QR-Iteration. Ax = λx Q T AQQ T x = λq T x.

Größe: px
Ab Seite anzeigen:

Download "QR-Iteration. Ax = λx Q T AQQ T x = λq T x."

Transkript

1 Lehrstuhl für Numerische Mathemati QR-Iteration Vorüberlegung: Die Multipliation mit einer orthonormalen Matrix Q heißt Ähnlicheitstransformation. Die Eigenwerte einer Matrix A bleiben unter einer Ähnlicheitstransformation erhalten: Sei λ ein Eigenwert der Matrix A, dann folgt Ax = λx Q T AQQ T x = λq T x. Außerdem bleibt bei der Multipliation mit einer orthonormalen Matrix die Kondition erhalten, so dass eine numerischen Stabilitätsprobleme auftreten. Idee der QR-Iteration: Durch eine Multipliation mit einer orthonormalen Matrix ann die Matrix A auf eine Form gebracht werden, für welche die Berechnung der Eigenwerte leichter ist. Dies ist zum Beispiel bei einer oberen Dreiecsmatrix der Fall. Kapitel II.4 (linalg63) 1

2 Lehrstuhl für Numerische Mathemati QR-Iteration: Algorithmus Algorithmus: QR-Iteration Voraussetzung: Die Matrix A besitzt nur reelle Eigenwerte. for = 0,1,...do A := Q R A +1 := R Q end for ( QR-Zerlegung) (lima +1 = obere Dreiecsmatrix) Satz: Die mit dem Algorithmus erzeugten Matrizen A +1 sind ähnlich zu A. Kapitel II.4 (linalg64) 2

3 Lehrstuhl für Numerische Mathemati QR-Iteration - A symmetrisch 20 Diagonaleinträge von A () Betrag des größten Eintrages der unteren Dreiecsmatrix von A () Step Step Kapitel II.4 (linalg69) 3

4 Lehrstuhl für Numerische Mathemati QR-Iteration - Beispiel: Berechnung aller EW, A symmetrisch = 0,1,... A () = Q () R () QR-Zerlegung A (+1) = R () Q () A (0) = Matrixmultipliation A (1) = A (2) = A (5) = A (10) = A (20) = Kapitel II.4 (linalg70) 4

5 Lehrstuhl für Numerische Mathemati QR-Iteration - A unsymmetrisch Diagonaleinträge von A () Betrag des größten Eintrages der unteren Dreiecsmatrix von A () Step Step Kapitel II.4 (linalg52) 5

6 Lehrstuhl für Numerische Mathemati QR-Iteration - Beispiel: Berechnung aller EW, A unsymmetrisch = 0,1,... A () = Q () R () QR-Zerlegung A (+1) = R () Q () A (0) = Matrixmultipliation A (1) = A (2) = A (3) = A (5) = A (10) = Kapitel II.4 (linalg52b) 6

7 Lehrstuhl für Numerische Mathemati QR-Iteration: Hessenberg-Matrix Aufwand der QR-Iteration: Bei vollbesetzten Matrizen beträgt der Aufwand der QR-Iteration pro Schritt O(n 3 ). Idee: Überführe A durch Ähnlicheitstransformationen in eine obere Hessenberg-Matrix H mit H = , 0 also ist H ij = 0 für i > j +1. Dann beträgt der Aufwand der QR-Iteration pro Schritt nur noch O(n 2 ). Für symmetrische Matrizen beträgt der Aufwand pro Schritt sogar nur noch O(n). Kapitel II.4 (linalg66) 7

8 Lehrstuhl für Numerische Mathemati QR-Iteration: Konvergenz Problem: Langsame Konvergenz der QR-Iteration im Fall betragsmäßig nahe beieinander liegender Eigenwerte. Ausweg: Einfache Shift-Strategie zusammen mit Deflation. Bemerung: Wenn A omplexe Eigenwerte hat, so ist eine doppelte Shift-Strategie notwendig. Kapitel II.4 (linalg65) 8

