Numerische Lineare Algebra Spezielle Systeme

Größe: px
Ab Seite anzeigen:

Download "Numerische Lineare Algebra Spezielle Systeme"

Transkript

1 Numerische Lineare Algebra Spezielle Systeme Friedrich Solowjow 2. Mai 2012, Bonn 1 / 34

2 1 Einleitung Übersicht Definitionen 2 3 Datenzugriff Speichertechniken 2 / 34

3 Übersicht Definitionen Gliederung 1 Einleitung Übersicht Definitionen 2 3 Datenzugriff Speichertechniken 3 / 34

4 Übersicht Definitionen Einleitung Viele numerische Probleme führen auf lineare Gleichungssysteme. Diese müssen unter folgenden Gesichtspunkten gelöst werden: Schnelligkeit Genauigkeit Effiziente Speichernutzung Vorteile durch Strukturausnutzung von dünnbesetzten Gleichungssystemen: Betrachtung der Nicht-Null-Einträge Rechenzeiteinsparung Speicherplatzeinsparung 4 / 34

5 Übersicht Definitionen Spezielle Systeme Es werden u. a. folgende Matrixstrukturen unterschieden: Definitheit Symmetrie Blocksysteme Vandermonde Tridiagonalmatrix Obere Hessenbergmatrix Bandstruktur 5 / 34

6 Übersicht Definitionen Definitheit Definition Sei A R nxn, x R n. A ist: positiv definit, falls x T A x > 0 positiv semidefinit, falls x T A x 0 negativ definit, falls x T A x < 0 negativ semidefinit, falls x T A x 0 indefinit, sonst 6 / 34

7 Übersicht Definitionen Symmetrie Definition Sei A R mxn. A heißt symmetrisch, wenn A = A T. Beispiel: A = a 11 a 1n..... a m1 a mn = a 11 a m a 1n a mn = A T 7 / 34

8 Übersicht Definitionen Blockmatrizen Definition Eine Blockmatrix, ist eine Matrix, die sich durch ein System kleinerer Matrizen darstellen lässt. ( B C Beispiel: Sei A R 2nx2n und B, C, D, E R nxn : A = D E ) 8 / 34

9 Übersicht Definitionen Vandermonde-Matrix Definition Eine Vandermonde-Matrix wird durch die folgende Form definiert: V n = x 1 x 2 x 3... x n x1 2 x2 2 x xn x n 1 1 x n 1 2 x n xn n 1 9 / 34

10 Übersicht Definitionen Tridiagonalmatrix Definition Sei A R nxn.a heißt Tridiagonalmatrix, wenn für i > j + 1 und j > i + 1 alle a ij = 0. Beispiel: A = a 11 a a 21 a 22 a a a(n 1)n 0 0 a n(n 1) a nn 10 / 34

11 Übersicht Definitionen Obere Hessenbergmatrix Definition Sei H R nxn. A heißt (obere) Hessenberg-Matrix, wenn h i,j = 0, für alle i > j + 1. Beispiel: H = h 11 h 12 h h 1n h 21 h 22 h h 2n 0 h 32 h h 3n h n(n 1) h nn 11 / 34

12 Übersicht Definitionen Bandmatrix Definition Seien p, q N mit p, q 0 und A R nxn. A ist genau dann eine Bandmatrix der Bandbreite l = p + q + 1, falls alle a ij = 0, für j + p < i oder i + q < j. 12 / 34

13 Übersicht Definitionen Bandmatrix A = a a 1(q+1) a (p+1) a(n q)n a n(n p)... a nn 13 / 34

14 Gliederung Einleitung 1 Einleitung Übersicht Definitionen 2 3 Datenzugriff Speichertechniken 14 / 34

15 Einleitung Satz 1 Sei A R nxn mit einer LU Zerlegung. Wenn A die obere Bandbreite q und die untere Bandbreite p hat, dann hat U die obere Bandbreite q und L hat die untere Bandbreite p. 15 / 34

16 Beweis Einleitung Der Beweis folgt induktiv. Aus der LU-Zerlegung von A ergibt sich: ( ) α ω T A = = υ B ( 1 0 υ/α I n 1 ) ( B υω T /α ) ( α ω T 0 I n 1 ) Mit den Eigenschaften der Teilmatrizen und der Induktionsvoraussetzung folgt: L = ( ) ( 1 0 α ω T und U = υ/α L 1 0 U 1 ) 16 / 34

17 Band-Gauss-Eliminationsverfahren Idee Sei A R nxn mit oberer Bandbreite q und unterer Bandbreite p. Es wird eine Lösung x des Problems Ax = b gesucht. Der folgende Algorithmus führt eine LU-Zerlegung durch und überschreibt A(i, j) mit L(i, j), falls i > j U(i, j), falls i j 17 / 34

