Dreiecksmatrizen. Die Treppennormalform

Größe: px
Ab Seite anzeigen:

Download "Dreiecksmatrizen. Die Treppennormalform"

Transkript

1 Dreiecksmatrizen. Die Treppennormalform Lineare Algebra I Kapitel Mai 202

2 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 4-6 Webseite: holtz Assistent: Sadegh Jokar, MA 620, Sprechstunden Donnerstag :30-3 Tutoren: Cronjäger, Guzy, Kourimska, Rudolf Anmeldung: über MOSES Fragen? Studentische Studienfachberatung, MA 847 Telefon: (030) Vorlesungen: VL am Dienstag 0-2 im MA004, Mittwoch 8-0 im H004 Klausur? Mittwoch 8-0 H004 Der Kurs gilt mit 50% Punkten für Hausaufgaben als bestanden

3 Invertierung von Permutationsmatrizen Theorem Die Menge der Permutationsmatrizen in R n,n bildet eine multiplikative Gruppe. Ist A R n,n eine Permutationsmatrix, so gilt A = A T.

4 Invertierung von Permutationsmatrizen Theorem Die Menge der Permutationsmatrizen in R n,n bildet eine multiplikative Gruppe. Ist A R n,n eine Permutationsmatrix, so gilt A = A T. Beweis: Seien A = [a ij ], B = [b ij ] R n,n Permutationsmatrizen, C = A B = [c ij ] mit b n j c ij = a ik b kj = [a i,..., a in ].. k= b nj

5 Invertierung von Permutationsmatrizen Theorem Die Menge der Permutationsmatrizen in R n,n bildet eine multiplikative Gruppe. Ist A R n,n eine Permutationsmatrix, so gilt A = A T. Beweis: Seien A = [a ij ], B = [b ij ] R n,n Permutationsmatrizen, C = A B = [c ij ] mit b n j c ij = a ik b kj = [a i,..., a in ].. k= b nj Da es nur genau ein Element a ik gibt, welches von 0 verschieden (nämlich = ) ist, und genau ein Element b kj, welches von 0 verschieden (= ) ist, so gibt es in jeder Zeile und in jeder Spalte von C genau ein von Null verschiedenes Element (= ), nämlich dort, wo a ik = b kj = ist. Sei A A T = C = [c ij ]. Dann gilt: c ij = n a ik a jk = δ ij. k=

6 Invertierung von Dreiecksmatrizen I Theorem Die Menge der invertierbaren oberen Dreiecksmatrizen in R n,n ist bezüglich der Matrixmultiplikation eine (nicht kommutative) Gruppe. (Analoges gilt für invertierbare untere Dreiecksmatrizen.)

7 Invertierung von Dreiecksmatrizen I Theorem Die Menge der invertierbaren oberen Dreiecksmatrizen in R n,n ist bezüglich der Matrixmultiplikation eine (nicht kommutative) Gruppe. (Analoges gilt für invertierbare untere Dreiecksmatrizen.) Beweis: Es seien A = [a ij ], B = [b ij ] invertierbare obere Dreiecksmatrizen in R n,n. Wir müssen für die Abgeschlossenheit der Menge (unter Multiplikation) zunächst beweisen, dass A B wieder eine obere Dreiecksmatrix ist. Sei C = A B = [c ij ]. Für i > j gilt c ij = n a ik b kj k= = j a ik b kj (da b kj = 0 für k > j) k= = 0. (da a ik = 0 für i > k)

8 Invertierung von Dreiecksmatrizen II Die Gültigkeit von (Ass ) und (Eins) ist klar. Nun müssen wir noch zeigen, dass A eine obere Dreiecksmatrix ist (die Existenz der Inversen ist klar nach Voraussetzung).

9 Invertierung von Dreiecksmatrizen II Die Gültigkeit von (Ass ) und (Eins) ist klar. Nun müssen wir noch zeigen, dass A eine obere Dreiecksmatrix ist (die Existenz der Inversen ist klar nach Voraussetzung). Wie bekommen wir A? Wir suchen C = [c ij ], so dass CA = AC = I n, d.h., für alle j =,..., n gilt a a n c j δ j ( { )..., i = j. = δ ij = 0, sonst a nn. c nj. δ nj

10 Invertierung von Dreiecksmatrizen II Die Gültigkeit von (Ass ) und (Eins) ist klar. Nun müssen wir noch zeigen, dass A eine obere Dreiecksmatrix ist (die Existenz der Inversen ist klar nach Voraussetzung). Wie bekommen wir A? Wir suchen C = [c ij ], so dass CA = AC = I n, d.h., für alle j =,..., n gilt a a n c j δ j ( { )..., i = j. = δ ij = 0, sonst a nn. c nj. δ nj Wenn wir uns die letzte Zeile anschauen, haben wir sofort, dass aus a nn c nj = δ nj folgt, dass c nj = δ nj ann und damit folgt aus der Existenz der Inversen von A, dass a nn invertierbar sein muss.