9 Lehrstuhl für Numerische Mathemati QR-Iteration: Algorithmus mit Shift und Deflation function QR(A) %input: A R n n in Hessenbergform, T 0 := A, l := 0, C, l max %output: Eigenwerte von A while{ T l (n,n 1) > Ceps ( T l (n,n) + T l (n 1,n 1) ),l l max } % noch eine Deflation, µ (l) := T l (n,n) T l µ (l) Id =: Q l+1 R l+1 T l+1 := R l+1 Q l+1 +µ (l) Id return(t l (n,n)) QR(T l [1 : n 1],[1 : n 1])) Kapitel II.4 (linalg76) 9

10 Lehrstuhl für Numerische Mathemati QR-Iteration ohne Shift, A symmetrisch 10 2 Subdiagonaleinträge A = Durch Anwendung des QR-Algorithmus erhält man lineare Konvergenz in der Subdiagonalen gegen die Null a 2,1 a 3,2 a 4,3 a 5, Konvergenz im EW Step Kapitel II.4 (linalg71) 10

11 Lehrstuhl für Numerische Mathemati QR-Iteration mit Shift und Deflation, A symmetrisch Subdiagonaleinträge A = Durch Anwendung des QR-Algorithmus mit Shift und Deflation erhält man ubische Konvergenz in der Subdiagonalen gegen die Null a 2,1 a 3,2 a 4,3 a 5, Konvergenz der EW Step Kapitel II.4 (linalg74) 11

12 Lehrstuhl für Numerische Mathemati A = QR-Iteration ohne Shift, A unsymmetrisch Subdiagonaleinträge a 2,1 a 3,2 a 4,3 a 5,4 Durch Anwendung des QR-Algorithmus erhält man lineare Konvergenz in der Subdiagonalen gegen die Null. Dahmen/Reusen: Numeri für Ingenieure und Naturwissenschaftler, 2.orrigierte Auflage, Springer, Berlin 2008, Seite 257ff Konvergenz der EW Step Kapitel II.4 (linalg73) 12

13 Lehrstuhl für Numerische Mathemati QR-Iteration mit Shift µ und Deflation, A unsymmetrisch A = Durch Anwendung des QR-Algorithmus mit Shift und Deflation erhält man quadratische Konvergenz in der Subdiagonalen gegen die Null. Dahmen/Reusen: Numeri für Ingenieure und Naturwissenschaftler, 2.orrigierte Auflage, Springer, Berlin 2008, Seite 257ff Subdiagonaleinträge a 2,1 a 3,2 a 4,3 a 5, Konvergenz der EW Step Kapitel II.4 (linalg75) 13

Einführung Eigenwerte

Einführung Eigenwerte Einführung Eigenwerte Bei der Modellierung von Stabweren, entstehen folgende Systeme: p = Ax mit A = ENE T, Verschiebungsvetor x und Lastvetor p und Diagonalmatrix N mit den Materialeigenschaften. Betrachtet

Mehr

Einführung Eigenwerte

Einführung Eigenwerte Einführung Eigenwerte Bei der Modellierung von Stabweren, entstehen folgende Systeme: p = Ax mit A = ENE T, Verschiebungsvetor x und Lastvetor p und Diagonalmatrix N mit den Materialeigenschaften. Betrachtet

Mehr

4.6 Berechnung von Eigenwerten

4.6 Berechnung von Eigenwerten 4.6 Berechnung von Eigenwerten Neben der Festlegung auf den betragsgrößten Eigenwert hat die Potenzmethode den Nachteil sehr langsamer Konvergenz, falls die Eigenwerte nicht hinreichend separiert sind.

