(A T ) T = A. Eigenschaft:
|
|
|
- Regina Meyer
- vor 9 Jahren
- Abrufe
Transkript
1 Elementare Matrizenrechnung m n-matrix von Zahlen A m n a 1,1 a 1,n a m,1 a m,n rechteckige Tabelle m n Dimension der Matrix Sprechweise: m Kreuz n wobei m Anzahl Zeilen, n Anzahl Spalten a i,j Element der Matrix 1 Index Zeilennr, 2 Index Spaltennr Eine 1 1-Matrix wird als Zahl ohne die Matrixklammern geschrieben Eine m n-matrix A m n hat m n Elemente a i,j Element Zelle in der Sprache der Tabellenkalkulation 51 Gleichheit A m n B m n : elementweise Gleichheit Gleichheit A B: 1 A und B müssen gleiche Dimension haben 2 a i,j b i,j für alle Elemente im paarweisen Vergleich 1 Bsp (1 2) 1 2 und sind nicht vergleichbar (als Matrizen) (1 2) 1 2 (2 2) 1 2 sind vergleichbar, aber verschieden (1 2) 1 2 ( ) 1 2 sind gleich Transponierte (A T ) n m (A m n ) T einer Matrix A m n Die Zeilen (bzw Spalten) einer Matrix werden in unveränderter Reihenfolge als Spalten (bzw Zeilen) aufgeschrieben Zweimaliges Transponieren führt zum Ausgangszustand zurück Bsp T Eigenschaft: ; a1,1 a 1,2 a 2,1 a 2,2 (A T ) T A T a1,1 a 2,1 ;(a a 1,2 a 1 a 2 ) T a1 2,2 a 2 Transponieren ist insbesondere für reine Darstellungszwecke sehr nützlich, zb passt der etwas lästige Spaltenvektor a ( ) T noch locker auf diese Seite ;-) Mathematik für Ökonomen - Campus Duisburg 1 von 6
2 52 Einige spezielle Matrizen A m n Äußere Formen m n quadratische Matrix dh ZeilenanzahlSpaltenanzahl m 1 n-zeilenvektor n Elementeanzahl der einen Zeile n 1 m-spaltenvektor m Elementenzahl der einen Spalte Innere Formen! 0 m n Nullmatrix in m Zeilen und n Spalten nur Nullen 0 n, (0 n ) T Nullspalte, Nullzeile Spalte bzw Zeile mit n Nullen 1 m n Einsenmatrix in m Zeilen und n Spalten nur Einsen 1 n, (1 n ) T Einsenspalte, Einsenzeile Spalte bzw Zeile mit n Einsen Wir schreiben Einsenmatrix statt Einsmatrix um jede Verwechslung mit der (folgenden) Einheitsmatrix auszuschließen Mischformen spezielle quadratische Matrizen E n n Einheitsmatrix E n n j-te Spalte von E n n j-ter Einheitsspaltenvektor (das j-te Element von e j n ist Eins, alle anderen sind Null) (e i n )T i-te Zeile von E n n i-ter Einheitszeilenvektor (das i-te Element von (e i n) T ist Eins, alle anderen sind Null) Bei einer quadratischen Matrix A n n heißen die Matrixelemente mit gleicher Zeilen- und Spaltennummer Diagonalelemente: a 1,1,a 2,2,,a n,n a 0 0 Eine quadratische Matrix A n n heißt 0 b 0 Diagonalmatrix wenn außerhalb ihrer Diagonale nur Nullen stehen (Bsp E n n ) 0 0 c obere Dreiecksmatrix wenn unterhalb ihrer Diagonale a b c a 0 0 nur Nullen stehen 0 d e b c 0 untere Dreiecksmatrix wenn oberhalb ihrer Diagonale nur Nullen stehen 0 0 f d e f e j n Mathematik für Ökonomen - Campus Duisburg 2 von 6
