditgeschäft, für vorbeugende Instandhaltung) Lieferverzögerungen Diagnostische Klassifikation Krankheitsrisiken Biomarker Frühwarnungsystem für die Verbesserung der Diagnose- und Servicequalität und effizienz) Geeignetste Heilungsverfahren Seite 12
13 Big Data und predictive Analytics Projektbeispiel: Kredit Rating Vergleich von Frühwarnmodell gegen existierendes Ratingmodell Seite 13
14 Big Data und predictive Analytics Projektbeispiel: Kredit Rating Vergleich von Frühwarnmodell gegen existierendes Ratingmodell Seite 14
15 Big Data und predictive Analytics Projektbeispiel: Kredit Rating Vergleich von Frühwarnmodell gegen existierendes Ratingmodell analytische Erkenntnis Analytische Erkenntnis Alles berücksichtigen, was für die Analysefrage Relevanz haben könnte Der musterbasierte analytische Ansatz kann komplexe Datenstrukturen analysieren und verborgene und nicht-lineare Zusammenhänge aufdecken der Mehrgehalt an Evidenz führt zu besseren Modellen und businessrelevanten Erkenntnissen Seite 15
16 Big Data und predictive Analytics Die generelle Herausforderung Komplexität beherrschen durch Mustererkennung PROSPERO Seite 16
17 Big Data und predictive Analytics Herausforderungen und Lösung Datenqualität und aufbereitung leistungsfähiges Modul Datenqualität, -bereinigung und -aggregation Modul für Datenbereinigung, -anreicherung und -aggregation Behandlung und Transformation von Daten (z.b. missing Values, Ausreisser) Mehr als 80 Methoden und Verfahren zur Datentransformation und anreicherung; Bibliothek mit Templates Verarbeitung von komplexen Datenstrukturen Zeitreihen Aggregation von gruppenbasierten Daten Aufdecken von versteckten Abhängigkeiten Anreicherung mit abgeleiteten Attributen Definition von Simulationsszenarien Berücksichtigung von beliebigen Inputdaten (intern, extern, Makro-, Mikrodaten) absolute Änderungen probabilistisch ermittelte Änderungen basierend auf Verteilungsannahmen Definition von Zufallsvariablen, Generierung von Zufallsdaten auf Basis von prototypischen Datensätzen, Entrauschen der existierenden Daten z.b. für die Anwendung der Monte Carlo Simulation Seite 17
18 Big Data und Predictive Analytics Herausforderungen und Lösung Prognosequalität Prognosequaliät Intelligente Mustererkennung Kombinierte Anwendung von unterschiedlichen Methoden der Mustererkennung und des maschinellen Lernens auf der Basis eines evolutionären Optimierungsprozesses Mehrschichtiger Ansatz, in welchem die beste Methodenkombination und -parametrisierung vom System automatisch gefunden wird Die relevanten Muster werden in einem selbst lernenden Prozess gefunden Analyse der Evidenz und des Verhaltens in den Daten inklusive Peergroup- und Linkanalysen Finden der relevanten Businesstreiber Automatisiertes Feedback Lernen Maximierte Richtigerkennungen bei gleichzeitig minimierten Falscherkennungen Seite 18
19 Big Data und predictive Analytics Projektbeispiel: Intensivmedizin Benchmark gegen SAPS2 Score Modellqualitäten ROC-Kurve Model: SAPS2_Score Model: Prospero integrated Area under ROC: Area under ROC: Gini: Gini: Seite 19
20 Big Data und predictive Analytics Projektbeispiel: Intensivmedizin Benchmark gegen SAPS2 Score Aussagen für sicher überleben und sicher sterben 90.00% 80.00% 81.70% 70.00% Prospero integrated model SAPS2_Score 60.00% 50.00% 40.00% 39.32% 30.00% 20.00% 10.00% 0.00% 1.87% Definitely alive 7.28% Definitely dead Seite 20
21 Big Data und predictive Analytics Projektbeispiel: Intensivmedizin Benchmark gegen SAPS2 Score Erkenntnis Erkenntnis Die Leistungsfähigkeit der Analytik ist für den Businessnutzen entscheidend Die Kombination von Multilevel- und Multimethoden liefert signifikant bessere Ergebnisse als eine einzelne Methode Der musterbasierte analytische Ansatz findet verborgene Abhängigkeiten und identifiziert bisher unbekannte relevante Einflussfaktoren der Mehrgehalt an Evidenz führt zu besseren Modellen und businessrelevanten Erkenntnissen Seite 21
22 Big Data und Predictive Analytics Herausforderungen und Lösung Volumen und Dynamik grosse Datenvolumen verteilte, parallele Verarbeitung in-memory Technologie Echtzeit Monitoring Grid Technologie Cloud enabled Dynamik Das automatisierte Feedback Lernen kalibriert und verbessert die Qualität in einem laufenden Prozess Die Modelle, Profile und Muster adaptieren in Echtzeit Seite 22
23 Big Data und predictive Analytics Projektbeispiel: Gridcomputing Grid Computing Pharmaindustrie Projekt: Identifikation von freuquent Hittern im F&E - Prozess Datensätze mit 1800 Feldern (Attributen) pro Datensatz Anforderung: Bildung von Modell mit best möglicher Qualität und gleichzeitig möglichst wenig relevante Attributen Modellbildung in Grid mit 500 vernetzten PC s Resultat: in drei Stunden wurden mehr als Modellvarianten durchgerechnet und robuste Modelle gefunden mit über 87% Vorhersagequalität, welche nur zwischen 18 und 48 relevante Attribute haben Seite 23
