Matrix-Algorithmen Matrixmultiplikation Allgemeiner Matrizen

Größe: px
Ab Seite anzeigen:

Download "Matrix-Algorithmen Matrixmultiplikation Allgemeiner Matrizen"

Transkript

1 Matrix-Algorithmen Matrixmultiplikation Allgemeiner Matrizen

2 Inhaltsverzeichnis Grundlagen 1 Grundlagen Matrizen Vektoren 2 Skalarprodukt und Saxpy Matrix-Vektor-Multiplikation Gaxpy Matrix-Matrix-Multiplikation 3 Bandmatrizen Dreiecksmatrizen Speichern Symmetrie

3 Matrizen Vektoren Grundlagen Matrixmultiplikation baut auf Hierarchie von Operationen der linearen Algebra auf solche Operationen sind: Skalarprodukt, Matrix-Vektor-Multiplikation, Matrix-Matrix-Mulitplikation Operationen können in zwei Formen ausgedrückt werden, per Algorithmus und in der Sprache der linearen Algebra hier soll gezeigt werden, wie sich die zwei Ausdrucksweisen ergänzen

4 Matrizen Vektoren Matrix-Notation A R mxn A = (a ij ) = a a 1n.... a m1... a mn, a ij R

5 Matrizen Vektoren Matrix-Notation A R mxn A = (a ij ) = Matrix-Operationen a a 1n.... a m1... a mn, a ij R

6 Matrizen Vektoren Matrix-Notation A R mxn A = (a ij ) = Matrix-Operationen a a 1n.... a m1... a mn transponierte Matrix: C = A T c ij = a ji, a ij R

7 Matrizen Vektoren Matrix-Notation A R mxn A = (a ij ) = Matrix-Operationen a a 1n.... a m1... a mn transponierte Matrix: C = A T c ij = a ji Addition: C = A + B c ij = a ij + b ij, a ij R

8 Matrizen Vektoren Matrix-Notation A R mxn A = (a ij ) = Matrix-Operationen a a 1n.... a m1... a mn transponierte Matrix: C = A T c ij = a ji Addition: C = A + B c ij = a ij + b ij, a ij R skalare Multiplikation: C = αa c ij = αa ij

9 Matrizen Vektoren Matrix-Notation A R mxn A = (a ij ) = Matrix-Operationen a a 1n.... a m1... a mn transponierte Matrix: C = A T c ij = a ji Addition: C = A + B c ij = a ij + b ij, a ij R skalare Multiplikation: C = αa c ij = αa ij Multiplikation: C = AB c ij = r k=1 a ikb kj (R mxr xr rxn R mxn )

10 Matrizen Vektoren Vektor-Notation

11 Matrizen Vektoren Vektor-Notation Spaltenvektor: (R nx1 ) x R n x = x 1.. x n, x i R

12 Matrizen Vektoren Vektor-Notation Spaltenvektor: (R nx1 ) x R n x = Zeilenvektor: (R 1xn ) x = (x 1,..., x n ) x 1.. x n, x i R

13 Matrizen Vektoren Vektor-Notation Spaltenvektor: (R nx1 ) x R n x = Zeilenvektor: (R 1xn ) x = (x 1,..., x n ) x 1.. x n, x i R wenn x = Spaltenvektor y = x T = Zeilenvektor Vektor-Operationen

14 Matrizen Vektoren Vektor-Notation Spaltenvektor: (R nx1 ) x R n x = Zeilenvektor: (R 1xn ) x = (x 1,..., x n ) x 1.. x n, x i R wenn x = Spaltenvektor y = x T = Zeilenvektor Vektor-Operationen skalare Multiplikation: z = αx z i = αx i

15 Matrizen Vektoren Vektor-Notation Spaltenvektor: (R nx1 ) x R n x = Zeilenvektor: (R 1xn ) x = (x 1,..., x n ) x 1.. x n, x i R wenn x = Spaltenvektor y = x T = Zeilenvektor Vektor-Operationen skalare Multiplikation: z = αx z i = αx i Vektor-Addition: z = x + y z i = x i + y i

16 Matrizen Vektoren Vektor-Notation Spaltenvektor: (R nx1 ) x R n x = Zeilenvektor: (R 1xn ) x = (x 1,..., x n ) x 1.. x n, x i R wenn x = Spaltenvektor y = x T = Zeilenvektor Vektor-Operationen skalare Multiplikation: z = αx z i = αx i Vektor-Addition: z = x + y z i = x i + y i Skalarprodukt: c = x T y c = n i=1 x iy i

17 Matrizen Vektoren Vektor-Notation Spaltenvektor: (R nx1 ) x R n x = Zeilenvektor: (R 1xn ) x = (x 1,..., x n ) x 1.. x n, x i R wenn x = Spaltenvektor y = x T = Zeilenvektor Vektor-Operationen skalare Multiplikation: z = αx z i = αx i Vektor-Addition: z = x + y z i = x i + y i Skalarprodukt: c = x T y c = n i=1 x iy i Vektor-Produkt: z = x y z i = x i y i