3 5 Rechenoperationen mit Matrizen Addition Matrix m n ± Matrix m n Addition von Matrizen gleicher Dimension Elementweise Addition Regeln: A + B B + A und (A + B) T A T + B T Multiplikation Zahl Matrix Multiplikation jedes Matrixelements mit dieser Zahl Regel: αa + βa (α + β)a wobei α, β R Multiplikation k-zeilenvektor k-spaltenvektor als Baustein der Matrixmultiplikation: Skalarprodukt s 1 ( z 1,,z k ) : z 1 s z k s k k z l s l l1 s k Multiplikation Matrix m k Matrix k n Multiplikation mehrerer k-zeilenvekt mit mehreren k-spaltenvekt C m n : A m k B k n wird elementweise definiert: Das Element c i,j von C m n ist das Ergebnis der Multiplikation (Zeile Nr i von A) (Spalte Nr j von B) je k Elemente c i,j : a i,1 b 1,j + a i,2 b 2,j + + a i,k b k,j k l1 a i,l b l,j b 1,1 b 1,j b 1,n B k n b k,1 b k,j b k,n a 1,1 a 1,k A m k a i,1 a i,k c i,j : (A B) m n a m,1 a m,k Regeln: C(A + B) CA + CB und (A + B)C AC + BC (A B) C A (B C) und (AB) T B T A T! Vorsicht A B B A ist im Allgemeinen falsch A B ist nur definiert, wenn Spaltenanzahl von A Zeilenanzahl von B Mathematik für Ökonomen - Campus Duisburg von 6
4 Bsp 1 Bsp ; ( 1 0 ) nicht definiert Ausklammern eines zu jedem Element einer Matrix gemeinsamen Faktors : Bsp (1 1 1) 1 2 6; ( ) 1 2 1; ( ) Bsp Bsp 5 Bsp nicht definiert In Bsp 5 sind (A B) 2 2 und (B A) nicht einmal vergleichbar, in Bsp 6 sind (A B) 2 2 und (B A) 2 2 vergleichbar, aber verschieden Vier allgemeinere Beispiele (Eigenschaften) Bsp 7 Für beliebige Matrizen A m n (insbesondere Vektoren) ist A m n 0 n k 0 m k A m n + 0 m n A m n 0 k m A m n 0 k n 0 m n + A m n A m n Die Nullmatrix spielt bei der Matrixaddition die gleiche neutrale Rolle wie die Zahl Null bei der Addition von Zahlen! Anders als bei Zahlen kann aber bei der Matrixmultiplikation aus der Gleichung A B 0 im Allgemeinen nicht gefolgert werden, dass A oder B die Nullmatrix ist (vgl Bspe 2 und 6) Mathematik für Ökonomen - Campus Duisburg 4 von 6
5 Bsp 8 Für beliebige Matrizen A m n (insbesondere Vektoren) ist A m n E n n A m n E n n a n 1 a n 1 E m m A m n A m n a 1 n E n n a 1 n Die Einheitsmatrix spielt bei der Matrixmultiplikation die gleiche neutrale Rolle wie die Zahl Eins bei der Multiplikation von Zahlen Bsp 9 Multiplikation mit Einheitsvektoren 54 (e iṁ)t A m n i-te Zeile von A Zeilenpicker (von links) A m n e j n j-te Spalte von A Spaltenpicker (von rechts) Insbesondere ist (e i n )T e j 0 für i j n 1 für i j Die Picker werden insbesondere für Vertauschungen von Zeilen bzw Spalten (Permutationen) verwendet: A n A m sortiert die Zeilen von A in die Reihenfolge 2//1 sortiert die Spalten von A in die Reihenfolge /1/2 Das Ergebnis der folgenden Matrixmultiplikation kann ohne Rechnung direkt angegeben werden: Eine solche Vertauschung/Sortierung (die ja ausgedrückt ist durch die gewünschte Vertauschung der Zeilen bzw Spalten der Einheitsmatrix) wird rückgängig gemacht durch die entsprechende transponierte Vertauschung, im Bsp: Bsp 10 Multiplikation mit Einsenvektoren 1 T m A m n Zeile mit den n Spaltensummen von A m n A m n 1 n Spalte mit den m Zeilensummen von A m n 1 T m A m n 1 n Summe der m n Elemente von A m n (Vgl Grundlagen Nr 9) Die j-te Spaltensumme ist gleich m i1 a i,j, die i-te Zeilensumme gleich n j1 a i,j und die Gesamtsumme gleich m n i1 j1 a i,j Mathematik für Ökonomen - Campus Duisburg 5 von 6