18 Pseudocode Band-Gauss-Eliminationsverfahren for k = 1:n 1 do for i = k + 1:min(k + p, n) do A(i, k) = A(i, k)/a(k, k) end for for j = k + 1:min(k + q, n) do for i = k + 1:min(k + p, n) do A(i, j) = A(i, j) A(i, k)a(k, j) end for end for end for Wenn n >> p und n >> q, dann braucht der Algorithmus 2npq Flops. 18 / 34

19 Band-Vorwärtssubstitution Es wird eine Lösung x zu dem Problem Lx = b gesucht. Idee Sei L R nxn eine untere Dreiecksmatrix mit Bandbreite p. Der folgende Algorithmus überschreibt b mit der Lösung des Problems Lx = b. for j = 1:n do for i = j + 1:min(j + p, n) do b(i) = b(i) L(i, j)b(j) end for end for Wenn n >> p und n >> q, dann braucht der Algorithmus 2np Flops. 19 / 34

20 Band-Rückwärtssubstitution Es wird eine Lösung x zu dem Problem Ux = b gesucht. Idee Sei U R nxn eine obere Dreiecksmatrix mit Bandbreite q. Der folgende Algorithmus überschreibt b mit der Lösung des Problems Ux = b. for j = n: 1:1 do b(j) = b(j)/u(j, j) for i = max(1, j q):j 1 do b(i) = b(i) U(i, j)b(j) end for end for Wenn n >> p und n >> q, dann braucht der Algorithmus 2nq Flops. 20 / 34

21 Satz 2 Sei A R nxn eine nichtsinguläre Bandmatrix, mit oberer Bandbreite p und unterer Bandbreite q. Wenn man das Gaußsche Eliminationsverfahren mit partieller Pivotisierung benutzt um die Gauß-Transformation M j = I α (j) e T j, j = 1:n 1 und die Permutationsmatrizen P 1,..., P n 1 zu berechnen, sodass M n 1 P n 1... M 1 P 1 A = U obere Dreiecksmatrix ist, dann gelten folgende Zusammenhänge: 1 U hat obere Bandbreite p + q 2 α (j) = 0, wenn i j oder i > j + p 21 / 34

22 Obere Hessenbergmatrix Definition Sei H R nxn. A heißt (obere)hessenberg-matrix, wenn h i,j = 0, für alle i > j + 1. h 11 h 12 h h 1n h 21 h 22 h h 2n Beispiel: H = 0 h 32 h h 3n h n(n 1) h nn 22 / 34

23 Hessenberg-LU Einleitung Idee Sei H R nxn eine obere Hessenbergmatrix, U R nxn eine obere Dreiecksmatrix und M i, P i R nxn für 1 i < n. Gaußtransformation: M n 1 P n 1... M 1 P 1 H = U. Wenn i k H(i, k) = U(i, k) Wenn i = k + 1 H(i, k) = (M k ) k+1,k piv(1:n 1) ist ein Vektor, der Permutationen kodiert. 23 / 34

24 Pseudocode Hessenberg-LU for k = 1:n 1 if H(k, k) < H(k + 1, k) piv(k) = 1;H(k, k:n) H(k + 1, k:n) else piv(k) = 0 end if H(k, k) 0 t = H(k + 1, k)/h(k, k) for j = k + 1:n H(k + 1, j) = H(k + 1, j) + th(k, j) end H(k + 1, k) = t end end Der Algorithmus braucht n 2 Flops. 24 / 34

25 Einleitung Idee Sei A R nxn eine symmetrische und positiv definite Matrix. Aus der Cholesky-Zerlegung folgt: A = GG T (G R nxn ). Aus Satz 1 folgt: G hat die selbe Bandbreite wie A. 25 / 34

26 Pseudocode for j = 1:n for k =max(1, j p):j 1 λ =min(k + p, n) A(j:λ, j) = A(j:λ, j) A(j, k)a(a(j:λ, k)) end λ =min(j + p, n) A(j:λ, j) = A(j:λ, j)/ A(j, j) end Wenn n >> p, dann braucht der Algorithmus n(p 2 + 3p) Flops und n Wurzeln. 26 / 34

27 Definition Sei A R nxn.a heißt Tridiagonalmatrix, wenn für i > j + 1 und j > i + 1 alle a ij = 0. Beispiel: A = a 11 a a 21 a 22 a a a(n 1)n 0 0 a n(n 1) a nn 27 / 34

28 Idee Sei A R nxn symmetrische und positiv definite Tridiagonalmatrix. Man kann nun e i (1 i < n) finden, sodass A = LDL T mit: d e d L = , D = e n d n 28 / 34

29 Pseudocode Aus der Zerlegung folgt: a 11 = d 1 a k,k 1 = e k 1 d k 1 k = 2:n a kk = d k + ek 1 2 d k 1 = d k + e k 1 a k,k 1 k = 2:n Es ergibt sich folgender Algorithmus: d 1 = a 11 for k = 2:n e k 1 = a k,k 1 /d k 1 d k = a kk e k 1 a k,k 1 end 29 / 34