18 Matrizen Vektoren Vektor-Notation Spaltenvektor: (R nx1 ) x R n x = Zeilenvektor: (R 1xn ) x = (x 1,..., x n ) x 1.. x n, x i R wenn x = Spaltenvektor y = x T = Zeilenvektor Vektor-Operationen skalare Multiplikation: z = αx z i = αx i Vektor-Addition: z = x + y z i = x i + y i Skalarprodukt: c = x T y c = n i=1 x iy i Vektor-Produkt: z = x y z i = x i y i Saxpy: y = αx + y y i = αx i + y i ( scalar α x plus y)

19 Grundlagen Skalarprodukt und Saxpy Matrix-Vektor-Multiplikation Gaxpy Matrix-Matrix-Multiplikation die folgenden Algorithmen basieren auf der MATLAB-Software MATLAB-Prozeduren sind gut geeignet um den Aufbau von Algorithmen grundlegend zu erklären dennoch sollten die vorgestellten Algorithmen nicht als das non plus ultra betrachtet werden, sie sind nur eine Art der Herangehensweise und sollten kritisch angewendet werden

20 Algorithmus Skalarprodukt Skalarprodukt und Saxpy Matrix-Vektor-Multiplikation Gaxpy Matrix-Matrix-Multiplikation Skalarprodukt.pdf >

21 Algorithmus Saxpy Grundlagen Skalarprodukt und Saxpy Matrix-Vektor-Multiplikation Gaxpy Matrix-Matrix-Multiplikation Saxpy.pdf

22 Matrix-Vektor-Multiplikation Skalarprodukt und Saxpy Matrix-Vektor-Multiplikation Gaxpy Matrix-Matrix-Multiplikation A R mxn z = Ax, x R n üblicher Weg für die Berechnung ist z i = n j=1 a ijx j daraus ergibt sich folgender Algorithmus

23 Algorithmus Matrix-Vektor-Multiplikation - Zeilenversion (Zeilenversion).pdf

24 Algorithmus Matrix-Vektor-Multiplikation - Spaltenversion (Spaltenversion).pdf

25 Matrizenzerlegung Grundlagen Skalarprodukt und Saxpy Matrix-Vektor-Multiplikation Gaxpy Matrix-Matrix-Multiplikation beim Zeilenalgorithmus greift die Prozedur mittels der Zeilen auf A zu und beim Spaltenalgorithmus greift die Prozedur mittels der Spalten auf A zu Zerlegung der Matrizen in Zeilen und Spalten eine Matrix ist ein Stapel von Zeilenvektoren: a T 1 A =.., a k R n a T m eine Matrix ist eine Aneinanderreihung von Spaltenvektoren A = (a 1,..., a n ), a k R m das bedeutet für die Algorithmen:

26 Skalarprodukt und Saxpy Matrix-Vektor-Multiplikation Gaxpy Matrix-Matrix-Multiplikation matvec.ij mit Matrizenzerlegung for i = 1 : m z i = a T i x end matvec.ji mit Matrizenzerlegung for j = 1:n z = z + x j a j end

27 Doppelpunkt-Notation Skalarprodukt und Saxpy Matrix-Vektor-Multiplikation Gaxpy Matrix-Matrix-Multiplikation ein einfacher Weg die Zeilen und Spalten von Matrizen zu kennzeichnen ist die Doppelpunkt-Notation k-te Zeile von A: A(k, :) = (a k1,..., a kn ) a 1k k-te Spalte von A: A(:, k) =. a mk das bedeutet für die Algorithmen:

28 Skalarprodukt und Saxpy Matrix-Vektor-Multiplikation Gaxpy Matrix-Matrix-Multiplikation matvec.ij mit Doppelpunkt-Notation for i = 1 : m z(i) = A(i, :)x end oder for i = 1 : m z(i) = dot(a(i, :), x) end matvec.ji mit Doppelpunkt-Notation for j = 1:n z = z + x(j)a(:, j) end oder for j = 1:n z = saxpy(x(j), A(:, j), z) end

29 Äußeres Produkt Grundlagen Skalarprodukt und Saxpy Matrix-Vektor-Multiplikation Gaxpy Matrix-Matrix-Multiplikation Algorithmen, die auf Spalten zugreifen, erscheinen uns besser matvec.ji ist also matvec.ij vorzuziehen der Unterschied zwischen den Algorithmen ist die Anordnung der Schleifen hierzu betrachten wir die Berechnung des Äußeren Produkts: A A + xy T mit A R mxn, x R m, y R n xy T ist ein spezielles Matrix-Matrix-Produkt, deren Einträge wie folgt lauten: a ij = a ij + x i y j mit i = 1 : m und j = 1 : n