24 Big Data und Predictive Analytics Herausforderungen und Lösung Komplexität der Datenstrukturen Komplexe Datenstrukturen Evolutionärer Optimierungsprozess zur Lösung des Dimensionalitätsproblems ermöglicht die Kombination von heterogenen Inputinformationen und die Integration des Modellierungs Outputs Die higher Level Modelle werden automatisiert vom System durch die Integration der Resultate von mehreren Modellen oder manuell auf Basis vom Anwender definierter Regeln erstellt (definierte Anwenderstrategien) Seite 24
25 Big Data und Predictive Analytics Modellbildung Schritt 1 und 2: Definition der Analysefrage und der Ausgangsdaten Schritt 1 Fragestellung: Wie hoch ist die Wahrscheinlichkeit, dass ein Kunde das Produkt 2 in den nächsten sechs Monaten kauft? Schritt 2 Ausgangsdaten (Rohdaten) Parameter = Kundenbestands- und Bewegungsdaten Seite 25
26 Wie geht es? Schritt 3: Modellerstellung mit Historiedaten für Lernen und Validieren Historiedaten Kunde mit Produkt 2 Kunde ohne Produkt 2 lernen validieren Seite 26
27 Big Data und Predictive Analytics Iterativer Lernprozess im multidimensionalen Datenraum Erkennungsqualität Modell n optimiertes, fehlerminimiertes Modell Modell 2 Modell 1 Iterativer Lernprozess Seite 27
28 Big Data und Predictive Analytics Die Herausforderung des Dimensionaltätenproblems: Die Vielzahl möglicher Modelle zeigt die hohe Komplexität n n = Anzahl Parameter pro Datensatz, mit n = Mio. mögliche Modelle n = E29 n = E300 n = E3009 Formel: 2^(N-1)-1 Seite 28
29 Big Data und Predictive Analytics Projektbeispiel komplexe Datenstrukturen Komplexe Datenstrukturen Projekt: Life Science: Proteomik/Genomik Anzahl Attribute (=Felder) pro Datensatz (= Person): Analysefrage: welche Attribute sind relevant für eine Krankheit? Das System hat 22 Attribute identifiziert und ein prädiktives Modell für die Vorhersage des Risikos dieser Krankheit gebildet Seite 29
30 Big Data und Predictive Analytics Herausforderungen und Lösung kontrollierte Anwendung Kontrollierte Anwendung Administration versionsgeführtes Modell-, Filter- und Listenmanagement Parameterisierung und Konfiguration Management der Anwenderberechtigungen Notifikationsmanagement Simulationsumgebung Transparenz und Nachvollziehbarkeit Alle Aktionen, Modelle und Resultate sind gespeichert für die komplette Transparenz und Nachvollziehbarkeit keine Black Box Datenverarbeitung und Monitoring Automatisierter Datenverarbeitungs und monitoring Workflow inklusive Feedback Lernen Seite 30
31 Big Data und Predictive Analytics Herausforderungen und Lösung Einbindung in bestehende Umgebungen Scoring Infrastruktur Web basiertes online Scoring Hoch performantes Echtzeit - Monitoring von Transaktionen Batch Scoring Infrastruktur Datenverarbeitung und Datenmonitoring Automatisierter Datenverarbeitungs und monitoring Workflow inklusive Feedback Lernen Integrations Services Web Services TCP/IP DB basiert via Staging Area Rohdatenfile Exchange Seite 31
32 Nutzenbeispiele Beispiele von Nutzen mit predictive Analytics Betrugsprävention: Kartengeschäft mit secured internet Transaktionen im Vergleich mit regelbasiertem System Erhöhung der Bertrugserkennungsrate: 100% 79% der bertügerischen Transaktionen erkannt Mehr als 70% der Verluste verhindert Vertriebsoptimierung: Erkennung von upselling und cross-selling Potenzialen Erhöhung der Erfolgsraten um 16% bis 52% Kredit Rating: Optimierung von existierenden Ratingmodellen Reduktion der Ausfallraten um 15% - 45% Seite 32
33 Big Data und predictive Analytics Ausblick wohin geht die Reise? Ausblick Systeme werden selber Hypothesen formulieren und diese überprüfen Systeme werden nicht nur Chancen und Risiken aufzeigen, sondern selber geeignete Massnahmen einleiten, um die Chancen zu nutzen bzw. Schäden zu verhindern Seite 33
34 Business Nutzen Zusammenfassung der Business Nutzen von Big Data und predictive Analytics optimierte Kosteneffizienz höhere Erträge Prozesssicherheit Know How Vorsprung Seite 34
35 Big Data und predictive Analytics Pilotprojekt: Proof of Value Durchlaufzeit ab Datenbereitstelllung ca. 4 Wochen Projektschritt / Aufgabe Konzeption Kick-off, Ausgangslage, Zieldefinition, Datenanalyse, Definition des Dateninputs Bereitstellung Datenbereitstellung Durchführung der Modellierung Datenübernahme und -transformation, Erstellung der Scoring-/Ratingmodelle Durchführung des Scorings/Ratings Prospero X X X Kunde X X Ergebnisaufbereitung Ergebnispräsentation ev. Benchmarkvergleich X X X X Seite 35