30 Pseudocode Um nun Ax = b zu lösen betrachten wir: Ly = b, Dz = y und L T x = z Es ergibt sich folgender Algorithmus: for k = 2:n t = e k 1 ; e k 1 = t/d(k 1); d(k) = d(k) te(k 1) end for k = 2:n b(k) = b(k) e(k 1)b(k 1) end b(n) = b(n)/d(n) for k = n 1: 1:1 b(k) = b(k)/d(k) e(k)b(k + 1) end Der Algorithmus braucht 8n Flops. 30 / 34

31 Datenzugriff Speichertechniken Gliederung 1 Einleitung Übersicht Definitionen 2 3 Datenzugriff Speichertechniken 31 / 34

32 Datenzugriff Speichertechniken Probleme Probleme entstehen bei: Datenzugriff in langen Vektoren Überschreiben von Daten, die noch benötigt werden 32 / 34

33 Datenzugriff Speichertechniken Speichertechniken Eine Lösung sind geeignete Speichertechniken, mit denen Schleifen innerhalb der Algorithmen eingespart werden. u. a bieten sich folgende Methoden an: Compressed Sparse Row (CSR) Band-Einträge in einem Array speichern 33 / 34

34 Datenzugriff Speichertechniken Zusammenfassung Einsparung von Schleifen innerhalb der Algorithmen Reduktion des Speicherverbrauchs Algorithmen werden teilweise komplizierter Mithilfe von auf Bandmatrizen angepassten Algorithmen lässt sich die Rechenzeit deutlich senken und somit lassen sich viele reale Probleme schneller berechnen. 34 / 34

Numerik I. Universität zu Köln SS 2009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva,

Numerik I. Universität zu Köln SS 2009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva, Universität zu Köln SS 009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva, mselva@math.uni-koeln.de Numerik I Musterlösung 1. praktische Aufgabe, Bandmatrizen Bei der Diskretisierung von

Mehr

Linear Systems and Least Squares

Linear Systems and Least Squares Linear Systems and Least Squares Vortragender: Gelin Jiofack Nguedong Betreuer: Prof. Dr. Joachim Weickert Proseminar: Matrixmethoden in Datenanalyse und Mustererkennung Wintersemester 2015/2016 18. November

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

Dreiecksysteme und LR-Faktorzerlegung

Dreiecksysteme und LR-Faktorzerlegung Dreiecksysteme und 06.05.2011 Dreiecksysteme und Inhaltsverzeichnis 1 Dreieckssysteme Vorwärts-Substitution (Zeilen-Version) Rückwärts-Substitution (Zeilen-Version) Vorwärts-Substitution (Spalten-Version)

Mehr

Erweiterungen der LR-Zerlegung

Erweiterungen der LR-Zerlegung Prof. Thomas Richter 6. Juli 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 06.07.2017 Erweiterungen

Mehr

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen Kapitel 2: Lineare Gleichungssysteme 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen B(n, m) : Ω {0,...,255}, n = 1,...,N, m = 1,...,M. dig. Camera Realisierung

Mehr

Lineares Gleichungssystem

Lineares Gleichungssystem Lineares Gleichungssystem Ein System von m linearen Gleichungen in n Unbekannten besteht aus einer Menge von algebraischen Relationen der Form n a ij x j = b i, i =,...,m, j= wobei a ij R, i m, j n, die

Mehr

Kurzform. Choleskyzerlegung. Julia Hoeboer. 13. Mai 2011

Kurzform. Choleskyzerlegung. Julia Hoeboer. 13. Mai 2011 Choleskyzerlegung Julia Hoeboer 13 Mai 2011 Inhalt: LDM T Zerlegung LDL T Zerlegung Cholesky Zerlegung Person Berechnung Gaxpy Algorithmus Effektivität LDM T Zerlegung LDM T Zerlegung lässt sich aus LR

Mehr

Matrizenoperationen mit FORTRAN

Matrizenoperationen mit FORTRAN Kapitel 2 Matrizenoperationen mit FORTRAN 21 Grundlagen Bei vielen Anwendungen müssen große zusammenhängende Datenmengen gespeichert und verarbeitet werden Deshalb ist es sinnvoll, diese Daten nicht als

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Vorlesungsskript HM-Numerik (SS 4): Kapitel Version: 9 Mai 4 Lineare Gleichungssysteme Gegeben: A R n n mit det(a) b R n Gesucht: x R n mit Ax = b Zeilenäquilibrierung Möchten zunächst die Kondition des

Mehr

Numerik für Informatiker und Bioinformatiker. Daniel Weiß

Numerik für Informatiker und Bioinformatiker. Daniel Weiß Numerik für Informatiker und Bioinformatiker Daniel Weiß SS 202 Folgende Literatur bildet die Grundlage dieser Vorlesung: P Deuflhard, A Hohmann, Numerische Mathematik, Eine algorithmisch orientierte Einführung,

Mehr

In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen.