30 Algorithmus für Äußeres Produkt Skalarprodukt und Saxpy Matrix-Vektor-Multiplikation Gaxpy Matrix-Matrix-Multiplikation ij-version: Vielfaches von y T wird zu jeder Zeile von A addiert for i = 1:m A(i,:)=A(i,:)+x(i)y T end ji-version: Vielfaches von y T wird zu jeder Spalte von A addiert for i = 1:n A(:,j)=A(:,j)+y(j)x end

31 Gaxpy Grundlagen Skalarprodukt und Saxpy Matrix-Vektor-Multiplikation Gaxpy Matrix-Matrix-Multiplikation die meisten dieser Algorithmen können so arrangiert werden, dass die dominante Operation die Gaxpy-Operation ist z = y + Ax, mitx R n, y R m, A R mxn Gaxpy = general A x plus y

32 Gaxpy-Algorithmus Grundlagen Skalarprodukt und Saxpy Matrix-Vektor-Multiplikation Gaxpy Matrix-Matrix-Multiplikation

33 Matrix-Matrix-Multiplikation Skalarprodukt und Saxpy Matrix-Vektor-Multiplikation Gaxpy Matrix-Matrix-Multiplikation gegeben sind 2x2-Matrizen mit der Multipliaktion C=AB mit A R mxr, B R rxn jeder ( Eintrag ) ( in) C ist ( ein Skalarprodukt ) = jede Spalte von C ist eine Linearkombination der Spalten von A ( (saxpy) ) ( ) ( ( ) ( ) ( ) ( )) = C( ist eine ) ( Summe ) von ( ) äußeren Produkten ( ) = (5 6) + (7 8)

34 Algorithmus Matrix-Matrix-Multiplikation in Skalarproduktversion (Skalarproduktversion).pdf

35 Algorithmus Matrix-Matrix-Multiplikation in Gaxpyversion (Gaxpyversion).pdf

36 Skalarprodukt und Saxpy Matrix-Vektor-Multiplikation Gaxpy Matrix-Matrix-Multiplikation Algorithmus Matrix-Matrix-Multiplikation in Gaxpyversion verkürzte Form: C(1:m, 1:n)=0 for j = 1:n C(:,j)=gaxpy(A,B(:,j),C(:,j)) end

37 Algorithmus Matrix-Matrix-Multiplikation in Äußeres-Produkt-Version (Outer-Product-Version).pdf

38 Schleifen Grundlagen Skalarprodukt und Saxpy Matrix-Vektor-Multiplikation Gaxpy Matrix-Matrix-Multiplikation double-loop: Matrix-Vektor-Multiplikation kann mit 2!=2 Möglichkeiten berechnet werden triple-loop: Matrix-Matrix-Mulitplikation kann mit 3!=6 Möglichkeiten berechnet werden Schleifen- Innere Mittlere Datenzugriff ordnung Schleife Schleife Inn. Schleife ijk dot vektor x matrix A Zeilen, B Spalten jik dot matrix x vektor A Zeilen, B Spalten ikj saxpy Zeilengaxpy B Zeilen jki saxpy Spaltengaxpy A Spalten kij saxpy Zeilen-äuß.-Produkt B Zeilen kji saxpy Spalten-äuß.-Produkt A Spalten

39 Bandmatrizen Dreiecksmatrizen Speichern Symmetrie Die Effektivität eines Matrix-Algorithmus hängt von vielen Faktoren ab (z.b. Anzahl der Rechnungen, notwendiges Speichern, Erinnerungen, Datenzugriffe, Anzahl der Schritte und Kosten) Hier schauen wir uns Band und Symmetrie einmal genauer an.

40 Bandmatrizen Grundlagen Bandmatrizen Dreiecksmatrizen Speichern Symmetrie Gegeben ist A R mxn mit niedriger Bandbreite p, wenn a ij = 0 für i > j + p hoher Bandbreite q, wenn a ij = 0 für j > i + q Beispiel: 8x5-Matrix mit p=1 und q=2 x x x 0 0 x x x x 0 0 x x x x 0 0 x x x x x x

41 Diagonalmatrizen Grundlagen Bandmatrizen Dreiecksmatrizen Speichern Symmetrie D R mxn D = diag(d 1,..., d q ) mit q = min {m, n} d i = d ii Matrixart p q Diagonalmatrix 0 0 obere Dreiecksmatrix 0 n-1 untere Dreiecksmatrix m-1 0

42 Dreiecksmatrizen-Multiplikation Bandmatrizen Dreiecksmatrizen Speichern Symmetrie Gegeben: A,B sind nxn-matrizen und obere Dreiecksmatrizen für C=AB ist C auch eine obere Dreiecksmatrix und die Einträge in C sind die Ergebnisse von abgekürzten inneren Produkten Beispiel für 3x3: a 11 b 11 a 11 b 12 + a 12 b 22 a 11 b 13 + a 12 b 23 + a 13 b 33 0 a 22 b 22 a 22 b 23 + a 23 b a 33 b 33 wenn a ik b kj = 0 mit k < i oder j < k c ij = j k=i a ikb kj