36 Kundenaussagen Was unsere Kunden sagen Die Qualität der Erkenntnisgewinnung von Prospero führt uns in eine neue Dimension von Effektivität in unseren Vertriebsprozessen. Thomas Bahc, Head of Multichannel Management, Member of the Board Switzerland, Swiss Life Insurance In unserem Benchmarktest in der Anbieterevaluation erzielte Prospero signifikant die besten Ergebnisse. Die Qualität der Erkennungsraten zusammen mit dem anwenderfreundlichen Workflow optimieren unsere Prozesse. Beat Hess, Business Analyst Partnersysteme, Zürich Financial Services Die kompetente Unterstützung durch Prospero war ein Schlüsselfaktor für die schnelle und erfolgreiche Projekteinführung. Albert Vendrami, Leiter Verkaufs-Services, Generali Die Lösung der Prospero hat uns ermöglicht, eine optimal trennende Ratingfunktion zu entwickeln, welche sich sowohl in der Anwendung bei den Banken als auch in der Modellvalidierung bestens bewährt hat. Professor Dr. Markus Heusler, CEO, RSN Risk Solution Network Seite 36
37 Kontakt Kontakt Christian Schaefle phone: Mobile: Seite 37
Thementisch Anwendungsgebiete und
Thementisch Anwendungsgebiete und b Erfolgsgeschichten KMUs und Big Data Wien 08. Juni 2015 Hermann b Stern, Know-Center www.know-center.at Know-Center GmbH Know-Center Research Center for Data-driven
ibpm - intelligent Business Process Management: WWW.AXONIVY.COM
ibpm - intelligent Business Process Management: ein neues Zeitalter bricht an. Peter Wiedmann 14.11.2014 WWW.AXONIVY.COM AGENDA 2 Vorstellung und Einführung Produktvorstellung ibpm die neue Dimension Anwendungsszenario
Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland
Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen Frank Irnich SAP Deutschland SAP ist ein globales Unternehmen... unser Fokusgebiet... IT Security für... 1 globales Netzwerk > 70 Länder, >
Vorhersagetechniken für zukünftiges Verhalten von Kunden
IBM 360 Grad-Sicht auf den Kunden: Vorhersagetechniken für zukünftiges Verhalten von Kunden Sven Fessler, sven.fessler@de.ibm.com Solution Architect, IBM Germany Business Analytics & Optimization Das Spektrum
Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015
Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015 b Wien 08. Juni 2015 Stefanie Lindstaedt, b Know-Center www.know-center.at Know-Center GmbH Know-Center Research Center
Making Things Right mit Industry Services
Dirk Hoke, CEO Customer Services Making Things Right mit Industry Services siemens.com/hannovermesse Making Things Right mit Industry Services Services Seite 2 18. Februar 2014 Wachsende Herausforderungen
Visual Business Analytics Visueller Zugang zu Big Data
Visual Business Analytics Visueller Zugang zu Big Data Dr.-Ing. Jörn Kohlhammer Fraunhofer-Institut für Graphische Datenverarbeitung (IGD) Fraunhoferstraße 5 64283 Darmstadt Tel.: +49 6151 155-646 Fax:
Analytisches CRM in der Automobilindustrie
Analytisches CRM in der Automobilindustrie Dr. Frank Säuberlich Practice Manager European Customer Solutions Urban Science International GmbH Automobilhersteller müssen neue Wege gehen Anforderungen in
Business Analytics Die Finanzfunktion auf dem Weg zur Strategieberatung? IBM Finance Forum, 20. März 2013 Prof. Dr.
v Business Analytics Die Finanzfunktion auf dem Weg zur Strategieberatung? IBM Finance Forum, 20. März 2013 Prof. Dr. Gerhard Satzger Agenda 1. Wie sieht die erfolgreiche Finanzfunktion von morgen aus?
Big Data Eine Einführung ins Thema
Joachim Hennebach Marketing Manager IBM Analytics 11. Februar 2016 Big Data Eine Einführung ins Thema Nur kurz: Was ist Big Data? (Die 5 Vs.) Volumen Vielfalt Geschwindigkeit Datenwachstum Von Terabytes
Mit Risk Analytics Kundenrisiken aktiv steuern
Mit Risk Analytics Kundenrisiken aktiv steuern Was sind Risk Analytics? Unter Risk Analytics versteht man statistische Analysen und Data Mining-Verfahren. Sie untersuchen Risiken im Zusammenhang mit Kundenbeziehungen
Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller
Was ist? Hannover, CeBIT 2014 Patrick Keller Business Application Research Center Historie 1994: Beginn der Untersuchung von Business-Intelligence-Software am Lehrstuhl Wirtschaftsinformatik der Universität
NICE Performance Management. Albert Bossart, Sales Manager DACH, NICE Switzerland AG
NICE Performance Management Albert Bossart, Sales Manager DACH, NICE Switzerland AG Performance Verbesserung für Mitarbeiter mit Kundenbeziehungen Aussendienst Tele- Sales Interner Verkauf Neuakuisition
SAP Technologien für die Telematik Chancen für die Versicherungsbranche. Dr. Alfred Geers, SAP Schweiz 28. Oktober 2014
SAP Technologien für die Telematik Chancen für die Versicherungsbranche Dr. Alfred Geers, SAP Schweiz 28. Oktober 2014 Der Markt ist bezüglich Telematik bereits in Bewegung Versicherungen Kunden Automobilhersteller
LOG AND SECURITY INTELLIGENCE PLATFORM
TIBCO LOGLOGIC LOG AND SECURITY INTELLIGENCE PLATFORM Security Information Management Logmanagement Data-Analytics Matthias Maier Solution Architect Central Europe, Eastern Europe, BeNeLux MMaier@Tibco.com
Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria
Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards
Education Day 2012. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! Education Day 2012 11.10.
Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! 11.10.2012 1 BI PLUS was wir tun Firma: BI plus GmbH Giefinggasse 6/2/7 A-1210 Wien Mail: office@biplus.at
In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden
In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden Jens Kaminski ERP Strategy Executive IBM Deutschland Ungebremstes Datenwachstum > 4,6 Millarden
Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired
make connections share ideas be inspired Data Guido Oswald Solution Architect @SAS Switzerland BIG Data.. Wer? BIG Data.. Wer? Wikipedia sagt: Als Big Data werden besonders große Datenmengen bezeichnet,
Enterprise 2.0 Wie Social Software den Wissenstransfer bei Cisco revolutionierte
Enterprise 2.0 Wie Social Software den Wissenstransfer bei Cisco revolutionierte Willi Kaczorowski Internet Business Solutions Group KNOW TECH 2011, 28./29. September 2011, Bad Homburg I believe we are
Big Data in der Automobilindustrie Eine Managementperspektive
München, März 2015 Big Data in der Automobilindustrie Eine Managementperspektive Eine Studie von Berylls Strategy Advisors Big Data bietet für die Automobilindustrie enorme Potenziale dennoch steht die
DATEN - Das Gold des 21. Jahrhunderts? Dr. Oliver Riedel, AUDI AG
DATEN - Das Gold des 21. Jahrhunderts? Dr. Oliver Riedel, AUDI AG Inhalt Globale und unternehmensspezifische Herausforderungen Von Big Data zu Smart Data Herausforderungen und Mehrwert von Smart Data 2
DISCOVER BIG DATA & PREDICTIVE ANALYTICS DISCOVER INSIGHTS
BIG DATA & PREDICTIVE ANALYTICS BIG DATA & PREDICTIVE ANALYTICS Turn communication into usable data. In einer zunehmend vernetzten, digitalen Service-Ökonomie müssen Sie die Wünsche Ihrer Kunden laufend
Mining top-k frequent itemsets from data streams
Seminar: Maschinelles Lernen Mining top-k frequent itemsets from data streams R.C.-W. Wong A.W.-C. Fu 1 Gliederung 1. Einleitung 2. Chernoff-basierter Algorithmus 3. top-k lossy counting Algorithmus 4.
Big Data & High-Performance Analytics: Anwendungsszenarien
Big Data & High-Performance Analytics: Anwendungsszenarien Dr. Thomas Keil, Program Manager Business Analytics Frankfurt 26.4.2012 McKinsey-Studie zeigt Big Value Quelle: McKinsey Global Institute, May
MHP Inventory Management Ihre Lösung für ein optimiertes und effizientes Bestandsmanagement!
MHP Inventory Management Ihre Lösung für ein optimiertes und effizientes Bestandsmanagement! Business Solutions 2015 Mieschke Hofmann und Partner Gesellschaft für Management- und IT-Beratung mbh Agenda
SAS Predictive Analytics Factory The SAS approach for the production and maintenance of analytical models
Predictive Analytics Factory The approach for the production and maintenance of analytical models Dr. Gerhard Svolba Austria Forum Finnland Helsinki September24 h, 2013 Agenda Rationale and idea of a Predictive
SAP HANA eine Plattform für innovative Anwendungen
SAP HANA eine Plattform für innovative Anwendungen Top Intelligence: Big Data & SAP HANA Zürich, Frankfurt, Hamburg, München, Mülheim/R Februar 2014 Dr. Wolfgang Martin Analyst und Mitglied im Boulder
Internet of things. Copyright 2016 FUJITSU
Internet of things 0 Fujitsu World Tour 2016 Human Centric Innovation in Action Wie das Internet der Dinge den Handel verändert Ralf Schienke Leitung Vertrieb Handel Deutschland 1 2X Cost of SENSORS Past
The Day in the Life of a Business Manager @ Microsoft
The Day in the Life of a Business Manager @ Microsoft A look at analytics in action inside Microsoft Frank.Stolley@Microsoft.com Daniel.Weinmann@microsoft.com Microsoft Deutschland GmbH Big Data: Die Management-Revolution?