11 Invertierung von Dreiecksmatrizen II Die Gültigkeit von (Ass ) und (Eins) ist klar. Nun müssen wir noch zeigen, dass A eine obere Dreiecksmatrix ist (die Existenz der Inversen ist klar nach Voraussetzung). Wie bekommen wir A? Wir suchen C = [c ij ], so dass CA = AC = I n, d.h., für alle j =,..., n gilt a a n c j δ j ( { )..., i = j. = δ ij = 0, sonst a nn. c nj. δ nj Wenn wir uns die letzte Zeile anschauen, haben wir sofort, dass aus a nn c nj = δ nj folgt, dass c nj = δ nj ann und damit folgt aus der Existenz der Inversen von A, dass a nn invertierbar sein muss. Dann erhalten wir aus der vorlezten Zeile, dass a n,n c n,j + a n,n c nj = δ n,j, und damit c n,j = a n,n (δ n,j a n,n c nj ).

12 Invertierung von Dreiecksmatrizen III Wieder folgt aus der Existenz der Inversen von A die Existenz von a n,n. Wir zeigen nun per Induktion, rückwärts, dass C obere Dreiecksmatrix ist und die folgende Formel für die Inverse einer oberen Dreiecksmatrix (Rückwärts-Einsetzen) für j =,..., n gilt: c nj = ann δ nj, ( c ij = a ii δ ij n k=i+ a ik c kj ), i = n,...,.

13 Invertierung von Dreiecksmatrizen III Wieder folgt aus der Existenz der Inversen von A die Existenz von a n,n. Wir zeigen nun per Induktion, rückwärts, dass C obere Dreiecksmatrix ist und die folgende Formel für die Inverse einer oberen Dreiecksmatrix (Rückwärts-Einsetzen) für j =,..., n gilt: c nj = ann δ nj, ( c ij = a ii δ ij n k=i+ a ik c kj ), i = n,...,. Dann: I.A.: c nj = δ nj a nn (= 0 für j < n).

14 Invertierung von Dreiecksmatrizen III Wieder folgt aus der Existenz der Inversen von A die Existenz von a n,n. Wir zeigen nun per Induktion, rückwärts, dass C obere Dreiecksmatrix ist und die folgende Formel für die Inverse einer oberen Dreiecksmatrix (Rückwärts-Einsetzen) für j =,..., n gilt: c nj = ann δ nj, ( c ij = a ii δ ij n k=i+ a ik c kj ), i = n,...,. Dann: I.A.: c nj = δ nj ann (= 0 für j < n). I.V.: Für ein l und für k mit l k n gelte die Formel für c k,j für alle j =,... n. Insbesondere sei c kj = 0 für k = j +,..., n.

15 Invertierung von Dreiecksmatrizen III Wieder folgt aus der Existenz der Inversen von A die Existenz von a n,n. Wir zeigen nun per Induktion, rückwärts, dass C obere Dreiecksmatrix ist und die folgende Formel für die Inverse einer oberen Dreiecksmatrix (Rückwärts-Einsetzen) für j =,..., n gilt: c nj = ann δ nj, ( c ij = a ii δ ij n k=i+ a ik c kj ), i = n,...,. Dann: I.A.: c nj = δ nj ann (= 0 für j < n). I.V.: Für ein l und für k mit l k n gelte die Formel für c k,j für alle j =,... n. Insbesondere sei c kj = 0 für k = j +,..., n. I.S.: Dann gilt für die Spalte l : ( c l,j = a l,l und damit folgt die Behauptung. δ l,j ) n a l,k c kj k=l

16 Beispiel. Invertierung von Diagonalmatrizen Beispiel. Wir haben A = und

17 Beispiel. Invertierung von Diagonalmatrizen Beispiel. Wir haben A = und A =

18 Beispiel. Invertierung von Diagonalmatrizen Beispiel. Wir haben A = und A = Theorem Die Menge der invertierbaren Diagonalmatrizen bildet eine kommutative multiplikative Gruppe.