6 Anwendungsbeispiel Bei einem zweistufigen Produktionsprozess sind die beiden einstufigen Bedarfstabellen (Elemente: Bedarf in Anzahl Einheiten Zeilenobjekt bei der Produktion einer Einheit Spaltenobjekt) M RZ und M ZE wie folgt gegeben: Zwischenprodukte Z Z 1 Z 2 Z Rohstoffe R R R Endprodukte E E 1 E 2 E Zwischen- Z produkte Z Z Z 2 1 Rohstoffpreise r (r 1,r 2 ) (4, 5) Verkaufspreise p (p 1,p 2,p ) (10, 100, 10) [Preise werden als Zeile angegeben Zwischenprodukte werden in diesem einfachen Modell weder gekauft noch verkauft Ebenso erfordern feinere Wertbetrachtungen (Produktionskosten/Gewinn) ein erweitertes ökonomisches Modell Wir betrachten hier, sehr vereinfacht, nur Einkauf und Verkauf ] M RE M RZ M ZE Bedarfstabelle der Gesamtverarbeitung M RE M RZ M ZE Endprodukte E E E 2 E, dh Rohstoffe R R R Z M ZE E Zwischenproduktbedarf Z bei geg Endproduktion E Für E 5 10 ist der Z-Mengenvektor: Z M ZE E 5 R M RE E M RZ Z Rohstoffbedarf R bei geg Endproduktion E Für E ist der R-Mengenvektor: R M RE E 70 5 Zum Vgl einstufig rückwärts gerechnet: R M RZ r R Rohstoffkosten Rohstoffkosten r R 950 p E Verkaufserlös Verkaufserlös p E 1100 Ist nicht die Endproduktion E vorgegeben, sondern ein Rohstoffvorrat R bzw ein Zwischenproduktvorrat Z, so muss die Matrixgleichung R M RE E bzw Z M ZE E nach E aufgelöst werden Lineare Gleichungssysteme Mathematik für Ökonomen - Campus Duisburg 6 von 6
MLAN1 1 MATRIZEN 1 0 = A T =
MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente
Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte
Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung
IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen
Gliederung I. Motivation II. Lesen mathematischer Symbole III. Wissenschaftliche Argumentation IV. Matrizenrechnung i. Rechenoperationen mit Matrizen ii. iii. iv. Inverse einer Matrize Determinante Definitheit
Lineare Gleichungssysteme und Matrizen
Kapitel 11 Lineare Gleichungssysteme und Matrizen Ein lineares Gleichungssystem (lgs) mit m linearen Gleichungen in den n Unbekannten x 1, x 2,..., x n hat die Gestalt: Mit a 11 x 1 + a 12 x 2 + a 13 x
Grundsätzliches Rechnen mit Matrizen Anwendungen. Matrizenrechnung. Fakultät Grundlagen. Juli 2015
Matrizenrechnung Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Matrizenrechnung Übersicht Grundsätzliches 1 Grundsätzliches Matrixbegriff Rechenregeln Spezielle Matrizen 2 Matrizenrechnung Determinanten
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 71 Reelle Matrizen Prof Dr Erich Walter Farkas Mathematik I+II, 71 Reelle Matrizen 1 / 31 1 2 3 4 Prof Dr Erich
Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen
Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 81 Reelle Matrizen Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas 1 / 31 1 2 3 4 2 / 31 Transponierte einer Matrix 1 Transponierte
Matrizen, Determinanten, lineare Gleichungssysteme
Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n
3 Matrizenrechnung. 3. November
3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige
MATRIZEN. Eine Matrix ist eine rechteckige Anordnung von Zahlen, als ein Schema betrachtet. a 11 a a 1n a 21. a a 2n A = a m1 a m2...