Executive Summary BIG DATA Future Chancen und Herausforderungen für die deutsche Industrie
Executive Summary BIG DATA Future Chancen und Herausforderungen für die deutsche Industrie BIG DATA Future Opportunities and Challanges in the German Industry Zusammenfassung Die Menge der verfügbaren
Social Media als Bestandteil der Customer Journey
Social Media als Bestandteil der Customer Journey Gregor Wolf Geschäftsführer Experian Marketing Services Frankfurt, 19.6.2015 Experian and the marks used herein are service marks or registered trademarks
Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg, 16.09.2014 www.boak.ch
Big Data: Definition, Einführung und Live Democase [C1] Arne Weitzel Uetliberg, 16.09.2014 www.boak.ch Unstrukturierte Daten spielen eine immer bedeutender Rolle in Big Data-Projekten. Zunächst gilt es
Visual Business Intelligence Eine Forschungsperspektive
Visual Business Intelligence Eine Forschungsperspektive Dr. Jörn Kohlhammer Fraunhofer-Institut für Graphische Datenverarbeitung IGD Fraunhoferstraße 5 64283 Darmstadt Tel.: +49 6151 155 646 Fax.: +49
Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann
Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Adam Stambulski Project Manager Viessmann R&D Center Wroclaw Dr. Moritz Gomm Business Development Manager Zühlke Engineering
POINT OF ORIGIN MARKETING CONSULTING MARKETING BERATUNG & TECHNOLOGIE
POINT OF ORIGIN MARKETING CONSULTING MARKETING BERATUNG & TECHNOLOGIE FÜNF DINGE ÜBER UNS Marketing & Technologie I. Spezialagentur für Marketingberatung und -technologie II. Sitz in Wien, Marketing Labs
SOZIALES" BRANCHENGEFLÜSTER ANALYSIERT DER SOCIAL MEDIA-MONITOR FÜR BANKEN
SOZIALES" BRANCHENGEFLÜSTER ANALYSIERT DER SOCIAL MEDIA-MONITOR FÜR BANKEN CHRISTIAN KÖNIG BUSINESS EXPERT COMPETENCE CENTER CUSTOMER INTELLIGENCE Copyr i g ht 2012, SAS Ins titut e Inc. All rights res
Big & Smart Data. bernard.bekavac@htwchur.ch
Big & Smart Data Prof. Dr. Bernard Bekavac Schweizerisches Institut für Informationswissenschaft SII Studienleiter Bachelor of Science in Information Science bernard.bekavac@htwchur.ch Quiz An welchem
Industrie 4.0 Predictive Maintenance. Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014
Industrie 4.0 Predictive Maintenance Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014 Anwendungsfälle Industrie 4.0 Digitales Objektgedächtnis Adaptive Logistik Responsive Manufacturing Intelligenter
Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1
Daten haben wir reichlich! 25.04.14 The unbelievable Machine Company 1 2.800.000.000.000.000.000.000 Bytes Daten im Jahr 2012* * Wenn jedes Byte einem Buchstaben entspricht und wir 1000 Buchstaben auf
Rainer Klapper QS solutions GmbH
Rainer Klapper QS solutions GmbH Der Handlungsbedarf Die CRM-Welt ist umgeben von Social Media Foren Communities Netzwerke CRM Blogs Fehlende Prozessintegration wird zunehmend zum Problem Wir bauen Brücken
Mining the Web. Analyse von Benutzerpfaden und Nutzertypen im Internet. Business Unit CRM Solutions SAS Deutschland. Dr.
Mining the Web Analyse von Benutzerpfaden und Nutzertypen im Internet Dr. Frank Säuberlich Business Unit CRM Solutions SAS Deutschland Agenda 1. Einleitung: Der Lebenszyklus eines e-kunden Begriffsdefinition
BIG DATA: EXPECT THE UNEXPECTED. T-SYSTEMS AUSTRIA 2014 Dipl.-Ing. Axel Quitt @ Bundestagung der Jungen Wirtschaft
BIG DATA: EXPECT THE UNEXPECTED T-SYSTEMS AUSTRIA 2014 Dipl.-Ing. Axel Quitt @ Bundestagung der Jungen Wirtschaft Big Data Ein Wort wie eine Grippeepidemie Quelle: Google Trends Unternehmen werden mit
Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG
Data Mining mit der SEMMA Methodik Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining Data Mining: Prozeß der Selektion, Exploration und Modellierung großer Datenmengen, um Information
Data Driven Marketing Eine Verortung
Data Driven Marketing Eine Verortung Gregor Wolf Geschäftsführer Experian Marketing Services Frankfurt, 29.01.2015 Experian and the marks used herein are service marks or registered trademarks of Experian
Analysen sind nur so gut wie die Datenbasis
Analysen sind nur so gut wie die Datenbasis Datenaufbereitung und Sicherung der Datenqualität durch den kontextbasierten MIOsoft Ansatz. Daten gelten längst als wichtiger Produktionsfaktor in allen Industriebereichen.
Treffsichere Absatzprognosen durch Predictive Analytics
Treffsichere Absatzprognosen durch Predictive Analytics Prof. Dr. Michael Feindt, Karlsruhe Institute of Technology KIT Chief Scientific Advisor, Phi-T GmbH und Blue Yonder GmbH & Co KG 3. Europäischer
Make your day a sales day
Make your day a sales day Axivas Group Axivas IT Solutions I C T M a n a g e m e n t S a l e s P o r t a l S o f t w a r e Ihr Technologiepartner für Marketing- und Vertrieb. S y s t e m I n t e g r a
Direktmarketing im Zentrum digitaler Vertriebsstrategien
Direktmarketing im Zentrum digitaler Vertriebsstrategien Standortbestimmung und Key Learnings für Verlage Hamburg, September 2014 Im Zentrum digitaler Vertriebsstrategien steht zunehmend die Analyse komplexer
PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28.