19 Beispiel. Invertierung von Diagonalmatrizen Beispiel. Wir haben A = und A = Theorem Die Menge der invertierbaren Diagonalmatrizen bildet eine kommutative multiplikative Gruppe. Beweis: Die Abgeschlossenheit des Produktes, und die Gesetze (Ass ) und (Eins) sind klar. Seien A = [a ij ], B = [b ij ] Diagonalmatrizen. C = A existiert nach Voraussetzung. Aus der Formel für die Inverse folgt c ij = δ ij a ii, i, j =,..., n. Also ist C Diagonalmatrix. Weiterhin gilt A B = diag(a b,..., a nn b nn ) = diag(b a,..., b nn a nn ) = B A.

20 Elementarmatrizen Versuchen wir, die Matrix erst auf eine Dreiecksform zu bringen, und zwar durch Multiplikation mit Matrizen, deren Inverse wir leicht berechnen können. Diese sogenannten Elementarmatrizen führen elementare Operationen aus: Vertauschung zweier Zeilen, Multiplikation einer Zeile mit einem Skalar, Addition eines Vielfachen einer Zeile zu einer anderen Zeile.

21 Es sei P ij R n,n für i < j n die Permutationsmatrix P ij := i j i j.

22 Es sei P ij R n,n für i < j n die Permutationsmatrix P ij := i j. i j Ist A R n,m, so werden durch die Multiplikation P ij A die Zeilen i und j in A vertauscht. Beachte: P ij = Pij T = P ij.

23 Es sei M i (λ) R n,n für i n, λ R invertierbar die Matrix... M i (λ) := λ i.... Ist A R n,m, so wird durch die Multiplikation M i (λ)a die i-te Zeile von A mit λ multipliziert. Beachte: M i (λ) = M i ( λ ). i

24 Es sei G ij (λ) R n,n für i < j n, λ R die Matrix G ij (λ) := λ... i j i j.

25 Es sei G ij (λ) R n,n für i < j n, λ R die Matrix G ij (λ) := λ... i j. i j Es sei A R n,m. Durch die Multiplikation G ij (λ)a wird das λ-fache der i-ten Zeile von A zur j-ten Zeile addiert. Durch die Multiplikation Gij T (λ)a wird das λ-fache der j-ten Zeile zur i-ten Zeile von A addiert. Beachte: [G ij (λ)] = G ij ( λ).

26 Die Treppennormalform Hauptsatz. Sei K ein Körper, A K n,m. Dann gibt es Elementarmatrizen T,..., T t K n,n, so dass T t T A in Treppennormalform ist. Insbesondere, falls n = m und A invertierbar ist, so ist T t T A = I, d.h., A = T t T oder A = T Tt.

Die Treppennormalform

Die Treppennormalform Die Treppennormalform Lineare Algebra I Kapitel 5 9 Mai 22 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 4-6 Webseite: wwwmathtu-berlinde/ holtz Email: holtz@mathtu-berlinde Assistent: Sadegh

Mehr

Invertierbarkeit von Matrizen

Invertierbarkeit von Matrizen Invertierbarkeit von Matrizen Lineare Algebra I Kapitel 4 24. April 2013 Logistik Dozent: Olga Holtz, MA 417, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Spezielle Matrizen. Invertierbarkeit.

Spezielle Matrizen. Invertierbarkeit. Spezielle Matrizen. Invertierbarkeit. Lineare Algebra I Kapitel 4 2. Mai 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr 14-16 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 12-14 und nv jokar@mathtu-berlinde Kapitel

Mehr

PLU Zerlegung, Rang und Äquivalenz von Matrizen

PLU Zerlegung, Rang und Äquivalenz von Matrizen PLU Zerlegung, Rang und Äquivalenz von Matrizen Lineare Algebra I Kapitel 5 5. Mai 202 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 4-6 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Matrizen. Lineare Algebra I. Kapitel April 2011

Matrizen. Lineare Algebra I. Kapitel April 2011 Matrizen Lineare Algebra I Kapitel 2 26. April 2011 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/~holtz Email: holtz@math.tu-berlin.de Assistent: Sadegh

Mehr

Vektorräume. Lineare Algebra I. Kapitel Juni 2012

Vektorräume. Lineare Algebra I. Kapitel Juni 2012 Vektorräume Lineare Algebra I Kapitel 9 12. Juni 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de Assistent: Sadegh

Mehr

Eigenschaften der Matrizenmultiplikation. Transponierung. Spezielle Matrizen.

