Die Treppennormalform
|
|
|
- Kora Adenauer
- vor 8 Jahren
- Abrufe
Transkript
1 Die Treppennormalform Lineare Algebra I Kapitel 3 1. Mai 211
2 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag Webseite: Assistent: Sadegh Jokar, MA 373, Sprechstunden Donnerstag Tutoren: Kolleck, Loewe, Neumerkel, Zieschang Ankündigung: 4. Aufgabe steht im Internet Zwei Webseiten: Holtz Lehre Lineare Algebra und die ISIS-Seite: Fragen? Studentische Studienfachberatung, MA 847 Telefon: (3)
3 Die Treppennormalform Hauptsatz 1. Sei K ein Körper, A K n,m. Dann gibt es Elementarmatrizen T 1,..., T t K n,n, so dass T t T 1 A in Treppennormalform ist. Insbesondere, falls n = m und A invertierbar ist, so ist T t T 1 A = I, d.h., A 1 = T t T 1 oder A = T 1 1 Tt 1.
4 Satz zur Eindeutigkeit der TNF Satz 2. Es sei K ein Körper und A, B K n,m in Treppennormalform. Falls es eine invertierbare Matrix Z K n,n mit A = ZB gibt, so gilt A = B, d.h., die Treppennormalform ist invariant unter Multiplikation mit nichtsingulären Matrizen von links.
5 Satz zur Eindeutigkeit der TNF Satz 2. Es sei K ein Körper und A, B K n,m in Treppennormalform. Falls es eine invertierbare Matrix Z K n,n mit A = ZB gibt, so gilt A = B, d.h., die Treppennormalform ist invariant unter Multiplikation mit nichtsingulären Matrizen von links. Beweis. Es seien a i, b i, i = 1,..., m, die Spalten von A, B. Weiterhin seien (1, j 1 ),..., (s, j s ) die Pivotpositionen von B. Wir zeigen mit vollständiger Induktion über r, 1 r s: Es gilt [ ] Ir Z =, Z n r wobei Z n r invertierbar ist, und die ersten j r+1 1 Spalten von A und B stimmen überein. (Wir setzen j s+1 := m + 1.)
6 Beweis I.A.: Es gilt b k = für 1 k j 1 1. Da A = Z B, gilt auch a k =, 1 k j 1 1. Weiter ist b j1 = [1,,..., ] T, und da Z invertierbar ist, ist auch a j1. Da A in TNF ist, folgt, dass auch a j1 = [1,,..., ] T. Weiterhin folgt, dass Z = 1. Z n 1. Damit ist auch a k = b k, k = j 1 + 1,..., j 2 1.
7 Beweis I.A.: Es gilt b k = für 1 k j 1 1. Da A = Z B, gilt auch a k =, 1 k j 1 1. Weiter ist b j1 = [1,,..., ] T, und da Z invertierbar ist, ist auch a j1. Da A in TNF ist, folgt, dass auch a j1 = [1,,..., ] T. Weiterhin folgt, dass Z = 1. Z n 1. Damit ist auch a k = b k, k = j 1 + 1,..., j 2 1. I.V.: Die Aussage gelte für ein r, 1 r s 1.
8 Beweis I.A.: Es gilt b k = für 1 k j 1 1. Da A = Z B, gilt auch a k =, 1 k j 1 1. Weiter ist b j1 = [1,,..., ] T, und da Z invertierbar ist, ist auch a j1. Da A in TNF ist, folgt, dass auch a j1 = [1,,..., ] T. Weiterhin folgt, dass Z = 1. Z n 1. Damit ist auch a k = b k, k = j 1 + 1,..., j 2 1. I.V.: Die Aussage gelte für ein r, 1 r s 1. I.S.: Wir betrachten die Pivotposition (r + 1, j r+1 ). Da B in TNF ist, folgt
9 b jr+1 = r + 1. Wegen a jr+1 = Zb jr+1 und der Invertierbarkeit von Z n r folgt wie in der Induktionsannahme a jr+1 = b jr+1 und Z = Z n (r+1) r 1 n r 1 r 1 n r 1, und die ersten j r+2 1 Spalten von A und B sind gleich.
10 Eindeutigkeit der TNF Korollar. Für A K n,m gelten: (1) Es gibt genau eine Matrix C K n,m in TNF, in die sich A durch elementary Zeilenoperationen überführen lässt.