43 Algorithmus für Dreiecksmatrizen Dreiecksmatrix.pdf

44 Doppelpunkt-Notation Bandmatrizen Dreiecksmatrizen Speichern Symmetrie A R mxn ; p, q, r mit 1 p q n und 1 r m : A(r, p : q) = (a rp,..., a rq ) R nx(q p+1) wenn 1 p q m und 1 c n : a pc A(p : q, c) =. R q p+1 a qc

45 Bandmatrizen Dreiecksmatrizen Speichern Symmetrie Algorithmus für Dreiecksmatrizen mit Doppelpunktnotation Dreiecksmartix mit Doppelpunktnotation.pdf

46 Symmetrie Grundlagen Bandmatrizen Dreiecksmatrizen Speichern Symmetrie A R nxn ist symmetrisch wenn A T = A: die Speicheranforderung für so eine Matrix kann halbiert werden, wenn das untere Dreieck wie folgt definiert wird: a ij = A.vec((j 1)n j(j 1)/2 + i) mit i j das bedeutet für den Algorithmus der Matrix-Vektor-Multiplikation

47 Algorithmus Matrix-Vektor-Multiplikation mit A.vec (z=ax, x R n ) Avec.pdf

48 Speichern per Diagonale Bandmatrizen Dreiecksmatrizen Speichern Symmetrie beim letzten Algorithmus gibt es das Problem, dass die i-schleife nicht auf die angrenzenden Array-Einträge zugreift wir benötigen ein kompaktes Speicherschema für symmetrische Matrizen in der die Matrix per Diagonale gespeichert wird A.diag = ( ) Allgemein: für i j gilt a i+k,i = A.diag(i + nk k(k 1)/2), (k 0)

49 Speichern per Diagonale Bandmatrizen Dreiecksmatrizen Speichern Symmetrie Wenn A R mxn dann soll D(A, k) R mxn der k-te diagonale Teil von A sein: { } aij j=i+k, 1 i m, 1 j n [D(A, k)] ij = 0 sonst A = = } 0 {{ 0 } 0 } 0 {{ 0 } 0 } 0 {{ 6 } 0 } 5 {{ 0 } 3 } 0 {{ 0 } D(A,2) D(A,1) (A,0) D(A, 1) D(A, 2)

50 Algorithmus Matrix-Vektor-Multiplikation mit A.diag (z=ax, x R n ) Adiag.pdf

51 Quellen Grundlagen Bandmatrizen Dreiecksmatrizen Speichern Symmetrie Matrix Computation, Gene H. Golub und Charles F. Van Loan, 1989 Numerical Linear Algebra, Lloyd N. Trefethen und Daid Bau, 1997 Mathematik, Studienbriefe zur Fachdidaktik für Lehrer der Sekundarstufe II, MG2, DIFF 1983

52 Vielen Dank für Eure Aufmerksamkeit

LINEARE ALGEBRA. Julia Becker Bonn ROUTINEN

LINEARE ALGEBRA. Julia Becker Bonn ROUTINEN LINEARE ALGEBRA Julia Becker 04.04.2012 Bonn ROUTINEN Inhaltsverzeichnis Notation Matrizen Vektoren Matrizen und Vektoren Basis Routinen Skalarprodukt und Saxpy Matrix-Vektor Multiplikation und Gaxpy Matrizenmultiplikation

Mehr

Blockmatrizen und -Algorithmen

Blockmatrizen und -Algorithmen Grundlagen 15.04.2011 Grundlagen Inhaltsverzeichnis 1 Grundlagen Blockmatrizen Untermatrizen 2 3 4 Blockmatrizen Grundlagen Blockmatrizen Untermatrizen Allgemein kann man sowie Zeilen als auch Spalten

Mehr

Dreiecksysteme und LR-Faktorzerlegung

Dreiecksysteme und LR-Faktorzerlegung Dreiecksysteme und 06.05.2011 Dreiecksysteme und Inhaltsverzeichnis 1 Dreieckssysteme Vorwärts-Substitution (Zeilen-Version) Rückwärts-Substitution (Zeilen-Version) Vorwärts-Substitution (Spalten-Version)

Mehr

Matrix- Algorithmen Householder- und Givens- Matrizen

Matrix- Algorithmen Householder- und Givens- Matrizen Fast und 20. Mai 2011 und Inhaltsverzeichnis Fast 1 2 Fast und Fast ist eine eines Vektors an der Hyperebene durch die Null im euklidischen Raum Ein zur Spiegelebene orthogonaler Vektor v R n \ {0} wird

Mehr

Kurzform. Choleskyzerlegung. Julia Hoeboer. 13. Mai 2011

Kurzform. Choleskyzerlegung. Julia Hoeboer. 13. Mai 2011 Choleskyzerlegung Julia Hoeboer 13 Mai 2011 Inhalt: LDM T Zerlegung LDL T Zerlegung Cholesky Zerlegung Person Berechnung Gaxpy Algorithmus Effektivität LDM T Zerlegung LDM T Zerlegung lässt sich aus LR

Mehr

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A.