PPC und Data Mining Seminar aus Informatik LV-911.039 Michael Brugger Fachbereich der Angewandten Informatik Universität Salzburg 28. Mai 2010 M. Brugger () PPC und Data Mining 28. Mai 2010 1 / 14 Inhalt
ADVANCED ANALYTICS. Auswirkungen auf das Controlling und Unternehmenssteuerung
ADVANCED ANALYTICS Auswirkungen auf das Controlling und Unternehmenssteuerung Unternehmen im Zeitalter der Digitalisierung Was bedeutet Digitalisierung der Welt? Digitale Fußabdrücke in allen Branchen
Künstliche Neuronale Netze und Data Mining
Künstliche Neuronale Netze und Data Mining Catherine Janson, icasus GmbH Heidelberg Abstract Der Begriff "künstliche Neuronale Netze" fasst Methoden der Informationstechnik zusammen, deren Entwicklung
Mehr Leistung.. nur mit Daten. www.pepite.biz info@pepite.biz
Mehr Leistung.. nur mit Daten www.pepite.biz info@pepite.biz bietet oftware und Dienstleistungen PEPITe.A. für eine vollkommen neue Art der Datennutzung um Änderungen in der Betriebsweise, in der Wartung
CENIT Beschwerdemanagement Beschwerden bearbeiten, analysieren und vermeiden. Stefan Jamin, Leiter ECM Zürich, 25.11.2014
CENIT Beschwerdemanagement Beschwerden bearbeiten, analysieren und vermeiden Stefan Jamin, Leiter ECM Zürich, 25.11.2014 Beschwerden allgemein Beschwerden können in vielen verschiedenen Bereichen auftreten
Big Data Performance Management
Big Data Performance Management Überblick Big Data Im Kontext der Performance Relevanz Big Data Big Data Big data is a buzzword and a "vague term", but at the same time an "obsession" with entrepreneurs,
Explosionsartige Zunahme an Informationen. 200 Mrd. Mehr als 200 Mrd. E-Mails werden jeden Tag versendet. 30 Mrd.
Warum viele Daten für ein smartes Unternehmen wichtig sind Gerald AUFMUTH IBM Client Technical Specialst Data Warehouse Professional Explosionsartige Zunahme an Informationen Volumen. 15 Petabyte Menge
acatech DEUTSCHE AKADEMIE DER TECHNIKWISSENSCHAFTEN Cloud Computing und der Weg in die digitale Gesellschaft
acatech DEUTSCHE AKADEMIE DER TECHNIKWISSENSCHAFTEN Cloud Computing und der Weg in die digitale Gesellschaft Henning Kagermann Fachtagung Future Business Clouds Berlin, 6. Juni 2013 Zwei konvergente Technologieentwicklungen
Wird BIG DATA die Welt verändern?
Wird BIG DATA die Welt verändern? Frankfurt, Juni 2013 Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust Big Data Entmythisierung von Big Data. Was man über Big Data wissen sollte. Wie
Vorhersage mit CA CleverPath Predictive Analysis Server. Laszlo Mihalka Senior Consultant Laszlo.Mihalka@ca.com
Vorhersage mit CA CleverPath Predictive Analysis Server Laszlo Mihalka Senior Consultant Laszlo.Mihalka@ca.com Agenda Herausforderung CP PAS Neugents Modelle Mustererkennung Tools CA World 1 Herausforderung
Cloud Architektur Workshop
Cloud Architektur Workshop Ein Angebot von IBM Software Services for Cloud & Smarter Infrastructure Agenda 1. Überblick Cloud Architektur Workshop 2. In 12 Schritten bis zur Cloud 3. Workshop Vorgehensmodell
Kundenwissen für den Energieversorger der Zukunft
Kundenwissen für den Energieversorger der Zukunft Dr. Leading Tobias customer Graml insights CTO company tobias.graml@ben-energy.com for utilities in Europe Sechs Jahre Expertise in Datenanalyse und Kundenverhalten
Motivation. Themenblock: Data Preprocessing. Einsatzgebiete für Data Mining I. Modell von Gianotti und Pedreschi
Motivation Themenblock: Data Preprocessing We are drowning in information, but starving for knowledge! (John Naisbett) Was genau ist Datenanalyse? Praktikum: Data Warehousing und Data Mining Was ist Data
Big Data & High-Performance Analytics
Big Data & High-Performance Analytics Wolfgang Schwab, Senior Business Advisor Berlin 20.4.2012 PROJECTING THE GROWTH OF BIG DATA Source: IDC Digital Universe Study, sponsored by EMC, May 2010 THRIVING
Digital Customer Experience Notwendiges Übel oder überlebenswichtige Notwendigkeit? Datalympics, 2. Juli 2014
Digital Customer Experience Notwendiges Übel oder überlebenswichtige Notwendigkeit? Datalympics, 2. Juli 2014 Digitale Realität Die Welt verändert sich in rasantem Tempo Rom, Petersplatz, März 2013 Franziskus
Continuous Auditing eine gut gemeinte aber schlechte Idee kommt zurück
Continuous Auditing eine gut gemeinte aber schlechte Idee kommt zurück Michel Huissoud Lic.iur, CISA, CIA 5. November 2012 - ISACA/SVIR-Fachtagung - Zürich Überwachung Continuous Monitoring Continuous
Einladung zu den IBM SPSS Data und Text Mining Tagen. Auch in Ihrer Nähe! Gewinnen Sie entscheidungsrelevantes Wissen mit Data und Text Mining
Einladung zu den IBM SPSS Data und Text Mining Tagen Auch in Ihrer Nähe! Gewinnen Sie entscheidungsrelevantes Wissen mit Data und Text Mining Lassen Sie Daten und Texte für sich arbeiten mit Smarter Analytics