11 Eindeutigkeit der TNF Korollar. Für A K n,m gelten: (1) Es gibt genau eine Matrix C K n,m in TNF, in die sich A durch elementary Zeilenoperationen überführen lässt. (2) Ist M GL n (K), so ist C auch die TNF von MA, d.h. die TNF ist invariant unter Linksmultiplikation mit invertierbaren Matrizen.
12 Eindeutigkeit der TNF Korollar. Für A K n,m gelten: (1) Es gibt genau eine Matrix C K n,m in TNF, in die sich A durch elementary Zeilenoperationen überführen lässt. (2) Ist M GL n (K), so ist C auch die TNF von MA, d.h. die TNF ist invariant unter Linksmultiplikation mit invertierbaren Matrizen. Beweis. (1) Sind S 1 A = C 1 und S 2 A = C 2, wobei C 1, C 2 in TNF und S 1, S 2 invertierbar sind, dann gilt C 1 = (S 1 S 1 2 )C 2. Aus Satz 2 folgt nun C 1 = C 2.
13 Eindeutigkeit der TNF Korollar. Für A K n,m gelten: (1) Es gibt genau eine Matrix C K n,m in TNF, in die sich A durch elementary Zeilenoperationen überführen lässt. (2) Ist M GL n (K), so ist C auch die TNF von MA, d.h. die TNF ist invariant unter Linksmultiplikation mit invertierbaren Matrizen. Beweis. (1) Sind S 1 A = C 1 und S 2 A = C 2, wobei C 1, C 2 in TNF und S 1, S 2 invertierbar sind, dann gilt C 1 = (S 1 S 1 2 )C 2. Aus Satz 2 folgt nun C 1 = C 2. (2) Ist M GL n (K) und S 3 (MA) = C 3 in TNF, do folgt mit S 1 A = C 1, dass C 3 = (S 3 MS 1 1 )C 1. Satz 2 zeigt C 3 = C 1.
14 Rang Definition. Die Anzahl r der Pivotpositionen in der TNF von A K n,m wird der Rang von A genannt und Rang(A) bezeichnet.
15 Rang Definition. Die Anzahl r der Pivotpositionen in der TNF von A K n,m wird der Rang von A genannt und Rang(A) bezeichnet. Eigenschaften vom Rang 1. Rang(A) min{m, n}.
16 Rang Definition. Die Anzahl r der Pivotpositionen in der TNF von A K n,m wird der Rang von A genannt und Rang(A) bezeichnet. Eigenschaften vom Rang 1. Rang(A) min{m, n}. 2. A K n,n ist invertierbar genau dann wenn Rang(A) = n.
17 Rang Definition. Die Anzahl r der Pivotpositionen in der TNF von A K n,m wird der Rang von A genannt und Rang(A) bezeichnet. Eigenschaften vom Rang 1. Rang(A) min{m, n}. 2. A K n,n ist invertierbar genau dann wenn Rang(A) = n. 3. Ist A = BC, so gilt Rang(A) Rang(B).
18 Rang Definition. Die Anzahl r der Pivotpositionen in der TNF von A K n,m wird der Rang von A genannt und Rang(A) bezeichnet. Eigenschaften vom Rang 1. Rang(A) min{m, n}. 2. A K n,n ist invertierbar genau dann wenn Rang(A) = n. 3. Ist A = BC, so gilt Rang(A) Rang(B). Beweis. Sei Q GL n (K), so dass QB in TNF ist. Dann QA = QBC. In der Matrix QBC sind höchstens die ersten Rang(B) Zeilen von Null verscheiden. Die TNF von QA ist gleich der TNF von A. Somit können in der TNF von A ebenfalls höchstens die ersten Rang(B) Zeilen von Null verscheiden sein. Also Rang(A) Rang(B).
19 Weitere Eigenschaften von Rang 4. Es gibt Matrizen Q GL n (K) und Z GL m (K) mit [ ] Ir QAZ = genau dann wenn Rang(A) = r.
20 Weitere Eigenschaften von Rang 4. Es gibt Matrizen Q GL n (K) und Z GL m (K) mit [ ] Ir QAZ = genau dann wenn Rang(A) = r. Beweis. Ist Rang(A) = r =, dann ist A =. Sonst gibt es Q GL n (K) so dass QA in TNF ist. Es gibt dann eine Permutationsmatrix P K n,n, so dass PA T Q T = [ Ir V wobei V K m r,r. Nehmen wir nun [ Ir Y = V Es folgt YPA T Q T = Mit Z = P T Y T ergibt sich das Resultat. I m r [ Ir ], ]. ].