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A. Matrizenrechnung Matrix: Eine rechteckige Anordnung reeller Zahlen a ij i = 1,..., n i ; j = 1,..., m in Zeilen und Spalten. Die a ij heiÿen Elemente von A. a 11 a 12... a ij... a 1m a 21 a 22.........

Mehr

QR-Zerlegung Allgemeines. Householder-Spiegelung. Givens-Rotation. Gram-Schmidt-Orthogonalisierung. Fazit. QR-Zerlegung.

QR-Zerlegung Allgemeines. Householder-Spiegelung. Givens-Rotation. Gram-Schmidt-Orthogonalisierung. Fazit. QR-Zerlegung. 20.0.2011 Inhaltsverzeichnis 1 2 3 4 1 2 3 4 der Matrix A R mxn, m n A = Q R Matrix Q: Q R nxn orthogonale Matrix (Spalten paarweise orthogonal) Q Q T = E Matrix R: R R mxn obere Dreiecksmatrix r 11 r

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49

Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 207/8 2 Matrixalgebra / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.

Mehr

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I

Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS Kapitel 2 Matrixalgebra Technologiematrix und wöchentliche Nachfrage (in Werteinheiten):

Mehr

FH Gießen-Friedberg, FB 06 (MNI) Skript 8 Mathematik 1 für KMUB 5./7. November 2008 Prof. Dr. H.-R. Metz. Matrizen 1. a m1 a m2 a m3 a mn

FH Gießen-Friedberg, FB 06 (MNI) Skript 8 Mathematik 1 für KMUB 5./7. November 2008 Prof. Dr. H.-R. Metz. Matrizen 1. a m1 a m2 a m3 a mn FH Gießen-Friedberg, FB 06 (MNI) Skript 8 Mathematik 1 für KMUB./7. November 2008 Prof. Dr. H.-R. Metz (Matrix) Matrizen 1 Ein System von Zahlen a ik, die rechteckig in m Zeilen und n Spalten angeordnet

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 71 Reelle Matrizen Prof Dr Erich Walter Farkas Mathematik I+II, 71 Reelle Matrizen 1 / 31 1 2 3 4 Prof Dr Erich

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 81 Reelle Matrizen Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas 1 / 31 1 2 3 4 2 / 31 Transponierte einer Matrix 1 Transponierte

Mehr

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

3 Matrizen und Lineare Gleichungssysteme

3 Matrizen und Lineare Gleichungssysteme 3 Matrizen und LGS Pink: Lineare Algebra HS 2014 Seite 38 3 Matrizen und Lineare Gleichungssysteme 3.1 Definitionen Sei K ein Körper, und seien m,n,l natürliche Zahlen. Definition: Eine Matrix mit m Zeilen

Mehr

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 81 Reelle Matrizen Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas 1 / 32 8 Lineare Algebra: 1 Reelle Matrizen Grundbegriffe Definition

Mehr

Lektion 3. 1 Theorie. NTS1-P Natur, Technik und Systeme 1 Praktikum Herbstsemester 2012

Lektion 3. 1 Theorie. NTS1-P Natur, Technik und Systeme 1 Praktikum Herbstsemester 2012 NTS1-P Natur, Technik und Systeme 1 Praktikum Herbstsemester 2012 Dr Christoph Kirsch ZHAW Winterthur Lektion 3 In dieser Lektion werden Sie in MATLAB mit Vektoren und Matrizen rechnen 1 Theorie Wie Sie

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr 14-16 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 12-14 und nv jokar@mathtu-berlinde Kapitel

Mehr

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) =

Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) = Matrizen Eine m nmatrix ist ein rechteckiges Zahlenschema mit m Zeilen und n Spalten der Form a 11 a 12 a 1n A = a ij = a 21 a 22 a 2n a m1 a m2 a mn Dabei sind m und n natürliche und die Koezienten a

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

(A T ) T = A. Eigenschaft:

(A T ) T = A. Eigenschaft: Elementare Matrizenrechnung m n-matrix von Zahlen A m n a 1,1 a 1,n a m,1 a m,n rechteckige Tabelle m n Dimension der Matrix Sprechweise: m Kreuz n wobei m Anzahl Zeilen, n Anzahl Spalten a i,j Element

Mehr

Matrizen: Grundbegriffe. 1-E Ma 1 Lubov Vassilevskaya

Matrizen: Grundbegriffe. 1-E Ma 1 Lubov Vassilevskaya Matrizen: Grundbegriffe -E Ma Lubov Vassilevskaya Lineares Gleichungssystem Abb. : Der Schnittpunkt P der beiden Geraden ist die graphische Lösung des linearen Gleichungssystem g : y = x, g 2 : y = 3 x,