Eigenschaften der Matrizenmultiplikation. Transponierung. Spezielle Matrizen. Eigenschaften der Matrizenmultiplikation. Transponierung. Spezielle Matrizen. Lineare Algebra I Kapitel 4 23. April 2013 Logistik Dozent: Olga Holtz, MA 417, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/

Mehr

Die Determinante. Lineare Algebra I. Kapitel Mai 2013

Die Determinante. Lineare Algebra I. Kapitel Mai 2013 Die Determinante Lineare Algebra I Kapitel 7 21. Mai 2013 Logistik Dozent: Olga Holtz, MA 417, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de Assistent:

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 18. April 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Die Treppennormalform

Die Treppennormalform Die Treppennormalform Lineare Algebra I Kapitel 3 1. Mai 211 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/~holtz Email: holtz@math.tu-berlin.de Assistent:

Mehr

Lineare Abbildungen. Lineare Algebra I. Kapitel Juni 2012

Lineare Abbildungen. Lineare Algebra I. Kapitel Juni 2012 Lineare Abbildungen Lineare Algebra I Kapitel 10 26. Juni 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de Assistent:

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 0 Olga Holtz MA 378 Sprechstunde Fr 4-6 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do -4 und nv jokar@mathtu-berlinde Kapitel Die Determinante

Mehr

Die Lösung linearer Gleichungssysteme

Die Lösung linearer Gleichungssysteme Die Lösung linearer Gleichungssysteme Lineare Algebra I Kapitel 6 6 Mai 22 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 4-6 Webseite: wwwmathtu-berlinde/ holtz Email: holtz@mathtu-berlinde

Mehr

Beziehungen zwischen Vektorräumen und ihren Dimensionen

Beziehungen zwischen Vektorräumen und ihren Dimensionen Beziehungen zwischen Vektorräumen und ihren Dimensionen Lineare Algebra I Kapitel 9 20. Juni 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz

Mehr

Das characteristische Polynom und der Satz von Cayley-Hamilton

Das characteristische Polynom und der Satz von Cayley-Hamilton Das characteristische Polynom und der Satz von Cayley-Hamilton Lineare Algebra I Kapitel 8 11. Juni 2013 Logistik Dozent: Olga Holtz, MA 417, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Lineare Abbildungen und Matrizen Lineare Algebra I Kapitel 10 9 Juli 2013 Logistik Dozent: Olga Holtz, MA 417, Sprechstunden Freitag 14-16 Webseite: wwwmathtu-berlinde/ holtz Email: holtz@mathtu-berlinde

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Lineare Algebra I Kapitel 8 12. Juni 2013 Logistik Dozent: Olga Holtz, MA 417, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

3 Matrizen und Lineare Gleichungssysteme

3 Matrizen und Lineare Gleichungssysteme 3 Matrizen und LGS Pink: Lineare Algebra HS 2014 Seite 38 3 Matrizen und Lineare Gleichungssysteme 3.1 Definitionen Sei K ein Körper, und seien m,n,l natürliche Zahlen. Definition: Eine Matrix mit m Zeilen

Mehr

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Lösung Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Um zu zeigen, dass es sich bei den gegebenen Vektoren um Basen handelt,

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 7 Was die Menschen verbin, ist nicht der Glaube, sondern der Zweifel Peter Ustinow Universelle Eigenschaft der

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

Einführung. Lineare Algebra I. Kapitel April 2012

Einführung. Lineare Algebra I. Kapitel April 2012 Einführung Lineare Algebra I Kapitel 1 11. April 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de Assistent: Sadegh

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 2 Rechenoperationen und Gesetze Gleichheit

Mehr

4. Übungsblatt zur Mathematik II für Inf, WInf

4. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof Dr Streicher Dr Sergiy Nesenenko Pavol Safarik SS 010 11 15 Mai 4 Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G13 (Basistransformation) ( ) 15 05 Die lineare

Mehr

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)

In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1) 34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

7 Matrizen über R und C

7 Matrizen über R und C $Id: matrix.tex,v. 0/0/0 5:7:7 hk Exp $ 7 Matrizen über R und C 7. Inverse Matrizen und reguläre lineare Gleichungssysteme In der letzten Sitzung hatten wir eine quadratische Matrix A regulär oder invertierbar

Mehr

Lineare Algebra I, Musterlösung zu Blatt 9

Lineare Algebra I, Musterlösung zu Blatt 9 Lineare Algebra I, Musterlösung zu Blatt 9 Wintersemester 2007/08 1. Untersuchen Sie, ob die folgenden Matrizen invertierbar sind und bestimmen Sie gegebenenfalls die Inverse. 8 1 3 1 a) A = 3 3 1 1 11

Mehr

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k).