In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen. Kapitel 4 Lineare Gleichungssysteme 4 Problemstellung und Einführung In diesem Kapitel betrachten wir direkte Verfahren zur Lösung von linearen Gleichungssystemen Lineares Gleichungssystem: Gesucht ist

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2015 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Versus QR Matrizen mit vollem Rang 27. Mai 2011 Versus QR Inhaltsverzeichnis 1 2 3 Beispiel 4 Beispiel 5 6 Versus QR Kondition Vergleich Beispiel Versus QR Zu finden: Gerade, die den Punkten (0, 6), (1,

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 8 Institut für Informatik Prof. Dr. Thomas Huckle Michael Rippl Fabio Gratl Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt: Gaußelimination mit Pivotsuche,

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8

Mehr

Lineare Gleichungssysteme: direkte Verfahren

Lineare Gleichungssysteme: direkte Verfahren Sechste Vorlesung, 24. April 2008, Inhalt Lineare Gleichungssysteme: direkte Verfahren Dreiecksmatrizen Gauß-Elimination LR-Zerlegung Anwendungen: Determinante, Inverse 1 Lösungsverfahren für lineare Gleichungssysteme

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Höhere Ableitungen Interpolationsbedingungen d k Φ dx k (x j) = y (k) j, ( j =,,..., n; k =,,..., c j ) bestimmen das Hermite Interpolationspolynom Φ Π r mit r + = n ( + c j ). j= 2 Lineare Gleichungssysteme

Mehr

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011)

Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) M. Sc. Frank Gimbel Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) 1 Motivation Ziel ist es, ein gegebenes lineares Gleichungssystem der Form Ax = b (1) mit x, b R n und A R n n zu lösen.

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 3 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt:

Mehr

1 Euklidische Approximation

1 Euklidische Approximation 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n } n=1,...,n.

Mehr

2 Direkte Lösungsverfahren für lineare Gleichungen

2 Direkte Lösungsverfahren für lineare Gleichungen (2.1) Sei x = (x n ) n=1,...,n R N, A = (a m,n ) m=1,...,m, n=1,...,n R M,N. a) Sei 1 m n N. Dann ist x[m : n] = (x k ) k=m,...,n R 1+n m Teilvektor von x. b) Seien 1 m 1 m 2 M, 1 n 1 n 2 N. Dann ist A[m

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 2, 207 Erinnerung Definition. Ein Skalarprodukt ist eine Abbildung, : E n E n E, v, w v, w = n k= v

Mehr

1.4 Stabilität der Gauß-Elimination

1.4 Stabilität der Gauß-Elimination KAPIEL 1. LINEARE GLEICHUNGSSYSEME 18 1.4 Stabilität der Gauß-Elimination Bezeichne x die exakte Lösung von Ax = b bzw. ˆx die mit einem (zunächst beliebigen Algorithmus berechnete Näherungslösung (inklusive

Mehr

3 Direkte Verfahren zur Lösung linearer Gleichungssysteme

3 Direkte Verfahren zur Lösung linearer Gleichungssysteme Numerik I 97 3 Direkte Verfahren zur Lösung linearer Gleichungssysteme The simplest model in applied mathematics is a system of linear equations. It is also by far the most important... (Gilbert Strang,

Mehr

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung

Gliederung. Links-Rechts-Zerlegung Elimination faktorisiert A = L R. Determinante Inverse. Kleinste Quadrate. Lösung durch. Links-Rechts- Zerlegung Matrixzerlegungen. 7. Vorlesung 170004 Numerische Methoden I Clemens Brand 29. April 2010 Gliederung Elimination faktorisiert A = L R Die A = L R Faktorisieren: Zerlege A in ein Produkt (einfacherer) Angenommen,

Mehr

Paralleles Höchstleistungsrechnen. Lösung tridiagonaler und dünnbesetzter linearer Gleichungssysteme

Paralleles Höchstleistungsrechnen. Lösung tridiagonaler und dünnbesetzter linearer Gleichungssysteme Paralleles Höchstleistungsrechnen Lösung tridiagonaler und dünnbesetzter linearer Gleichungssysteme Stefan Lang Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Universität Heidelberg INF 368,

Mehr

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen

Kapitel 2: Lineare Gleichungssysteme. 2.1 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen Kapitel 2: Lineare Gleichungssysteme 21 Motivation: Bildverarbeitung Sei B = (B(n, m)) ein N M stochastisches Feld mit ZVen B(n, m) : Ω {0,,255}, n = 1,,N, m = 1,,M dig Camera Realisierung von B η ist

Mehr

Kapitel 2: Lineare Gleichungssysteme

Kapitel 2: Lineare Gleichungssysteme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 2: Lineare Gleichungssysteme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 205 HM: Numerik (SS 205), Kapitel

Mehr

Direkte Verfahren für Lineare Gleichungssysteme

Direkte Verfahren für Lineare Gleichungssysteme Kapitel 1 Direkte Verfahren für Lineare Gleichungssysteme 11 Einführung (mündlich) 12 Das Gaußsche Eliminationsverfahren Es sei A IK n n eine invertierbare Matrix und b IK n ein gegebener Vektor Gesucht