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

Matrizen. Lineare Algebra I. Kapitel April 2011

Matrizen. Lineare Algebra I. Kapitel April 2011 Matrizen Lineare Algebra I Kapitel 2 26. April 2011 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/~holtz Email: holtz@math.tu-berlin.de Assistent: Sadegh

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Multiplikation von Matrizen

Multiplikation von Matrizen Multiplikation von Matrizen Die Regeln der Multiplikation von Zahlen können nicht direkt auf die Multiplikation von Matrizen übertragen werden. 2-E Ma Lubov Vassilevskaya Multiplikation ccvon Matrizen

Mehr

Numerische Lineare Algebra Spezielle Systeme

Numerische Lineare Algebra Spezielle Systeme Numerische Lineare Algebra Spezielle Systeme Friedrich Solowjow 2. Mai 2012, Bonn 1 / 34 1 Einleitung Übersicht Definitionen 2 3 Datenzugriff Speichertechniken 2 / 34 Übersicht Definitionen Gliederung

Mehr

Hilfsblätter Lineare Algebra

Hilfsblätter Lineare Algebra Hilfsblätter Lineare Algebra Sebastian Suchanek unter Mithilfe von Klaus Flittner Matthias Staab c 2002 by Sebastian Suchanek Printed with L A TEX Inhaltsverzeichnis 1 Vektoren 1 11 Norm 1 12 Addition,

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Lineare Gleichungssysteme und Matrizen

Lineare Gleichungssysteme und Matrizen Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x

Mehr

3 Lineare Algebra Vektorräume

3 Lineare Algebra Vektorräume 3 Lineare Algebra Vektorräume (31) Sei K ein Körper Eine kommutative Gruppe V bzgl der Operation + ist ein Vektorraum über K, wenn eine Operation : K V V (λ, v) λv existiert mit i) v,w V λ,µ K: λ (v +

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 2 Rechenoperationen und Gesetze Gleichheit

Mehr

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle. Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:

Mehr

Numerisches Programmieren, Übungen

Numerisches Programmieren, Übungen Technische Universität München SoSe 8 Institut für Informatik Prof. Dr. Thomas Huckle Michael Rippl Fabio Gratl Numerisches Programmieren, Übungen Musterlösung 3. Übungsblatt: Gaußelimination mit Pivotsuche,

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Numerik I. Universität zu Köln SS 2009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva,

Numerik I. Universität zu Köln SS 2009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva, Universität zu Köln SS 009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva, mselva@math.uni-koeln.de Numerik I Musterlösung 1. praktische Aufgabe, Bandmatrizen Bei der Diskretisierung von

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Komplexe Zahlen 5 Lineare Algebra 6 Lineare Programme 5 Lineare Algebra

Mehr

MATRIZEN. Eine Matrix ist eine rechteckige Anordnung von Zahlen, als ein Schema betrachtet. a 11 a a 1n a 21. a a 2n A = a m1 a m2...

MATRIZEN. Eine Matrix ist eine rechteckige Anordnung von Zahlen, als ein Schema betrachtet. a 11 a a 1n a 21. a a 2n A = a m1 a m2... MATRIZEN Eine Matrix ist eine rechteckige Anordnung von Zahlen, als ein Schema betrachtet A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn A ist eine m n Matrix, dh: A hat m Zeilen und n Spalten A besitzt

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k).

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k). 4 Matrizenrechnung Der Vektorraum der m n Matrizen über K Sei K ein Körper und m, n N\{0} A sei eine m n Matrix über K: a a 2 a n a 2 a 22 a 2n A = = (a ij) mit a ij K a m a m2 a mn Die a ij heißen die

Mehr

Tutorium: Diskrete Mathematik. Matrizen

Tutorium: Diskrete Mathematik. Matrizen Tutorium: Diskrete Mathematik Matrizen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de Definition I Eine Matrix ist eine rechteckige Anordnung (Tabelle) von Elementen, mit denen man in bestimmter

Mehr

= 9 10 k = 10

= 9 10 k = 10 2 Die Reihe für Dezimalzahlen 1 r = r 0 +r 1 10 +r 1 2 100 + = r k 10 k, wobei r k {0,,9} für k N, konvergiert, da r k 10 k 9 10 k für alle k N und ( 1 ) k 9 10 k 9 = 9 = 10 1 1 = 10 10 k=0 k=0 aufgrund

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. Wir betrachten das überbestimmte Gleichungssystem Ax = y mit 1 1 1 1 A := 1 1 0 1 0 1, y := 2 3 0 0 1 4 Berechnen Sie die

Mehr

Invertierbarkeit von Matrizen

Invertierbarkeit von Matrizen Invertierbarkeit von Matrizen Lineare Algebra I Kapitel 4 24. April 2013 Logistik Dozent: Olga Holtz, MA 417, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Dreiecksmatrizen. Die Treppennormalform