4 Matrizenrechnung. Beide Operationen geschehen also koeffizientenweise. Daher übertragen sich die Rechenregeln von K(m n, k). 4 Matrizenrechnung Der Vektorraum der m n Matrizen über K Sei K ein Körper und m, n N\{0} A sei eine m n Matrix über K: a a 2 a n a 2 a 22 a 2n A = = (a ij) mit a ij K a m a m2 a mn Die a ij heißen die

Mehr

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix

A = ( a 1,..., a n ) ii) Zwei Matrizen sind gleich, wenn die Einträge an den gleichen Positionen übereinstimmen. so heißt die n n Matrix Matrizen Definition: i Eine m n Matrix A ist ein rechteckiges Schema aus Zahlen, mit m Zeilen und n Spalten: a a 2 a n a 2 a 22 a 2n a m a m2 a mn Die Spaltenvektoren dieser Matrix seien mit a,, a n bezeichnet

Mehr

32 2 Lineare Algebra

32 2 Lineare Algebra 3 Lineare Algebra Definition i Die Vektoren a,, a k R n, k N, heißen linear unabhängig genau dann, wenn für alle λ,, λ k R aus der Eigenschaft λ i a i λ a + + λ k a k folgt λ λ k Anderenfalls heißen die

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 11. Übung: Woche vom Übungsaufgaben 11. Übung: Woche vom 9. 1.-13. 1. 2017 (Numerik): Heft Ü 1: 12.28.a,b; 12.29.b,c (jeweils mit Fehlerabschätzung); 6.26; 6.27.a (auch mit Lagrange-Interpolationspolynom); 6.25; 6.28 (auch

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Gegeben seien die folgenden geordneten Basen B = (v, v, v, v ) und C = (w, w,

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2 Olga Holtz MA 378 Sprechstunde Fr 4-6 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 2-4 und nv jokar@mathtu-berlinde Kapitel 4 Der

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 12 Wege entstehen dadurch, dass man sie geht Franz Kafka Invertierbare Matrizen Definition 121 Es sei K ein

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A.

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A. Matrizenrechnung Matrix: Eine rechteckige Anordnung reeller Zahlen a ij i = 1,..., n i ; j = 1,..., m in Zeilen und Spalten. Die a ij heiÿen Elemente von A. a 11 a 12... a ij... a 1m a 21 a 22.........

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 95 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 97 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 71 Reelle Matrizen Prof Dr Erich Walter Farkas Mathematik I+II, 71 Reelle Matrizen 1 / 31 1 2 3 4 Prof Dr Erich

Mehr

(λ), t P j i = P j i. heißt symmetrisch, wenn t A = A und antisymmetrisch, wenn

(λ), t P j i = P j i. heißt symmetrisch, wenn t A = A und antisymmetrisch, wenn 3. 1 Transposition der Elementarmatrizen aus R n n. Für 1 i, j n und λ G(R) bzw. λ R gilt t S i (λ) S i (λ), t Q j i (λ) Qi j (λ), t P j i P j i. 3. 11 Definition. Eine Matrix A R n n t A A. heißt symmetrisch,

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 81 Reelle Matrizen Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas 1 / 31 1 2 3 4 2 / 31 Transponierte einer Matrix 1 Transponierte

Mehr

6.2 Rechnen mit Matrizen

6.2 Rechnen mit Matrizen 62 Rechnen mit Matrizen 62 Rechnen mit Matrizen 103 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

5 Die Allgemeine Lineare Gruppe

5 Die Allgemeine Lineare Gruppe 5 Die Allgemeine Lineare Gruppe Gegeben sei eine nicht leere Menge G und eine Abbildung (Verknüpfung) : G G G, (a, b) a b( a mal b ) Das Bild a b von (a, b) heißt Produkt von a und b. Andere gebräuchliche

Mehr

6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66

6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66 6 Determinanten Pink: Lineare Algebra HS 2014 Seite 66 6 Determinanten 6.1 Symmetrische Gruppe Definition: Eine bijektive Abbildung von einer Menge X auf sich selbst heisst eine Permutation von X. Satz-Definition:

Mehr

MLAN1 1 MATRIZEN 1 0 = A T =

MLAN1 1 MATRIZEN 1 0 = A T = MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure Wintersemester 8/9 Kapitel 4: Matrizen, lineare Abbildungen und Gleichungssysteme Volker Kaibel Otto-von-Guericke Universität Magdeburg Version vom 5. November 8 Page-Rank

Mehr

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 2017 Dr. Meike Akveld Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung 1. In dieser Aufgabe beweisen wir die Existenz der LR-Zerlegung einer quadratischen

Mehr

a 21 a 22 a 21 a 22 = a 11a 22 a 21 a 12. Nun zur Denition und Berechnung von n n-determinanten: ( ) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A =

a 21 a 22 a 21 a 22 = a 11a 22 a 21 a 12. Nun zur Denition und Berechnung von n n-determinanten: ( ) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A = 3 Determinanten Man bestimmt Determinanten nur von quadratischen Matrizen Wir werden die Berechnung von Determinanten rekursiv durchfuhren, dh wir denieren wie man eine 2 2-Determinante berechnet und fuhren

Mehr

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 81 Reelle Matrizen Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas 1 / 32 8 Lineare Algebra: 1 Reelle Matrizen Grundbegriffe Definition

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5.1 Kommutierende Matrizen In der Vorlesung und vergangenen

Mehr

7 Matrizen über R und C

7 Matrizen über R und C Mathematik für Physiker I, WS 06/07 Montag 9 $Id: matrixtex,v 7 06//9 :58: hk Exp $ 7 Matrizen über R und C 7 Addition und Multiplikation von Matrizen In der letzten Sitzung haben wir begonnen uns mit

Mehr

Chr.Nelius : Lineare Algebra II (SS 2005) 1. Wir wollen hier eine Beschreibung des Gauß-Algorithmus mit Hilfe der sog. Elementarmatrizen vornehmen.

Chr.Nelius : Lineare Algebra II (SS 2005) 1. Wir wollen hier eine Beschreibung des Gauß-Algorithmus mit Hilfe der sog. Elementarmatrizen vornehmen. ChrNelius : Lineare Algebra II (SS 2005) 1 Einschub A) Elementarmatrizen Wir wollen hier eine Beschreibung des Gauß-Algorithmus mit Hilfe der sog Elementarmatrizen vornehmen (A1) DEF: Seien r, s IN mit

Mehr

Copyright, Page 1 of 5 Die Determinante

Copyright, Page 1 of 5 Die Determinante wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist

Mehr

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K). Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen

Mehr

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen Lineare Algebra I Tutorium Inverse Matrizen und Gruppen Fachbereich Mathematik WS / Prof Dr Kollross November Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Die zweite Variante des Gauß-Algorithmus)

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

Lektion 3. 1 Theorie. NTS1-P Natur, Technik und Systeme 1 Praktikum Herbstsemester 2012

Lektion 3. 1 Theorie. NTS1-P Natur, Technik und Systeme 1 Praktikum Herbstsemester 2012 NTS1-P Natur, Technik und Systeme 1 Praktikum Herbstsemester 2012 Dr Christoph Kirsch ZHAW Winterthur Lektion 3 In dieser Lektion werden Sie in MATLAB mit Vektoren und Matrizen rechnen 1 Theorie Wie Sie

Mehr

Numerik für Informatiker und Bioinformatiker. Daniel Weiß

Numerik für Informatiker und Bioinformatiker. Daniel Weiß Numerik für Informatiker und Bioinformatiker Daniel Weiß SS 202 Folgende Literatur bildet die Grundlage dieser Vorlesung: P Deuflhard, A Hohmann, Numerische Mathematik, Eine algorithmisch orientierte Einführung,

Mehr

7 Matrizen über R und C

7 Matrizen über R und C $Id: matrix.tex,v.9 08// :3:7 hk Exp $ 7 Matrizen über R und C In 6 hatten wir Matrizen nur als eine kompakte Schreibweise für lineare Gleichungssysteme eingeführt. In diesem Kapitel wollen wir die Matrizen

Mehr

Matrizen Matrizen

Matrizen Matrizen Matrizen 29 2 Matrizen Wir beschäftigen uns in diesem Kapitel mit Matrizen. Sie eignen sich insbesondere zur Darstellung von Gleichungssystemen und linearen Abbildungen. Wir führen eine Addition und eine