Mehr

Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung

Matrixzerlegungen. 6. Vorlesung Numerische Methoden I. Clemens Brand. 2. April Nachträge und Wiederholung. Links-Rechts- Zerlegung Matrixzerlegungen. 6. Vorlesung 170004 Numerische Methoden I Clemens Brand QR- QR- 2. April 2009 Gliederung Elimination faktorisiert A = L R QR- QR- QR- QR- Eine Zusammenfassung der Folien 6 14 der letzten

Mehr

Matrix-Algorithmen Matrixmultiplikation Allgemeiner Matrizen

Matrix-Algorithmen Matrixmultiplikation Allgemeiner Matrizen Matrix-Algorithmen Matrixmultiplikation Allgemeiner Matrizen 15.04.2011 Inhaltsverzeichnis Grundlagen 1 Grundlagen Matrizen Vektoren 2 Skalarprodukt und Saxpy Matrix-Vektor-Multiplikation Gaxpy Matrix-Matrix-Multiplikation

Mehr

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle 2. Matrixalgebra Warum Beschäftigung mit Matrixalgebra? Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle bequeme mathematische

Mehr

6. Übungsblatt zur Mathematik II für Inf, WInf

6. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof. Dr. Streicher Dr. Sergiy Nesenenko Pavol Safarik SS 5. 9. Mai 6. Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G (Standardskalarprodukt Sei v, e R und es

Mehr

LINEARE ALGEBRA. Julia Becker Bonn ROUTINEN

LINEARE ALGEBRA. Julia Becker Bonn ROUTINEN LINEARE ALGEBRA Julia Becker 04.04.2012 Bonn ROUTINEN Inhaltsverzeichnis Notation Matrizen Vektoren Matrizen und Vektoren Basis Routinen Skalarprodukt und Saxpy Matrix-Vektor Multiplikation und Gaxpy Matrizenmultiplikation

Mehr

Iterative Verfahren für lineare Gleichungssysteme

Iterative Verfahren für lineare Gleichungssysteme Iterative Verfahren für lineare Gleichungssysteme Vorlesung Sommersemester 013 Humboldt-Universität zu Berlin Zeiten können noch nach Wunsch vereinbart werden! Kontakt: Dr. Rüdiger Müller Weierstraß-Institut

Mehr

Lineare Gleichungssysteme und die Methode der kleinsten Quadrate

Lineare Gleichungssysteme und die Methode der kleinsten Quadrate Ludwig-Maximilians-Universität München Department für Computerlinguistik WS 2010/11 Hauptseminar Matrixmethoden in Textmining Dozent: Prof. Dr. Klaus Schulz Referentin: Sarah Söhlemann Lineare Gleichungssysteme

Mehr

6 Numerische Verfahren zur Lösung linearer Gleichungssysteme

6 Numerische Verfahren zur Lösung linearer Gleichungssysteme Numerische Mathematik für ingenieurwissenschaftliche Studiengänge 208 6 Numerische Verfahren zur Lösung linearer Gleichungssysteme The simplest model in applied mathematics is a system of linear equations.

Mehr

Orthogonale Matrix. Definition 4.19

Orthogonale Matrix. Definition 4.19 Orthogonale Matrix Ausgleichsprobleme sind häufig schlecht konditioniert. Matrix des Normalengleichungssystems kann nahezu singulär sein. Spezielle Matrixzerlegung für höhere numerische Stabilität: QR-Zerlegung

Mehr

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,... Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den

Mehr

Rechenaufwand der LR- und LDL T - Zerlegung

Rechenaufwand der LR- und LDL T - Zerlegung 6. Großübung Rechenaufwand der LR- und LDL T - Zerlegung Rückwärtseinsetzen Der Algorithmus kann der Folie 3.0 entnommen werden. Dieser kann in die folgenden Rechenoperationen aufgesplittet werden: Für

Mehr

Numerische Mathematik

Numerische Mathematik Numerische Mathematik Oliver Ernst Professur Numerische Mathematik Sommersemester 2015 Inhalt I 1 Einführung und Begriffe 1.1 Mathematische Modellbildung und numerische Simulation am Beispiel eines Wasserkreislaufs

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren. III.3 GMRES und CG-Verfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren. III.3 GMRES und CG-Verfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische Iterationsverfahren III.3 GMRES und CG-Verfahren Kapitel III (0) 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung

Mehr

4.6 Berechnung von Eigenwerten

4.6 Berechnung von Eigenwerten 4.6 Berechnung von Eigenwerten Neben der Festlegung auf den betragsgrößten Eigenwert hat die Potenzmethode den Nachteil sehr langsamer Konvergenz, falls die Eigenwerte nicht hinreichend separiert sind.