Dreiecksmatrizen. Die Treppennormalform Dreiecksmatrizen. Die Treppennormalform Lineare Algebra I Kapitel 4-5 8. Mai 202 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 4-6 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2015 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8

Mehr

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix Matrizen Definition: i Eine m n Matrix A ist ein rechteckiges Schema aus Zahlen, mit m Zeilen und n Spalten: a a 2 a n a 2 a 22 a 2n a m a m2 a mn Die Spaltenvektoren dieser Matrix seien mit a,, a n bezeichnet

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

Rechenaufwand der LR- und LDL T - Zerlegung

Rechenaufwand der LR- und LDL T - Zerlegung 6. Großübung Rechenaufwand der LR- und LDL T - Zerlegung Rückwärtseinsetzen Der Algorithmus kann der Folie 3.0 entnommen werden. Dieser kann in die folgenden Rechenoperationen aufgesplittet werden: Für

Mehr

Spezielle Matrizen. Invertierbarkeit.

Spezielle Matrizen. Invertierbarkeit. Spezielle Matrizen. Invertierbarkeit. Lineare Algebra I Kapitel 4 2. Mai 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Matrizen Matrizen

Matrizen Matrizen Matrizen 29 2 Matrizen Wir beschäftigen uns in diesem Kapitel mit Matrizen. Sie eignen sich insbesondere zur Darstellung von Gleichungssystemen und linearen Abbildungen. Wir führen eine Addition und eine

Mehr

Mathematik 1 Bachelorstudiengang Maschinenbau

Mathematik 1 Bachelorstudiengang Maschinenbau Mathematik 1 Bachelorstudiengang Maschinenbau Prof Dr Stefan Etschberger Hochschule Augsburg Sommersemester 2012 Übersicht 4 Lineare Algebra 1 Grundlegendes 2 Aussagenlogik 3 Mengen 4 Lineare Algebra Lernziele

Mehr

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra)

Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme 3 Lineare Gleichungssysteme 3 Fortsetzung des Matrizenkalküls Als erstes beweisen wir einen einfachen Satz über den Rang von Matrizenprodukten Satz 3 (a) Für Matrizen A : Ã l m, B : Ã m n gilt rang AB

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Versus QR Matrizen mit vollem Rang 27. Mai 2011 Versus QR Inhaltsverzeichnis 1 2 3 Beispiel 4 Beispiel 5 6 Versus QR Kondition Vergleich Beispiel Versus QR Zu finden: Gerade, die den Punkten (0, 6), (1,

Mehr

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2

BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2 Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

Basiswissen Matrizen

Basiswissen Matrizen Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Eigenschaften der Matrizenmultiplikation. Transponierung. Spezielle Matrizen.

Eigenschaften der Matrizenmultiplikation. Transponierung. Spezielle Matrizen. Eigenschaften der Matrizenmultiplikation. Transponierung. Spezielle Matrizen. Lineare Algebra I Kapitel 4 23. April 2013 Logistik Dozent: Olga Holtz, MA 417, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/

Mehr

Lineare Algebra. Gymnasium Immensee SPF PAM. Bettina Bieri

Lineare Algebra. Gymnasium Immensee SPF PAM. Bettina Bieri Lineare Algebra Gymnasium Immensee SPF PAM Bettina Bieri 6. Oktober 2011 Inhaltsverzeichnis 1 Matrizen 1 1.1 Einleitung............................. 1 1.2 Der Begriff Matrix........................ 1 1.2.1

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

Blockmatrizen. Arthur Wettschereck. 11. April 2012, Bonn

Blockmatrizen. Arthur Wettschereck. 11. April 2012, Bonn Komplexe und transponierte 11. April 2012, Bonn Komplexe und transponierte 1 Definition Blockmatrix Doppelpunkt Notation 2 Addition Zeilen und Spaltenweise Multiplikation Blockmatrixmultiplikation 3 Herkömliche

Mehr

Copyright, Page 1 of 5 Die Determinante

Copyright, Page 1 of 5 Die Determinante wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist

Mehr

Schriftlicher Test zu C (90 Minuten) VU Einführung ins Programmieren für TM. 1. Oktober 2012

Schriftlicher Test zu C (90 Minuten) VU Einführung ins Programmieren für TM. 1. Oktober 2012 Familienname: Vorname: Matrikelnummer: Aufgabe 1 (2 Punkte): Aufgabe 2 (3 Punkte): Aufgabe 3 (2 Punkte): Aufgabe 4 (3 Punkte): Aufgabe 5 (2 Punkte): Aufgabe 6 (1 Punkte): Aufgabe 7 (2 Punkte): Aufgabe

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle 2. Matrixalgebra Warum Beschäftigung mit Matrixalgebra? Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle bequeme mathematische