MATRIZEN Eine Matrix ist eine rechteckige Anordnung von Zahlen, als ein Schema betrachtet A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn A ist eine m n Matrix, dh: A hat m Zeilen und n Spalten A besitzt
Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A.
Matrizenrechnung Matrix: Eine rechteckige Anordnung reeller Zahlen a ij i = 1,..., n i ; j = 1,..., m in Zeilen und Spalten. Die a ij heiÿen Elemente von A. a 11 a 12... a ij... a 1m a 21 a 22.........
Ökonometrische Analyse
Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der
1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema
1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und
Einführung in die Vektor- und Matrizenrechnung. Matrizen
Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:
Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen
Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können
Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra)
Kapitel 6: Matrixrechnung (Kurzeinführung in die Lineare Algebra) Matrix: (Plural: Matrizen) Vielfältige Anwendungen in der Physik: - Lösung von linearen Gleichungsystemen - Beschreibung von Drehungen
1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.
Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar
Lineare Algebra. Beni Keller SJ 16/17
Lineare Algebra Beni Keller SJ 16/17 Matritzen Einführendes Beispiel Ein Betrieb braucht zur Herstellung von 5 Zwischenprodukten 4 verschiedene Rohstoffe und zwar in folgenden Mengen: Z 1 Z 2 Z Z 4 Z 5
Formale Matrizenrechnung
LINEARE ALGEBRA Formale Matrizenrechnung Grundlagen: Formales Rechnen mit Matrizen Datei Nr. 6 Stand 3. September 5 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 6 Matrizenrechnung: Grundlagen
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange
8 Lineare Abbildungen und Matrizen
8 Lineare Abbildungen und Matrizen 8.1 Lineare Abbildungen Wir beschäftigen uns nun mit Abbildungen zwischen linearen Räumen. Von besonderem Interesse sind Abbildungen, die die Struktur der linearen Räume
Matrizen Definition: Typ einer Matrix
Matrizen Definition: Eine Matrix ist ein rechteckiges Zahlenschema. Die Matrix (Mehrzahl: Matrizen) besteht aus waagerecht verlaufenden Zeilen und senkrecht verlaufenden Spalten. Verdeutlichung am Beispiel:
Basiswissen Matrizen
Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)
37 Gauß-Algorithmus und lineare Gleichungssysteme
37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass
Universität Stuttgart Physik und ihre Didaktik PD Dr. Holger Cartarius. Matrizen. a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = a m,1 a m,2 a m,n
Universität Stuttgart Physik und ihre Didaktik PD Dr Holger Cartarius Matrizen Matrizen: Ein rechteckiges Zahlenschema der Form a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A a m,1 a m,2 a m,n (a) nennt man eine
Lineare Gleichungssysteme II, Gauß-Jordan-Algorithmus
Lineare Gleichungssysteme II, Gauß-Jordan-Algorithmus Ein m n-lineares Gleichungssystem (LGS) ist in Gleichungsform a, x + + a,n x n = b a m, x + + a m,n x n = b m oder gleichwertig in Matrixschreibweise
Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49
Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.
Kapitel 2. Matrixalgebra. Josef Leydold Mathematik für VW WS 2017/18 2 Matrixalgebra 1 / 49
Kapitel 2 Matrixalgebra Josef Leydold Mathematik für VW WS 207/8 2 Matrixalgebra / 49 Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS.