Mehr

Practical Numerical Training UKNum

Practical Numerical Training UKNum Practical Numerical Training UKNum Lineare Gleichungssysteme Dr. H. Klahr & Dr. C. Mordasini Max Planck Institute für Astronomie, Heidelberg Programm: 1) Einführung 2) Gauss Elimination 3) Gauss mit Pivotisierung

Mehr

4. Großübung. Lösung linearer Gleichungssysteme

4. Großübung. Lösung linearer Gleichungssysteme 4. Großübung Lösung linearer Gleichungssysteme Gesucht x, x, x 3, x 4 R, sodass gilt. mit A R 4 4, x R 4, b R 4 x x + 3x 3 + x 4 = 5 6x 3x 7x x 4 = 5 4x + 4x + 5x 3 5x 4 = 3 8x + x + x 3 + x 4 = 8 3 x

Mehr

Lineare Gleichungssysteme, LR-Zerlegung

Lineare Gleichungssysteme, LR-Zerlegung Prof Thomas Richter 2 Juni 27 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomasrichter@ovgude Material zur Vorlesung Algorithmische Mathematik II am 22627 Lineare Gleichungssysteme,

Mehr

Numerische Lineare Algebra. Cholesky-Zerlegung

Numerische Lineare Algebra. Cholesky-Zerlegung Numerische Lineare Algebra Proseminar Cholesky-Zerlegung von Franz Brauße vorgelegt am Fachbereich IV der Universität Trier bei Frau Dipl.-Math. Christina Jager 06.02.2012 Inhaltsverzeichnis 1 Einleitung

Mehr

Elektrischer Schaltkreis lin. Gleichungssystem

Elektrischer Schaltkreis lin. Gleichungssystem Inhalt Kapitel II: Lineare Gleichungssysteme II Lineare Gleichungssysteme II Gestaffelte Systeme II2 LU-Zerlegung II3 QR-Algorithmen Kapitel II (UebersichtKapI) Beispiel : Elektrischer Schaltkreis I R

Mehr

Inhalt Kapitel II: Lineare Gleichungssysteme

Inhalt Kapitel II: Lineare Gleichungssysteme Inhalt Kapitel II: Lineare Gleichungssysteme II Lineare Gleichungssysteme II1 Gestaffelte Systeme II2 LU-Zerlegung II3 QR-Algorithmen Kapitel II (UebersichtKapI) 1 Beispiel 1: Elektrischer Schaltkreis

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische lineare Iterationsverfahren Typeset by FoilTEX 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung einer linearen

Mehr

QR-Zerlegung Allgemeines. Householder-Spiegelung. Givens-Rotation. Gram-Schmidt-Orthogonalisierung. Fazit. QR-Zerlegung.

QR-Zerlegung Allgemeines. Householder-Spiegelung. Givens-Rotation. Gram-Schmidt-Orthogonalisierung. Fazit. QR-Zerlegung. 20.0.2011 Inhaltsverzeichnis 1 2 3 4 1 2 3 4 der Matrix A R mxn, m n A = Q R Matrix Q: Q R nxn orthogonale Matrix (Spalten paarweise orthogonal) Q Q T = E Matrix R: R R mxn obere Dreiecksmatrix r 11 r

Mehr

Iterative Löser: Einführung

Iterative Löser: Einführung Iterative Löser: Einführung Im vergangenen Semester wurden folgende Löser für LGS betrachtet: LU-Zerlegung (mit und ohne Pivotisierung) QR-Zerlegung (Householder und Givens) Lösung beliebiger, regulärer,

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme Lineare Gleichungssysteme Wir wissen bereits, dass ein lineares Gleichungssystem genau dann eindeutig lösbar ist, wenn die zugehörige Matrix regulär ist. In diesem Kapitel lernen wir unterschiedliche Verfahren

Mehr

KAPITEL 1. Einleitung

KAPITEL 1. Einleitung KAPITEL 1 Einleitung Wir beschäftigen uns in dieser Vorlesung mit Verfahren aus der Numerischen linearen Algebra und insbesondere dem sogenannten Mehrgitterverfahren zur Lösung linearer Gleichungssysteme

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

LR Zerlegung. Michael Sagraloff

LR Zerlegung. Michael Sagraloff LR Zerlegung Michael Sagraloff Beispiel eines linearen Gleichungssystems in der Ökonomie (Input-Output Analyse Wir nehmen an, dass es 3 Güter G, G, und G 3 gibt Dann entspricht der Eintrag a i,j der sogenannten

Mehr

2 Direkte Lösungsverfahren für lineare Gleichungen

2 Direkte Lösungsverfahren für lineare Gleichungen 2 Direkte Lösungsverfahren für lineare Gleichungen (2.1) Sei L R N N eine normierte untere Dreiecksmatrix und b R N. Dann ist L invertierbar und das Lineare Gleichungssystem (LGS) Ly = b ist mit O(N 2

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München WiSe 7 / 8 Institut für Informatik Univ.-Prof. Dr. Hans-Joachim Bungartz Michael Obersteiner Philipp Samfass Numerisches Programmieren, Übungen Musterlösung 8. Übungsblatt:

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

Klausur DI/LA F 2006 LA : 1

Klausur DI/LA F 2006 LA : 1 Klausur DI/LA F 26 LA : Aufgabe (4+2=6 Punkte): Gegeben seien die Matrix A und der Vektor b mit λ A = λ und b = λ a) Bestimmen Sie die Werte λ R, für welche das Gleichungssystem Ax = b genau eine, keine