Mathematische Strukturen
Mathematische Strukturen Lineare Algebra I Kapitel 3 18. April 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: [email protected]
Beispiel vor dem Beweis:
Beispiel vor dem Beweis: Beispiel vor dem Beweis: A = ¼3 6 2 3 11 2½ Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = 2 3 11 311 E 12 A = 3 6 Beispiel vor dem Beweis: 2½ 2½ ¼3 6 A = 2 3 11 311 E 12 A = 3 6 3 11
7 Die Determinante einer Matrix
7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema
Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x
Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11
Mathematik für Wirtschaftswissenschaftler, WS / Musterlösungen zu Aufgabenblatt Aufgabe 76: Bestimmen Sie mittels Gauß-Elimination die allgemeine Lösung der folgenden linearen Gleichungssysteme Ax b: a)
Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.
Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:
3.3 Eigenwerte und Eigenräume, Diagonalisierung
3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.
Leitfaden Lineare Algebra: Determinanten
Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv
Lineare Abbildungen und Darstellungsmatrizen
KAPITEL 4 Lineare Abbildungen und Darstellungsmatrizen 1. Lineare Abbildungen Definition 4.1 (Lineare Abbildungen). Seien V und W zwei Vektorräume über den selben Körper K. Eine Abbildung f : V W heißt
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 73 Ergänzungen Prof Dr Erich Walter Farkas Mathematik I+II, 73 Ergänzungen 1 / 17 1 Reguläre Matrizen Prof Dr
Lösung (die Geraden laufen parallel) oder unendlich viele Lösungen.
1 Albert Ludwigs Universität Freiburg Abteilung Empirische Forschung und Ökonometrie Mathematik für Wirtschaftswissenschaftler Dr. Sevtap Kestel Winter 2008 Kapitel 16 Determinanten und inverse Matrizen
Vektorräume und Rang einer Matrix
Universität Basel Wirtschaftswissenschaftliches Zentrum Vektorräume und Rang einer Matrix Dr. Thomas Zehrt Inhalt:. Lineare Unabhängigkeit 2. Vektorräume und Basen 3. Basen von R n 4. Der Rang und Rangbestimmung
Kapitel 17. Determinanten
Kapitel 17. Determinanten Vorschau: Determinanten Es gibt drei Problemfelder, für die Determinanten von großem Nutzen sind: die formelmäßige Überprüfung der linearen Unabhängigkeit eines Systems von n
Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel
Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3
Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls
Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv
Lineare Gleichungssysteme
Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1
Lineare Algebra I: Eine Landkarte
Bild F Algebra I: Eine Landkarte Faser Versuch einer Übersicht der Themen und Zusammenhänge der n Algebra 1. 1 Algebra I: Bild F Faser Sei B Basis von V. Jedes v V läßt sich eindeutig aus den Basisvektoren
2.2 Kern und Bild; Basiswechsel
22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare
Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011
Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h
Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:
Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es
Kap 5: Rang, Koordinatentransformationen
Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv
4.4. Rang und Inversion einer Matrix
44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert
Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung
Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter
klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s
Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen
2 Die Darstellung linearer Abbildungen durch Matrizen
2 Die Darstellung linearer Abbildungen durch Matrizen V und V seien Vektorräume über einem Körper K. Hom K (V, V ) bezeichnet die Menge der K linearen Abbildungen von V nach V. Wir machen Hom K (V, V )
Kapitel 15. Lösung linearer Gleichungssysteme
Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren
Lineare Algebra I Klausur. Klausur - Musterlösung
Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra I Klausur Klausur - Musterlösung 20. Februar 203 Aufgabe - Lösung Aussage wahr falsch (Z, +, 0) ist eine abelsche Gruppe. Der Ring Z/24Z ist nullteilerfrei.
Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht
Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben
Anwendungen der Linearen Algebra
Anwendungen der Linearen Algebra mit MATLAB Bearbeitet von Günter M. Gramlich 1. Auflage 4. Buch. 179 S. Hardcover ISBN 978 3 446 22655 5 Format (B x L): 14,5 x 21 cm Gewicht: 265 g Weitere Fachgebiete
1 Rechnen mit 2 2 Matrizen
1 Rechnen mit 2 2 Matrizen 11 Produkt Wir berechnen das allgemeine Produkt von A = Für das Produkt gilt AB = a11 a 12 a 21 a 22 a11 b 11 + a 12 b 21 a 11 b 12 + a 12 b 22 a 21 b 11 + a 22 b 21 a 21 b 12
Musterlösungen zur Linearen Algebra II Blatt 5
Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische
Der Rang einer Matrix A. Beispiel
Der Rang einer Matrix A ist gleich Anzahl der Zeilen ungleich 0, nachdem die Matrix durch elementare Zeilenoperationen in Zeilenstufenform gebracht worden ist. Bezeichnung: ranga oder rga. Beispiel A =
4 Lineare Algebra (Teil 2): Quadratische Matrizen
4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,
Spezialgebiet Mathematik(Christian Behon ) 1. Matrizen. Kapitel 1 Definitionen und Herleitung von Matrizen. Kapitel 2 Matrizenoperation
. Inhaltsverzeichnis.............. Spezialgebiet Mathematik(Christian Behon ) 1 Matrizen Kapitel 1 Definitionen und Herleitung von Matrizen 1.1 Was sind Matrizen 1.2 Arten von Matrizen Kapitel 2 Matrizenoperation
Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra
Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)
Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.
Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten
Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012
Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.0 Aufgabe : Entscheiden Sie in dieser Aufgabe, ob die Aussagen wahr oder falsch sind. Begründungen sind nicht erforderlich. Ein korrekt gesetztes
Serie 10: Inverse Matrix und Determinante
D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die
4 Vorlesung: 21.11. 2005 Matrix und Determinante
4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer
Lösungen zum 3. Aufgabenblatt
SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.
Grammatiken. Einführung
Einführung Beispiel: Die arithmetischen Ausdrücke über der Variablen a und den Operationen + und können wie folgt definiert werden: a, a + a und a a sind arithmetische Ausdrücke Wenn A und B arithmetische
Kapitel 12. Lineare Abbildungen und Matrizen
Kapitel 12 Lineare Abbildungen und Matrizen Lineare Abbildungen f : R n R m Wir wissen schon: Eine lineare Abbildung f : R n R m ist eindeutig durch ein n-tupel von Vektoren v 1, v 2,, v n des R m bestimmt
Kapitel III. Lineare Abbildungen
Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,
Kapitel V. Determinanten
Kapitel V. Determinanten Inhalt: 16. Definition und Eigenschaften der Determinante 17. Anwendung auf lineare Gleichungssysteme 18. Determinante eines Endomorphismus Lineare Algebra, Teil I 28. Januar 2011
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Lineare Algebra KAPITEL III. 12 Matrizen und der Gauß-Algorithmus. I) Matrizen
KAPITEL III Lineare Algebra 12 Matrizen und der Gauß-Algorithmus I Matrizen Definition 121 Matrizen und der R n Es seien m,n 1 zwei positive ganze Zahlen a Eine m n-matrix über R ist ein rechteckiges Schema
2. Repräsentationen von Graphen in Computern
2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen
Lineare Algebra - alles was man wissen muß
Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger
Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger
Beispiellösungen zur Klausur Lineare Algebra bei Prof. Habegger Stefan Lell 2. Juli 2 Aufgabe. Sei t Q und A t = t 4t + 2 2t + 2 t t 2t 2t Mat 3Q a Bestimmen Sie die Eigenwerte von A t in Abhängigkeit
Das Kryptosystem von McEliece. auf der Basis von linearen Codes
Das Kryptosystem von McEliece auf der Basis von linearen Codes Anforderungen Public-Key Kryptosysteme E e (m) = c Verschlüsselung D d (c) = m Entschlüsselung mit Schl. effizient effizient 2/25 Anforderungen
Algorithmus zur Berechnung der Jordannormalform
Algorithmus zur Berechnung der Jordannormalform Olivier Sète 19. Januar 2011 Inhaltsverzeichnis 1 Motivation 1 2 Algorithmus Wie und warum funktioniert das? 2 2.1 Zutat 1 Für einen Jordanblock.........................