Mehr

= 9 10 k = 10

= 9 10 k = 10 2 Die Reihe für Dezimalzahlen 1 r = r 0 +r 1 10 +r 1 2 100 + = r k 10 k, wobei r k {0,,9} für k N, konvergiert, da r k 10 k 9 10 k für alle k N und ( 1 ) k 9 10 k 9 = 9 = 10 1 1 = 10 10 k=0 k=0 aufgrund

Mehr

FH Gießen-Friedberg, FB 06 (MNI) Skript 8 Mathematik 1 für KMUB 5./7. November 2008 Prof. Dr. H.-R. Metz. Matrizen 1. a m1 a m2 a m3 a mn

FH Gießen-Friedberg, FB 06 (MNI) Skript 8 Mathematik 1 für KMUB 5./7. November 2008 Prof. Dr. H.-R. Metz. Matrizen 1. a m1 a m2 a m3 a mn FH Gießen-Friedberg, FB 06 (MNI) Skript 8 Mathematik 1 für KMUB./7. November 2008 Prof. Dr. H.-R. Metz (Matrix) Matrizen 1 Ein System von Zahlen a ik, die rechteckig in m Zeilen und n Spalten angeordnet

Mehr

Tutorium: Diskrete Mathematik. Matrizen

Tutorium: Diskrete Mathematik. Matrizen Tutorium: Diskrete Mathematik Matrizen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de Definition I Eine Matrix ist eine rechteckige Anordnung (Tabelle) von Elementen, mit denen man in bestimmter

Mehr

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Zwölfte Woche, Rang(f) := dim Bild(f).

Heinrich Heine-Universität Düsseldorf Sommersemester Lineare Algebra 1. Zwölfte Woche, Rang(f) := dim Bild(f). Fakultät für Mathematik PD Dr Markus Perling Heinrich Heine-Universität Düsseldorf Sommersemester 204 Lineare Algebra Zwölfte Woche, 256204 8 Der Rang einer Linearen Abbildung Auch in diesem Abschnitt

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n Rückwärts-Einsetzen Bei einem linearen Gleichungssystem in oberer Dreiecksform, r 1,1 r 1,n x 1 b 1..... =., } 0 {{ r n,n } x n b n R mit det R = r 1,1 r n,n 0 können die Unbekannten x n,..., x 1 nacheinander

Mehr

g 1 g = e, (1) (g 1 ) 1 g 1 = e, (2) Unter Verwendung des Assoziativgesetzes ist nach (1), und weil e neutrales Element ist. Nach (2) folgt nun

g 1 g = e, (1) (g 1 ) 1 g 1 = e, (2) Unter Verwendung des Assoziativgesetzes ist nach (1), und weil e neutrales Element ist. Nach (2) folgt nun Stefan K. 1.Übungsblatt Algebra I Aufgabe 1 1. zu zeigen: (g 1 ) 1 = g g G, G Gruppe Beweis: Aus dem Gruppenaxiom für das Linksinverse zu g haben wir und für das Linksinverse zu g 1 Unter Verwendung des

Mehr

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $

$Id: matrix.tex,v /12/02 21:08:55 hk Exp $ $Id: vektor.tex,v /12/05 11:27:45 hk Exp hk $ $Id: matrixtex,v 14 2008/12/02 21:08:55 hk Exp $ $Id: vektortex,v 12 2008/12/05 11:27:45 hk Exp hk $ II Lineare Algebra 6 Die Matrixmultiplikation 63 Inverse Matrizen und reguläre lineare Gleichungssysteme

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Wir lernen nun einen ganz wichtigen Ring kennen, den Polynomring: γ i = α j β k.

Wir lernen nun einen ganz wichtigen Ring kennen, den Polynomring: γ i = α j β k. 2.4 Polynomringe Wir lernen nun einen ganz wichtigen Ring kennen, den Polynomring: Definition 2.56. Sei R ein kommutativer Ring mit 1 (in den meisten Fällen wird R ein Körper sein). Wir betrachten die

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag Beantwortung der Fragen und Lösungen der Aufgaben zu Kapitel Version V vom 3.. 28 2 Beantwortung der Fragen zu Kapitel TESTFRAGEN

Mehr

Kapitel 2: Lineare Gleichungssysteme

Kapitel 2: Lineare Gleichungssysteme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 2: Lineare Gleichungssysteme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 205 HM: Numerik (SS 205), Kapitel