Mehr

Übungsblatt 12 Musterlösung

Übungsblatt 12 Musterlösung NumLinAlg WS56 Übungsblatt 2 Musterlösung Lösung 44 (QR-Algorithmus mit Wilkinson-Shift und Deflation) a)+b) Die QR-Iteration zur Berechnung aller Eigenwerte einer Matrix A kann wie folgt implementiert

Mehr

KAPITEL 7. Berechnung von Eigenwerten. Av = λv

KAPITEL 7. Berechnung von Eigenwerten. Av = λv KAPITEL 7. Berechnung von Eigenwerten Aufgabe: Sei A R n n eine reelle quadratische Matrix. Gesucht λ C und v C n, v 0, die der Eigenwertgleichung Av = λv genügen. Die Zahl λ heißt Eigenwert und der Vektor

Mehr

Kapitel 5 : Eigenwerte und Eigenvektoren

Kapitel 5 : Eigenwerte und Eigenvektoren Kapitel 5 : Eigenwerte und Eigenvektoren 5.1 Definition und allgemeine Eigenschaften Definition 5.1 Sei A eine quadratische (n n)-matrix. λ C heißt Eigenwert von A, wenn ein Vektor x C n mit x 0 existiert,

Mehr

8. Vorlesung, 5. April Numerische Methoden I. Eigenwerte und Eigenvektoren

8. Vorlesung, 5. April Numerische Methoden I. Eigenwerte und Eigenvektoren 8. Vorlesung, 5. April 2017 170 004 Numerische Methoden I Eigenwerte und Eigenvektoren 1 Eigenwerte und Eigenvektoren Gegeben ist eine n n-matrix A. Gesucht sind ein vom Nullvektor verschiedener Vektor

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Oliver Ernst Professur Numerische Mathematik Wintersemester 2015/16 Inhalt I 1 Einleitung 1.1 Lineare Gleichungssysteme 1.2 Matrixfunktionen 1.3 Modellreduktion 1.4 Eigenwertaufgaben

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

6 Symmetrische Matrizen und quadratische Formen

6 Symmetrische Matrizen und quadratische Formen Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation

Mehr

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB)

Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Einführung in numerische Methoden für Ingenieure (nach A. Quarteroni, F. Saleri: Wissenschaftliches Rechnen mit MATLAB) Prof. R. Leithner, Dipl. Phys. E. Zander Wintersemester 2010/2011 Kapitel 6 Eigenwerte

Mehr

20 Kapitel 2: Eigenwertprobleme

20 Kapitel 2: Eigenwertprobleme 20 Kapitel 2: Eigenwertprobleme 2.3 POTENZMETHODE Die Potenzmethode oder Vektoriteration ist eine sehr einfache, aber dennoch effektive Methode zur Bestimmung des betragsmäßig größten Eigenwertes. Um die

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Lineares Gleichungssystem

Lineares Gleichungssystem Lineares Gleichungssystem Ein System von m linearen Gleichungen in n Unbekannten besteht aus einer Menge von algebraischen Relationen der Form n a ij x j = b i, i =,...,m, j= wobei a ij R, i m, j n, die

Mehr

47 Singulärwertzerlegung

47 Singulärwertzerlegung 47 Singulärwertzerlegung 47.1 Motivation Wir haben gesehen, dass symmetrische Matrizen vollständig mithilfe ihrer Eigenwerte und Eigenvektoren beschrieben werden können. Diese Darstellung kann unmittelbar

Mehr

Iterative Löser: Einführung

Iterative Löser: Einführung Iterative Löser: Einführung Im vergangenen Semester wurden folgende Löser für LGS betrachtet: LU-Zerlegung (mit und ohne Pivotisierung) QR-Zerlegung (Householder und Givens) Lösung beliebiger, regulärer,

Mehr

51 Numerische Berechnung von Eigenwerten und Eigenvektoren

51 Numerische Berechnung von Eigenwerten und Eigenvektoren 5 Numerische Berechnung von Eigenwerten und Eigenvektoren 5. Motivation Die Berechnung der Eigenwerte einer Matrix A IR n n als Lösungen der charakteristischen Gleichung (vgl. Kapitel 45) ist für n 5 unpraktikabel,

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009 Eigenwerte Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Sommersemester 2009 25. Juni + 2.+9. Juli 2009 Grundlagen Definition Ist für A C n,n, Ax = λx

Mehr

Trigonalisierung. Definition. 1) Sei F : V V linear, dim V = n. Dann heißt F trigonalisierbar, wenn es eine Basis B von V gibt sodass a 11 a 12..