Matrixalgebra. Kapitel 2. Ein sehr einfaches Leontief-Modell. Matrix. Ein sehr einfaches Leontief-Modell. Vektor. Spezielle Matrizen I
Ein sehr einfaches Leontief-Modell Eine Stadt betreibt die Unternehmen ÖFFENTLICHER VERKEHR, ELEKTRIZITÄT und GAS Kapitel 2 Matrixalgebra Technologiematrix und wöchentliche Nachfrage (in Werteinheiten):
Vektoren und Matrizen
Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden
Lineare Algebra. Gymnasium Immensee SPF PAM. Bettina Bieri
Lineare Algebra Gymnasium Immensee SPF PAM Bettina Bieri 6. Oktober 2011 Inhaltsverzeichnis 1 Matrizen 1 1.1 Einleitung............................. 1 1.2 Der Begriff Matrix........................ 1 1.2.1
Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).
Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen
8.2 Invertierbare Matrizen
38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Mathematik 1 für Wirtschaftsinformatik
für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Komplexe Zahlen 5 Lineare Algebra 6 Lineare Programme 5 Lineare Algebra
a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:
Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag
BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2
Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete
1 Matrizenrechnung zweiter Teil
MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten
Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7
Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe
05. Lineare Gleichungssysteme
05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a
Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)
Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.
Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A
133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des
Copyright, Page 1 of 5 Die Determinante
wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist
Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist
127 Die Schritte des Gauß-Algorithmus sind nun die Folgenden: 1. Wir bestimmen die am weitesten links stehende Spalte, die Einträge 0 enthält. 2. Ist die oberste Zahl der in Schritt 1 gefundenen Spalte
Spezielle Matrixformen
Definition B57 (Transposition) Eine einfache aber wichtige Operation auf Matrizen ist die Transposition, die aus einer (m n) Matrix A eine (n m) Matrix B = A T macht Hierbei gilt β i j = α j i, so daß
Matrizen. Spezialfälle. Eine m nmatrix ist ein rechteckiges Zahlenschema mit. m Zeilen und n Spalten der Form. A = (a ij ) =
Matrizen Eine m nmatrix ist ein rechteckiges Zahlenschema mit m Zeilen und n Spalten der Form a 11 a 12 a 1n A = a ij = a 21 a 22 a 2n a m1 a m2 a mn Dabei sind m und n natürliche und die Koezienten a
4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k).
4 Matrizenrechnung Der Vektorraum der m n Matrizen über K Sei K ein Körper und m, n N\{0} A sei eine m n Matrix über K: a a 2 a n a 2 a 22 a 2n A = = (a ij) mit a ij K a m a m2 a mn Die a ij heißen die
7 Matrizen über R und C
Mathematik für Physiker I, WS 06/07 Montag 9 $Id: matrixtex,v 7 06//9 :58: hk Exp $ 7 Matrizen über R und C 7 Addition und Multiplikation von Matrizen In der letzten Sitzung haben wir begonnen uns mit
Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya
Rang einer Matrix 1-E1 Ma 1 Lubov Vassilevskaya Unterdeterminante einer nichtquadratischen Matrix M ist eine nichtquadratische 2,3-Matrix: M = 6 2 3 0 5 7 Durch Streichen einer der drei Spalten kann man
Mathematik 1 Bachelorstudiengang Maschinenbau
Mathematik 1 Bachelorstudiengang Maschinenbau Prof Dr Stefan Etschberger Hochschule Augsburg Sommersemester 2012 Übersicht 4 Lineare Algebra 1 Grundlegendes 2 Aussagenlogik 3 Mengen 4 Lineare Algebra Lernziele
3 Matrizen und Lineare Gleichungssysteme
3 Matrizen und LGS Pink: Lineare Algebra HS 2014 Seite 38 3 Matrizen und Lineare Gleichungssysteme 3.1 Definitionen Sei K ein Körper, und seien m,n,l natürliche Zahlen. Definition: Eine Matrix mit m Zeilen
Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:
Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]
2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen
Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung
Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. [email protected] http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.
Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen
Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching
Lineare Algebra. Übungsstunde Steven Battilana [email protected] battilana.uk/teaching October 6, 017 1 Erinnerung: Lineare Gleichungssysteme LGS Der allgemeine Fall hat m lineare Gleichungen, n
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
5.2 Rechnen mit Matrizen
52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 97 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij
Mathematik für Naturwissenschaftler II SS 2010
Mathematik für Naturwissenschaftler II SS 2010 Lektion 9 20. Mai 2010 Kapitel 9. Matrizen und Determinanten Der Begriff der Matrix Die transponierte Matrix Definition 84. Unter einer (reellen) m n-matrix
Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix
Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das
35 Matrixschreibweise für lineare Abbildungen
35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir
6.2 Rechnen mit Matrizen
62 Rechnen mit Matrizen 62 Rechnen mit Matrizen 103 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij
Matrizen ç 2030 II. Quartal æ98766ö. R = ç. B P Preise R R
Das Doppelelement a ik gibt an, dass das betreffende Element in der i-ten Zeile und k-ten Spalte steht (Wenn nicht anders vereinbart, gilt i,k ³ 0) Bereits das Aufstellen von Tabellen und aus oftmals komplizierten
Lineare Gleichungssysteme
Lineare Gleichungssysteme Wir befassen uns anschließend mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren einmal den begrifflichen Aspekt, d.h.
Matrizen und Determinanten
Matrizen und Determinanten 1 Matrizen und Determinanten 1 Einführung in den Matrizenbegriff Zur Beschreibung und Lösung vieler physikalischer Probleme ist die Vektorrechnung vonnöten Durch Verwendung von
4 Vorlesung: 21.11. 2005 Matrix und Determinante
4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer
Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle
2. Matrixalgebra Warum Beschäftigung mit Matrixalgebra? Matrizen spielen bei der Formulierung ökonometrischer Modelle eine zentrale Rolle: kompakte, stringente Darstellung der Modelle bequeme mathematische
Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015
Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler
Mathematik für Ökonomen - Themen ARBEITSUNTERLAGEN
Mathematik für Ökonomen - Themen ARBEITSUNTERLAGEN für Studierende des Bachelorstudiengangs BWL an der Mercator School of Management der Universität Duisburg-Essen konzipiert und erstellt von Hermann Hoch
8.2 Invertierbare Matrizen
38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.
Kapitel 5 Lineare Algebra 5 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen
5.2 Rechnen mit Matrizen
52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 95 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij
I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n
I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i
Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.
Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr 14-16 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 12-14 und nv jokar@mathtu-berlinde Kapitel
LINEARE ALGEBRA II. FÜR PHYSIKER
LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders
8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten
Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A
Chr.Nelius: Lineare Algebra (SS 2008) 1. 4: Matrizenrechnung. c ik := a ik + b ik. A := ( a ik ). A B := A + ( B). ist A =
Chr.Nelius: Lineare Algebra SS 28 4: Matrizenrechnung 4. DEF: a Die Summe A + B zweier m n Matrizen A a ik und B b ik ist definiert als m n Matrix C c ik, wobei c ik : a ik + b ik für alle i, 2,..., m
Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya
Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.