Mehr

4.2.5 Das Cholesky-Verfahren

4.2.5 Das Cholesky-Verfahren S. Ulbrich: Mathematik IV für Elektrotechnik, Mathematik III für Informatik 34 4.2.5 Das Cholesky-Verfahren Für allgemeine invertierbare Matrizen kann das Gauß-Verfahren ohne Pivotsuche zusammenbrechen

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 5 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 21 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Klausurvorbereitungsblatt Lineare Algebra

Klausurvorbereitungsblatt Lineare Algebra Klausurvorbereitungsblatt Lineare Algebra Sommersemester 25 Aufgabe 2 2 Sei A 3 3 8 2 4 3 R4 5. 5 2 a) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems Ax b) Ist Ax b mit b lösbar? (Begründen

Mehr

TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX

TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX Übungsaufgaben zum Lehrgebiet Numerische Mathematik - Serie 2 Beweise Sie folgende

Mehr

1 Euklidische Approximation

1 Euklidische Approximation 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n } n=1,...,n.

Mehr

Basiswissen Matrizen

Basiswissen Matrizen Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)

Mehr

Cramersche Regel. Satz 2.26

Cramersche Regel. Satz 2.26 ramersche Regel Satz 6 Es sei A R n n eine quadratische Matrix mit det(a) 6= Für das LGS Ax = b sei A j := (a,,a j, b, a j+,,a n ), also die Matrix, die entsteht, wenn in A die j-te Spalte durch den Vektor

Mehr

Musterlösung 11. D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung

Musterlösung 11. D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung D-INFK Lineare Algebra HS 27 Özlem Imamoglu Olga Sorkine-Hornung Musterlösung. Wir bezeichnen die Spalten von A als A (a a 2 a 3 ) und die Spalten des Resultats der QR-Zerlegung mit Q (q q 2 q 3 ), R (r

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Der Gaußsche Algorithmus und Varianten Vorlesung vom

Der Gaußsche Algorithmus und Varianten Vorlesung vom Der Gaußsche Algorithmus und Varianten Vorlesung vom 15.1.16 Gaußsche Elimination und Rückwärtssubstitution: Motivation am Beispiel, Verallgemeinerung und Algorithmus. Achtung: Durchführbarkeit nur bei

Mehr

Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin

Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin Angewandte Multivariate Statistik Angewandte Multivariate Statistik Prof. Dr. Ostap Okhrin Ostap Okhrin 1 of 46 Angewandte Multivariate Statistik A Short Excursion into Matrix Algebra Elementare Operationen

Mehr

Der Gaußsche Algorithmus und Varianten Vorlesung vom

Der Gaußsche Algorithmus und Varianten Vorlesung vom Der Gaußsche Algorithmus und Varianten Vorlesung vom 19.1.18 Gaußsche Elimination und Rückwärtssubstitution: Motivation am Beispiel, Verallgemeinerung und Algorithmus. Achtung: Durchführbarkeit nur bei

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1.

Lineare Algebra und Numerische Mathematik D-BAUG. Winter 2013 Prof. H.-R. Künsch. , a R. det(a) = 0 a = 1. b Musterlösung Lineare Algebra und Numerische Mathematik D-BAUG. Multiple Choice) Gegeben sei die folgende Matrix Winter 3 Prof. H.-R. Künsch A = a a) deta) = genau dann wenn gilt x a =. a =. ), a R. x

Mehr

Computergestützte Mathematik zur Linearen Algebra

Computergestützte Mathematik zur Linearen Algebra Computergestützte Mathematik zur Linearen Algebra Pivotwahl und Gleitkommaarithmetik Achim Schädle 3. und 20. Dezember 208 Achim Schaedle (HHU) CompLinA 3. und 20. Dezember 208 Instabilitäten bei Gauß-Elimination

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

1 10. Vorlesung: Die QR Zerlegung

1 10. Vorlesung: Die QR Zerlegung #!/usr/bin/env python3 # -*- coding: utf-8 -*- # """ # Created on Mon Dec 11 17:44:18 2017 # # @author: christianehelzel # """ 1 10. Vorlesung: Die QR Zerlegung Ziel: Finde eine Zerlegung der Matrix A

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R. Käppeli L. Herrmann W. Wu Herbstsemester 2016 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6.1 Berechnen Sie die Determinanten der beiden

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Kapitel 2. Lösung linearer Gleichungssysteme I. Inhalt: 2.1 Fehlerabschätzungen 2.2 Direkte Lösungsverfahren 2.3 Spezielle Gleichungssysteme

Kapitel 2. Lösung linearer Gleichungssysteme I. Inhalt: 2.1 Fehlerabschätzungen 2.2 Direkte Lösungsverfahren 2.3 Spezielle Gleichungssysteme Kapitel 2. Lösung linearer Gleichungssysteme I Inhalt: 2.1 Fehlerabschätzungen 2.2 Direkte Lösungsverfahren 2.3 Spezielle Gleichungssysteme Numerische Mathematik I 34 Prolog: Wiederholung aus der Linearen