Vertrauen und Sicherheit im Banking 2.0
Ole Petersen Partner, IBM Global Business Services Executive, IBM Deutschland GmbH Vertrauen und Sicherheit im Banking 2.0 Frankfurt, 16. November 2010 im Rahmen der Euro Finance Week 2010 / Retail Banking
Executive Summary: Banken und Versicherungen Wettbewerbsfaktor Analytics - Reifegrad ermitteln, Wirtschaftlichkeitspotenziale entdecken
Executive Summary: Banken und Versicherungen Wettbewerbsfaktor Analytics - Reifegrad ermitteln, Wirtschaftlichkeitspotenziale entdecken Lehrstuhl für Wirtschaftsinformatik und Electronic Government Universität
Customer Intelligence. Die 360 - Sicht auf den Kunden
Customer Intelligence Die 360 - Sicht auf den Kunden Customer Intelligence unterstützt Versicherungen bei der Steuerung ihres Kundenportfolios. Der Wettbewerb um die Versicherungskunden wird härter und
Oracle BI&W Referenz Architektur Big Data und High Performance Analytics
DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen
IBM Demokratischere Haushalte, bessere Steuerung, fundierte Entscheidungen? Was leisten das neue kommunale Finanzwesen und Business Intelligence?
Das IBM Leistungsversprechen zum Führungsinformationssystems IBM Demokratischere Haushalte, bessere Steuerung, fundierte Entscheidungen? Was leisten das neue kommunale Finanzwesen und Business Intelligence?
Mit In-Memory Technologie zu neuen Business Innovationen. Stephan Brand, VP HANA P&D, SAP AG May, 2014
Mit In-Memory Technologie zu neuen Business Innovationen Stephan Brand, VP HANA P&D, SAP AG May, 2014 SAP Medical Research Insights : Forschung und Analyse in der Onkologie SAP Sentinel : Entscheidungsunterstützung
Software EMEA Performance Tour 2013. 17.-19 Juni, Berlin
Software EMEA Performance Tour 2013 17.-19 Juni, Berlin Accenture s High Performance Analytics Demo-Umgebung Dr, Holger Muster (Accenture), 18. Juni 2013 Copyright 2012 Hewlett-Packard Development Company,
BPM: Integrierte Prozesse im ecommerce
BPM: Integrierte Prozesse im ecommerce Vom Geschäftsprozess bis zur lauffähigen Applikation. Thomas Grömmer Head of Business Process Solutions Ulf Ackermann Consultant Business Process Solutions Solution
Integration mit Service Repositories zur SOA Governance
Integration mit Service Repositories zur SOA Governance Nürnberg, 10.11.2009 I N H A L T 1. SOA Governance 2. Service Repository 3. Modelle und Service Repository 4. Modell-Driven SOA I N H A L T 1. SOA
BIG DATA Impulse für ein neues Denken!
BIG DATA Impulse für ein neues Denken! Wien, Januar 2014 Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust The Age of Analytics In the Age of Analytics, as products and services become
Smarter Travel & Transport in the Age of Social Business Ivo Koerner Vice President Software Group, IMT Germany
Smarter Travel & Transport in the Age of Social Business Ivo Koerner Vice President Software Group, IMT Germany 1 Welcome & Begrüßung Social Business = Social Networks Commerzialisierung von IT und anderen
Optimiertes IT Service Management durch Predictive Analytics. München, 23.06.2015 Dr. Katrin Zaiß, Kay Kasperkowitz TDWI Konferenz 2015
Optimiertes IT Service Management durch Predictive Analytics München, 23.06.2015 Dr. Katrin Zaiß, Kay Kasperkowitz TDWI Konferenz 2015 Agenda Herausforderungen im IT Service Management (ITSM) Predictive
We have a plan, it s called: Making the strategy operable.
Bochum, 20. Februar 2015 We have a plan, it s called: Making the strategy operable. HOW WE WORK Bochum, Screen 20. Februar - Identify 2015 - Prototype Unser SIP-Prozess transformiert digitale Strategie
Modell- und evidenzbasierte Medizin durch digitale Patientenmodelle
14.04.2015 Modell- und evidenzbasierte Medizin durch digitale Patientenmodelle Dr. Kerstin Denecke April 2015 ICCAS Innovation Center for Computer-Assisted Surgery Gegründet im März 2005 als zentrale Eintrichtung
Operational Intelligence
Operational Intelligence Eric Müller Wenn Sie diesen Text lesen können, müssen Sie die Folie im Post-Menü mit der Funktion «Folie einfügen» erneut einfügen. Sonst kann kein Bild hinter die Fläche gelegt
Einsatz einer Dokumentenverwaltungslösung zur Optimierung der unternehmensübergreifenden Kommunikation
Einsatz einer Dokumentenverwaltungslösung zur Optimierung der unternehmensübergreifenden Kommunikation Eine Betrachtung im Kontext der Ausgliederung von Chrysler Daniel Rheinbay Abstract Betriebliche Informationssysteme
BIG ANALYTICS AUF DEM WEG ZU EINER DATENSTRATEGIE. make connections share ideas be inspired. Wolfgang Schwab SAS D
make connections share ideas be inspired BIG ANALYTICS AUF DEM WEG ZU EINER DATENSTRATEGIE Wolfgang Schwab SAS D Copyright 2013, SAS Institute Inc. All rights reserved. BIG DATA: BEDROHUNG ODER CHANCE?