2 Matrizenrechnung und Lineare Gleichungssysteme
Technische Universität München Florian Ettlinger Ferienkurs Lineare Algebra Vorlesung Dienstag WS 2011/12 2 Matrizenrechnung und Lineare Gleichungssysteme 2.1 Matrizenrechnung 2.1.1 Einführung Vor der
Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24
Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt
Lineare Algebra und Numerische Mathematik für D-BAUG. Serie 6
R. Hiptmair S. Pintarelli E. Spindler Herbstsemester 2014 Lineare Algebra und Numerische Mathematik für D-BAUG Serie 6 ETH Zürich D-MATH Einleitung. Diese Serie behandelt nochmals das Rechnen mit Vektoren
Tutorium: Diskrete Mathematik. Matrizen
Tutorium: Diskrete Mathematik Matrizen Steven Köhler [email protected] mathe.stevenkoehler.de Definition I Eine Matrix ist eine rechteckige Anordnung (Tabelle) von Elementen, mit denen man in bestimmter
3 Systeme linearer Gleichungen
3 Systeme linearer Gleichungen Wir wenden uns nun dem Problem der Lösung linearer Gleichungssysteme zu. Beispiel 3.1: Wir betrachten etwa das folgende System linearer Gleichungen: y + 2z = 1 (1) x 2y +
Mathematische Erfrischungen III - Vektoren und Matrizen
Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen
Serie 10: Inverse Matrix und Determinante
D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die
Blockmatrizen. Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 :
Blockmatrizen Beispiel 1 Wir berechnen das Produkt von A R 4 6 mit B R 6 4 : 2 1 3 1 1 0 1 0 1 0 0 2 1 1 11 1 1 4 0 1 0 1 0 1 4 1 0 2 1 0 1 0 1 0 3 1 2 1 = 2 4 3 5 11 1 1 4 0 1 0 1 0 1 5 1 2 1 2 4 3 5
Klausur Mathematik 1
Mathematik für Ökonomen SS 2015 Campus Duisburg PD Dr. V. Krätschmer, Fakultät für Mathematik Klausur Mathematik 1 21.07.2015, 08:30-10:30 Uhr (120 Minuten) Erlaubte Hilfsmittel: Nur reine Schreib- und
Übersicht Kapitel 9. Vektorräume
Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten
Im Falle einer zweimal differenzierbaren Funktion lässt sich das Krümmungsverhalten anhand der zweiten Ableitung feststellen.
Konvex, Konkav, Wendepunkt: Sei f : D R eine Funktion und sei I D ein Intervall. Gilt für alle x 1,x 2 I f ( x1 +x ) 2 2 f(x 1)+f(x 2 ), 2 dann heißt f konvex (linksgekrümmt) in I. Gilt für alle x 1,x
Mathematik für Ökonomen - Campus Duisburg 1 von 10
WS / Mathematik - Weitere Aufgaben H-Aufgaben sind weiteres, bunt gemischtes Übungsmaterial, das teilweise auch insoweit die Zeit reicht in den Tutorien besprochen wird. Hier finden Sie auch einige Aufgaben
Definition, Rechenoperationen, Lineares Gleichungssystem
Bau und Gestaltung, Mathematik, T. Borer Aufgaben /3 Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den
Matrizen und Drehungen
Matrizen und Drehungen 20. Noember 2003 Diese Ausführungen sind im wesentlichen dem Skript zur Vorlesung Einführung in die Theoretische Physik I und II on PD Dr. Horst Fichtner entnommen. Dieses entstand
Hilfsblätter Lineare Algebra
Hilfsblätter Lineare Algebra Sebastian Suchanek unter Mithilfe von Klaus Flittner Matthias Staab c 2002 by Sebastian Suchanek Printed with L A TEX Inhaltsverzeichnis 1 Vektoren 1 11 Norm 1 12 Addition,
2 Die Algebra der Matrizen
Die Algebra der Matrizen Ein Hauptziel der Vorlesung zur Linearen Algebra besteht darin, Aussagen über die Lösungsmenge linearer Gleichungssysteme zu machen Etwa ob das Gleichungssystem x y + z 1 x + y
Kapitel 16. Aufgaben. Verständnisfragen. Rechenaufgaben
Kapitel 16 Aufgaben Verständnisfragen Aufgabe 16.1 Ist das Produkt quadratischer oberer bzw. unterer Dreiecksmatrizen wieder eine obere bzw. untere Dreiecksmatrix? Aufgabe 16.2 Bekanntlich gilt im Allgemeinen