Mehr

Numerische Mathematik für Ingenieure (SoSe 2013)

Numerische Mathematik für Ingenieure (SoSe 2013) Numerische Mathematik für Ingenieure (SoSe 2013) PD Dr(USA) Maria Charina Auszüge aus Vorlesungsfolien von Prof Joachim Stöckler werden verwendet Für die Bereitstellung dieses Materials und der Tex-Files

Mehr

Der Gaußsche Algorithmus und Varianten Vorlesung vom

Der Gaußsche Algorithmus und Varianten Vorlesung vom Der Gaußsche Algorithmus und Varianten Vorlesung vom 17114 Gaußsche Elimination und Rückwärtssubstitution: Motivation am Beispiel, Verallgemeinerung und Algorithmus Achtung: Durchführbarkeit nur bei nichtverschwindenden

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 0 Olga Holtz MA 378 Sprechstunde Fr 4-6 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do -4 und nv jokar@mathtu-berlinde Kapitel Die Determinante

Mehr

Blockmatrizen und -Algorithmen

Blockmatrizen und -Algorithmen Grundlagen 15.04.2011 Grundlagen Inhaltsverzeichnis 1 Grundlagen Blockmatrizen Untermatrizen 2 3 4 Blockmatrizen Grundlagen Blockmatrizen Untermatrizen Allgemein kann man sowie Zeilen als auch Spalten

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2 Olga Holtz MA 378 Sprechstunde Fr 4-6 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 2-4 und nv jokar@mathtu-berlinde Kapitel 4 Der

Mehr

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik 1

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Beispiel.5: Funktion von Runge (V) Beispiel Martin-Luther-Universität Halle-Wittenberg, NWF III, Institut für Mathematik Martin Arnold: Grundkurs Numerische Mathematik (WiS 27/8) Abbildung.3: Interpolation

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

4.2.3 LR-Zerlegung für diagonaldominante Matrizen

4.2.3 LR-Zerlegung für diagonaldominante Matrizen 4.2 Lösungsmethoden für lineare Gleichungssysteme 4.2.3 LR-Zerlegung für diagonaldominante Matrizen Satz 4.28 besagt, dass die LR-Zerlegung für beliebige reguläre Matrizen mit Pivotierung möglich ist.

Mehr

Quadratische Formen und Definitheit

Quadratische Formen und Definitheit Universität Basel Wirtschaftswissenschaftliches Zentrum Quadratische Formen und Definitheit Dr. Thomas Zehrt Inhalt: 1. Quadratische Formen 2. Quadratische Approximation von Funktionen 3. Definitheit von

Mehr

MODULPRÜFUNG Numerische Methoden (Elektrotechnik, Meteorologie, Geodäsie und Geoinformatik)

MODULPRÜFUNG Numerische Methoden (Elektrotechnik, Meteorologie, Geodäsie und Geoinformatik) Karlsruher Institut für Technologie KIT) Institut für Analysis Dr. S. Wugalter Herbst 7.9.7 MODULPRÜFUNG Numerische Methoden Elektrotechnik, Meteorologie, Geodäsie und Geoinformatik) Aufgabe 4 Punkte)

Mehr

4 Direkte Verfahren für spezielle Systeme

4 Direkte Verfahren für spezielle Systeme Numerische Mathematik 150 4 Direkte Verfahren für spezielle Systeme 4.1 Die Cholesky-Zerlegung Satz 4.1 Es sei A = [a i,j ] R n n [C n n ] symmetrisch [Hermitesch]. Dann sind die folgenden Aussagen äquivalent:

Mehr

2. Direkte Verfahren zur Lösung. linearer Gleichungssysteme

2. Direkte Verfahren zur Lösung. linearer Gleichungssysteme 2. Direkte Verfahren zur Lösung linearer Gleichungssysteme 1 Einleitung (1) Eine zentrale Rolle bei numerischen Berechnungen spielen lineare Gleichungssysteme Es sind die am häufigsten auftretenden numerischen

Mehr

Algorithmen für die Speicherhierarchie

Algorithmen für die Speicherhierarchie Lineare Algebra: untere Schranken Lehrstuhl für Effiziente Algorithmen Fakultät für Informatik Technische Universität München Vorlesung Sommersemester 2009 Gliederung 1 2 Zusätzliche Überlegungen Erinnerung

Mehr

Algorithmik kontinuierlicher Systeme

Algorithmik kontinuierlicher Systeme Algorithmik kontinuierlicher Systeme Matrixstrukturen Feste Dimension von Matrizen und Vektoren Geometrische Anwendungen Matrix beschreibt meist Transformationen von Vektoren im 2D bzw. 3D d.h. Dimension

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische Iterationsverfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische Iterationsverfahren Kapitel III (0) 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung einer linearen PDGL 2. Ordnung

Mehr