Mehr

3.9 Elementarmatrizen

3.9 Elementarmatrizen 90 Kapitel III: Vektorräume und Lineare Abbildungen 3.9 Elementarmatrizen Definition 9.1 Unter einer Elementarmatrix verstehen wir eine Matrix die aus einer n n-einheitsmatrix E n durch eine einzige elementare

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie 6

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie 6 R. Hiptmair S. Pintarelli E. Spindler Herbstsemester 2014 Lineare Algebra und Numerische Mathematik für D-BAUG Serie 6 ETH Zürich D-MATH Einleitung. Diese Serie behandelt nochmals das Rechnen mit Vektoren

Mehr

Teil I. Lineare Algebra und Analytische Geometrie. Vorlesung Wintersemester 1999/2000

Teil I. Lineare Algebra und Analytische Geometrie. Vorlesung Wintersemester 1999/2000 Teil I Lineare Algebra und Analytische Geometrie Vorlesung Wintersemester 999/2 Volker Mehrmann Übung/Seminar: Matthias Pester Uwe Schrader Andreas Steinbrecher Lineare Algebra und Analytische Geometrie

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

B - 8 Gauß - Elimination (1850) Lineare Systeme in zwei Variablen

B - 8 Gauß - Elimination (1850) Lineare Systeme in zwei Variablen B - 8 Die Grundlage dieses Verfahrens ist die Beobachtung, daß für zwei Funktionen f (x) und g(x) eines Vektors x und jeden beliebigen Skalar λ gilt: f (x) = 0 f (x) = 0 g(x) = 0 g(x) λf (x) = 0 } {{ }

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Vektoren und Matrizen

Vektoren und Matrizen Universität Basel Wirtschaftswissenschaftliches Zentrum Vektoren und Matrizen Dr. Thomas Zehrt Inhalt: 1. Vektoren (a) Einführung (b) Linearkombinationen (c) Länge eines Vektors (d) Skalarprodukt (e) Geraden

Mehr

, c d. f + e + d. ae + bg a f + bh. ce + dg c f + dh

, c d. f + e + d. ae + bg a f + bh. ce + dg c f + dh Die Determinante Blockmatrizen Bemerkung: Für zwei 2 2-Matrizen gilt a b e f a b c d g h c d e g a b, c d f h a c b e + d a g, c f + ae + bg a f + bh ce + dg c f + dh b d h Sind die Einträge der obigen

Mehr

Lösung Serie 13: Determinanten (Teil 2)

Lösung Serie 13: Determinanten (Teil 2) D-MATH/D-PHYS Lineare Algebra I HS 2017 Dr Meike Akveld Lösung Serie 13: Determinanten (Teil 2 1 a Wir zeigen die gewünschten Eigenschaften: 1 Es ist 2 Es ist ε(τ σ ε(id ( ε(σ id(j id(i τ(σ(j τ(σ(i ( τ(σ(j

Mehr

2 Matrizenrechnung und Lineare Gleichungssysteme

2 Matrizenrechnung und Lineare Gleichungssysteme Technische Universität München Florian Ettlinger Ferienkurs Lineare Algebra Vorlesung Dienstag WS 2011/12 2 Matrizenrechnung und Lineare Gleichungssysteme 2.1 Matrizenrechnung 2.1.1 Einführung Vor der

Mehr

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen 1 Zum Aufwärmen 1.1 Notationen In diesem Teil der Vorlesung bezeichnen wir Körper mit K, Matrizen mit Buchstaben A,B,..., Vektoren mit u,v,w,... und Skalare mit λ,µ,... Die Menge der m n Matrizen bezeichnen

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Lineare Algebra. Wintersemester 2018/19. Berechnen Sie die Determinanten der folgenden Matrizen mit Einträgen in R: 4 2 = = 18.

Lineare Algebra. Wintersemester 2018/19. Berechnen Sie die Determinanten der folgenden Matrizen mit Einträgen in R: 4 2 = = 18. Goethe-Universität Frankfurt Institut für Mathematik Lineare Algebra Wintersemester 218/19 Prof Dr Jakob Stix Martin Lüdtke Übungsblatt 11 15 Januar 219 Aufgabe 1 (5=1+1+1,5+1,5 Punkte) Berechnen Sie die

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr. 14-16 und n.v. holtz@math.tu-berlin.de Sadegh Jokar MA 373 Sprechstunde, Do. 12-14 und n.v. jokar@math.tu-berlin.de

Mehr