Mehr

Lineare Gleichungssysteme, LR-Zerlegung

Lineare Gleichungssysteme, LR-Zerlegung Prof Thomas Richter 2 Juni 27 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomasrichter@ovgude Material zur Vorlesung Algorithmische Mathematik II am 22627 Lineare Gleichungssysteme,

Mehr

Algorithmen für die Speicherhierarchie

Algorithmen für die Speicherhierarchie Lineare Algebra: untere Schranken Lehrstuhl für Effiziente Algorithmen Fakultät für Informatik Technische Universität München Vorlesung Sommersemester 2009 Gliederung 1 2 Zusätzliche Überlegungen Erinnerung

Mehr

Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II

Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II Zugriff auf Matrizen. Anhängen von Elementen. Punktweise Operatoren. Vektoren und Matrizen in MATLAB II Matrixzugriff Wir wollen nun unsere Einführung in die Arbeit mit Vektoren und Matrizen in MATLAB

Mehr

4. Übungsblatt zur Mathematik II für Inf, WInf

4. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof Dr Streicher Dr Sergiy Nesenenko Pavol Safarik SS 010 11 15 Mai 4 Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G13 (Basistransformation) ( ) 15 05 Die lineare

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 9 20. Mai 2010 Kapitel 9. Matrizen und Determinanten Der Begriff der Matrix Die transponierte Matrix Definition 84. Unter einer (reellen) m n-matrix

Mehr

Spezielle Matrixformen

Spezielle Matrixformen Definition B57 (Transposition) Eine einfache aber wichtige Operation auf Matrizen ist die Transposition, die aus einer (m n) Matrix A eine (n m) Matrix B = A T macht Hierbei gilt β i j = α j i, so daß

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Argumentationstechniken PLUS Direkter Beweis einer Implikation A B (analog

Mehr

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen

IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen Gliederung I. Motivation II. Lesen mathematischer Symbole III. Wissenschaftliche Argumentation IV. Matrizenrechnung i. Rechenoperationen mit Matrizen ii. iii. iv. Inverse einer Matrize Determinante Definitheit

Mehr

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n

I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i

Mehr

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle

Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle 2. Matrixalgebra Warum Beschäftigung mit Matrixalgebra? Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle bequeme mathematische

Mehr

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen

a ij i - te Gleichung (Zeile), i = 1, 2,3,..., m I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y 1 = a 11 x 1 + a 12 x 2 + a 13 x3 y 2 = a 21 x 1 + a 22 x 2 + a 23 x3... Koeffizienten a ij i - te Gleichung

Mehr

oder A = (a ij ), A =

oder A = (a ij ), A = Matrizen 1 Worum geht es in diesem Modul? Definition und Typ einer Matrix Spezielle Matrizen Rechenoperationen mit Matrizen Rang einer Matrix Rechengesetze Erwartungswert, Varianz und Kovarianz bei mehrdimensionalen

Mehr

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $ $Id: matrixtex,v 14 2008/12/02 21:08:55 hk Exp $ $Id: vektortex,v 12 2008/12/05 11:27:45 hk Exp hk $ II Lineare Algebra 6 Die Matrixmultiplikation 63 Inverse Matrizen und reguläre lineare Gleichungssysteme

Mehr

Lineares Gleichungssystem

Lineares Gleichungssystem Lineares Gleichungssystem Ein System von m linearen Gleichungen in n Unbekannten besteht aus einer Menge von algebraischen Relationen der Form n a ij x j = b i, i =,...,m, j= wobei a ij R, i m, j n, die

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

D-MAVT Lineare Algebra I HS 2018 Prof. Dr. N. Hungerbühler. Lösungen = A 4 3 6

D-MAVT Lineare Algebra I HS 2018 Prof. Dr. N. Hungerbühler. Lösungen = A 4 3 6 D-MAVT Lineare Algebra I HS 28 Prof. Dr. N. Hungerbühler Lösungen. Gegeben seien die Matrizen A := ( 2 3 3 ), B := Welche der folgenden Aussagen sind richtig? (a) (AB) T = A T B T. 5 3 2 6 Die Formel (AB)

Mehr

Lineare Algebra 1. . a n1 a n2 a n3 a nm

Lineare Algebra 1. . a n1 a n2 a n3 a nm Lineare Algebra 1 Lineare Algebra Hilfreiche Konzepte zur Vereinfachung der Darstellung und Berechnung stellt die lineare Algebra bereit. Auch wenn sie nur an wenigen Stellen des Buches verwendet wurden,

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 6, 017 1 Erinnerung: Lineare Gleichungssysteme LGS Der allgemeine Fall hat m lineare Gleichungen, n

Mehr

Mathematische Computer-Software

Mathematische Computer-Software Mathematische Computer-Software Kommerzielle Computeralgebrasysteme (CAS) Beispiele: Mathematica, Maple, Numerisches und symbolisches Verarbeiten von Gleichungen: Grundrechenarten Ableitung und Integration

Mehr