Azure Machine Learning
Azure Machine Learning Alexander Wechsler Wechsler Consulting GmbH & Co. KG Was ist Machine Learning? Technologie zur Vorhersage Ermittlung von Wahrscheinlichkeiten mit Hilfe von Mustern in großen Datenmengen
Exercise (Part II) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1
Exercise (Part II) Notes: The exercise is based on Microsoft Dynamics CRM Online. For all screenshots: Copyright Microsoft Corporation. The sign ## is you personal number to be used in all exercises. All
Intelligent Traveller Early Situation Awareness itesa
Intelligent Traveller Early Situation Awareness itesa Dr. Martin Skorsky, Senior Researcher 22. Juni 2015 1 1 Intelligent Traveller Early Situation Awareness Automatischen Alarmsystems, das Reisende in
TNS EX A MINE BehaviourForecast Predictive Analytics for CRM. TNS Infratest Applied Marketing Science
TNS EX A MINE BehaviourForecast Predictive Analytics for CRM 1 TNS BehaviourForecast Warum BehaviourForecast für Sie interessant ist Das Konzept des Analytischen Customer Relationship Managements (acrm)
Large Scale Data Management
Large Scale Data Management Beirat für Informationsgesellschaft / GOING LOCAL Wien, 21. November 2011 Prof. Dr. Wolrad Rommel FTW Forschungszentrum Telekommunikation Wien rommel@ftw.at Gartner's 2011 Hype
VisualCockpit. agile business analytics
VisualCockpit agile business analytics Agile Business Analytics mit VisualCockpit Für Unternehmen wird es immer wichtiger die gesamte Wertschöpfungskette aus Daten, sowohl für das operative Geschäft als
Digital. Digital Customer Experience Management Ein integrierter Lösungsansatz mit der Adobe Marketing Cloud
Digital Digital Customer Experience Management Ein integrierter Lösungsansatz mit der Adobe Marketing Cloud Jürgen Kübler, Leiter Realisierung Digitales Leistungsangebot #digitaljourney Inhaltsverzeichnis
Technologie für eine bessere Welt mit Sicherheit smarter
Technologie für eine bessere Welt mit Sicherheit smarter Dr. Lothar Mackert Vortrag beim IT-Sicherheitskongress 2011 Bonn, 12. April 2011 Technologie für eine bessere Welt - ein er Planet Supply Chains
Visuelle Analyse und Entscheidungsunterstützung
Visuelle Analyse und Entscheidungsunterstützung Dr. Jörn Kohlhammer Fraunhofer IGD 5.-7. November 2007 EpiGrid, FernUniversität in Hagen Überblick Visuelle Analyse Aktuelle Ansätze Vorstellung Fraunhofer
Betrugserkennung mittels Big Data Analyse Beispiel aus der Praxis TDWI München, Juni 2014
Betrugserkennung mittels Big Data Analyse Beispiel aus der Praxis TDWI München, Juni 2014 Beratung Business Analytics Software Entwicklung Datenmanagement AGENDA Der Kreislauf für die Betrugserkennung
Business Intelligence. Bereit für bessere Entscheidungen
Business Intelligence Bereit für bessere Entscheidungen Business Intelligence Besserer Einblick in Geschäftsabläufe Business Intelligence ist die Integration von Strategien, Prozessen und Technologien,
SPoT Agenda. Begrüßung und Vorstellung CAS AG. Markttrends aus Analystensicht. Big Data Trusted Information
SPoT Agenda Begrüßung und Vorstellung CAS AG Markttrends aus Analystensicht Big Data Trusted Information Lars Iffert, BARC GmbH Dr. Oliver Adamczak, IBM Deutschland GmbH Factory Ansatz für ETL-Prozesse
Silvan Geser Solution Specialist Unified Communications Microsoft Schweiz GmbH
Silvan Geser Solution Specialist Unified Communications Microsoft Schweiz GmbH - Henry Ford, 1863-1947 Individuelle erreichbarkeit Sicherheit und Regulatorien Verteilte Teams Partner und Kunden Hohe Kosten
DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle
DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell
EXZELLENTES MASTERDATENMANAGEMENT. Creactives-TAM. (Technical Attribute Management)
EXZELLENTES MASTERDATENMANAGEMENT Creactives-TAM (Technical Attribute Management) Datenqualität durch Stammdatenmanagement Stammdaten sind eine wichtige Grundlage für Unternehmen. Oft können diese, gerade
R im Enterprise-Modus
R im Enterprise-Modus Skalierbarkeit, Support und unternehmensweiter Einsatz Dr. Eike Nicklas HMS Konferenz 2014 Was ist R? R is a free software environment for statistical computing and graphics - www.r-project.org