1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema
1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und
Lineare Ausgleichsprobleme. Lineare Ausgleichsprobleme. Normalgleichungen. Normalgleichungen
Wir betrachten in diesem Abschnitt das lineare Ausgleichsproblem Ax b 2 = min! (1) Heinrich Voss voss@tu-harburgde Hamburg University of Technology Institute for Numerical Simulation mit gegebenem A R
Lineare Gleichungssysteme
Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein
Seminararbeit für das SE Reine Mathematik- Graphentheorie
Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis
Lineare Gleichungssysteme
Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Übersicht Lineare Gleichungssystem mit 2 Variablen 1 Lineare Gleichungssystem mit 2 Variablen Beispiele 2 Fakultät Grundlagen Folie: 2 Beispiel I Lineare
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V
KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008
KLAUSUR ZUR LINEAREN ALGEBRA I. Februar 008 MUSTERLÖSUNG Diese Klausur wurde je nach Sitzreihe in zwei verschiedenen Versionen geschrieben. Die andere Version unterscheidet sich von der vorliegenden jedoch
Algorithmen II Vorlesung am 15.11.2012
Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales
KAPITEL 6 GANZZAHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULARE MATRIZEN
KPITEL 6 GNZZHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULRE MTRIZEN F. VLLENTIN,. GUNDERT. Ganzzahlige lineare Programme Viele Optimierungsprobleme des Operations Research lassen sich als ganzzahlige lineare
KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:
KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand
Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme
Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie
3.1.3 Newtonsche Interpolationsformel / Dividierte Differenzen
KAPITEL 3 INTERPOLATION UND APPROXIMATION 4 33 Newtonsche Interpolationsformel / Dividierte Differenzen Das Verfahren von Neville ist unpraktisch, wenn man das Polynom selbst sucht oder das Polynom an
Matrizen, Determinanten, lineare Gleichungssysteme
Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n
Surjektive, injektive und bijektive Funktionen.
Kapitel 1: Aussagen, Mengen, Funktionen Surjektive, injektive und bijektive Funktionen. Definition. Sei f : M N eine Funktion. Dann heißt f surjektiv, falls die Gleichung f(x) = y für jedes y N mindestens
2.1 Codes: einige Grundbegriffe
Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen
5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21
5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11
Kapitel 3. Natürliche Zahlen und vollständige Induktion
Kapitel 3 Natürliche Zahlen und vollständige Induktion In Kapitel 1 haben wir den direkten Beweis, den modus ponens, kennen gelernt, der durch die Tautologie ( A (A = B) ) = B gegeben ist Dabei war B eine
(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu
Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die
Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.
Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen
MC-Serie 11: Eigenwerte
D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung
Das QZ-Verfahren. vorgelegt von Janina Gnutzmann. Erstgutachter: Prof. Dr. Steffen Börm Zweitgutachter: Dipl.-Math.
Das QZ-Verfahren Bachelor-Arbeit im 1-Fach Bachelorstudiengang Mathematik der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Janina Gnutzmann Erstgutachter:
Lineare Abhängigkeit
Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x
) in der Ebene aufgespannten Parallelogramms ist, wie wir wissen, gleich a 1. b 2. ) und b = ( b 1
45 Determinanten Die orientierte Fläche eines von zwei Vektoren a ( a, a und b ( b, b in der Ebene aufgespannten Parallelogramms ist, wie wir wissen, gleich a b a b Bis auf das Vorzeichen ist dies der
Kleiner Satz von Fermat
Kleiner Satz von Fermat Satz Kleiner Satz von Fermat Sei p P. Dann gilt a p a mo p für alle a Z. Wir führen zunächst eine Inuktion für a 0 urch. IA a = 0: 0 p 0 mo p. IS a a+1: Nach vorigem Lemma gilt
y x x y ( 2x 3y + z x + z
Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie
A Matrix-Algebra. A.1 Definition und elementare Operationen
A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne
Mathematik für Wirtschaftswissenschaftler im WS 2013/14 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7
Mathematik für Wirtschaftswissenschaftler im WS 203/4 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7 Aufgabe 27 Sei eine lineare Abbildung f : R 4 R 3 gegeben durch f(x, x 2, x 3 ) = (2 x 3 x 2
Jürgen Hausen Lineare Algebra I
Jürgen Hausen Lineare Algebra I 2. korrigierte Auflage Shaker Verlag Aachen 2009 Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation
Funktionale Programmierung Übung 01. Dozent: mein Dozent Tutor: mein Tutor Studenten: person1 und person2 tt. mm. jjjj
Funktionale Programmierung Übung 01 Dozent: mein Dozent Tutor: mein Tutor Studenten: person1 und person tt. mm. jjjj 1 Inhaltsverzeichnis 1 Text schreiben 3 Tabulatoren 3.1 Tabulatoren zur Textstrukturierung....................
KAPITEL 0. Einführung
Lineare Algebra KAPITEL 0 Einführung Dieses Skript zur Vorlesung Lineare Algebra an der Goethe Universität Frankfurt im Sommersemester 2011 befindet sich noch in der Entstehung und wird fortlaufend aktualisiert
FORD RANGER Ranger_2013.5_Cover_V2.indd 1 12/02/2013 12:59
FORD RANGER 1 2 3 4 5 1.8 m3 6 7 8 9 10 11 3 7 8 5 1 2 4 6 9 10 12 13 3500kg 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 [Nm] 475 450 425 400 375 350 325 [kw] [PS] 180 245 165 224 150 204 135 184
FORD RANGER _Ranger_2015.5_COVER_V2.indd /08/ :39:54
FORD RANGER 2 3 4 5 1.8 m3 6 7 8 9 10 11 1 4 6 10 9 7 2 8 5 3 12 13 3500kg 14 15 16 17 18 19 20 21 22 23 24 25 26 28 28 29 29 [Nm] 475 [kw] [PS] 180 245 30 450 425 400 375 165 224 150 204 135 184 31 350
FORD RANGER _Ranger_2015.5_COVER_V2.indd /08/ :39:54
FORD RANGER 2 3 4 5 1.8 m3 6 7 8 9 10 11 3 7 8 5 1 2 4 6 9 10 12 13 3500kg 14 15 16 17 18 19 20 21 22 23 24 25 26 28 28 29 29 [Nm] 475 [kw] [PS] 180 245 30 450 425 400 375 165 224 150 204 135 184 31
Lineare Algebra II 5. Übungsblatt
Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,
Musterlösung Klausur zur Linearen Algebra II
Musterlösung Klausur zur Linearen Algebra II Samstag 8. Juli 6 -Uhr. a) Sei f : V W k-linear. Denieren Sie V und f : W V. b) Die Gruppe G operiere auf der Menge M. Denieren Sie die Bahn und die Isotropiegruppe
Mathematische Grundlagen der Computerlinguistik
Mengen und Mengenoperationen (Teil II) Centrum für Informations- und Sprachverarbeitung (CIS) 2. Juni 2014 Table of Contents 1 2 3 Definition Mengenfamilie Eine Menge, deren sämtliche Elemente selbst wiederum
Lineare Algebra 1. Roger Burkhardt
Lineare Algebra 1 Roger Burkhardt [email protected] Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 Roger Burkhardt [email protected]
1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.
Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar
Statistische Methoden
Statistische Methoden Dr CJ Luchsinger 6 Repetition: Rechnen mit Matrizen für die Statistik Matrizen sind aus zwei Gründen für die Statistik sehr wichtig: Sie ermöglichen uns einerseits eine sehr elegante
KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren
KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren Beispiel 3.2. Gesucht u(x), das eine Differentialgleichung vom Typ u (x) + λ(x)u(x) = f(x), x [0,], mit den Randbedingungen u(0) = u() = 0
Vorlesung. 1 Zahlentheorie in Z. Leitfaden. 1.1 Teilbarkeit. Angela Holtmann. Algebra und Zahlentheorie. (natürliche Zahlen ohne die Null)
Algebra und Zahlentheorie Vorlesung Algebra und Zahlentheorie Leitfaden 1 Zahlentheorie in Z Bezeichnungen: Z := {..., 3, 2, 1, 0, 1, 2, 3,...} (ganze Zahlen) und N := {1, 2, 3,...} (natürliche Zahlen
Abschnitt: Determinanten
Abschnitt: Determinanten Bezeichnung Die i-te Zeile werden wir mit [a i ] bezeichnen Die Null-Zeile werden wir mit 0 bezeichnen A = a 11 a 1n a n1 a nn = [a 1 ] [a n] Def Eine Abbildung det : Mat(n, n)
6. Rechnen mit Matrizen.
6. Rechnen mit Matrizen. In dieser Vorlesung betrachten wir lineare Gleichungs System. Wir betrachten lineare Gleichungs Systeme wieder von zwei Gesichtspunkten her: dem angewandten Gesichtspunkt und dem