Trigonalisierung. Definition. 1) Sei F : V V linear, dim V = n. Dann heißt F trigonalisierbar, wenn es eine Basis B von V gibt sodass a 11 a 12.. Trigonalisierung Sei F : V V linear und dim V = n. Wir beschäftigen uns jetzt mit der Frage, ob es eine Basis B von V gibt, sodass M B (F ) eine Dreiecksmatrix ist. Definition. ) Sei F : V V linear, dim

Mehr

QR-Zerlegung Allgemeines. Householder-Spiegelung. Givens-Rotation. Gram-Schmidt-Orthogonalisierung. Fazit. QR-Zerlegung.

QR-Zerlegung Allgemeines. Householder-Spiegelung. Givens-Rotation. Gram-Schmidt-Orthogonalisierung. Fazit. QR-Zerlegung. 20.0.2011 Inhaltsverzeichnis 1 2 3 4 1 2 3 4 der Matrix A R mxn, m n A = Q R Matrix Q: Q R nxn orthogonale Matrix (Spalten paarweise orthogonal) Q Q T = E Matrix R: R R mxn obere Dreiecksmatrix r 11 r

Mehr

Eigenwertaufgaben. Heinrich Voss. TUHH Heinrich Voss Kapitel / 80.

Eigenwertaufgaben. Heinrich Voss. TUHH Heinrich Voss Kapitel / 80. Heinrich Voss voss@tu-harburg.de Hamburg University of Technology Institute for Numerical Simulation TUHH Heinrich Voss Kapitel 6 2010 1 / 80 Wir betrachten in diesem Kapitel die numerische Behandlung

Mehr

TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX

TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX TU Ilmenau Institut für Mathematik FG Numerische Mathematik und Informationsverarbeitung PD Dr. W. Neundorf Datei: UEBG2.TEX Übungsaufgaben zum Lehrgebiet Numerische Mathematik - Serie 2 Beweise Sie folgende

Mehr

QR-Algorithmus Praktische Anwendung auf reelle und komplexe Eigenwerte

QR-Algorithmus Praktische Anwendung auf reelle und komplexe Eigenwerte QR-Algorithmus Praktische Anwendung auf reelle und komplexe Eigenwerte Proseminar - Numerische Mathematik Sommersemester 2005 - Universität Hamburg Fachbereich Mathematik geleitet von Prof. Wolf Hofmann

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 14. Übung: Woche vom (Lin.Alg.

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 14. Übung: Woche vom (Lin.Alg. Übungsaufgaben 14. Übung: Woche vom 30. 1.-3. 2. 2017 (Lin.Alg. III): Heft Ü 3: 3.2.6.a,b,l,n; 3.2.12; 3.2.13; 5.4.1; 5.4.5.c; Hinweis 1: 3. Test (Integration, analyt. Geom.) ist seit 9.1. freigeschalten

Mehr

6 Eigenwerte und Eigenvektoren

6 Eigenwerte und Eigenvektoren 6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,

Mehr

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren Kapitel 1 Vektoren und Matrizen In diesem Kapitel stellen wir die Hilfsmittel aus der linearen Algebra vor, die in den folgenden Kapiteln öfters benötigt werden. Dabei wird angenommen, dass Sie die elementaren

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

Abschnitt 2.5: QR-Verfahren 31

Abschnitt 2.5: QR-Verfahren 31 Abschnitt 2.5: QR-Verfahren 31 Bemerkungen 2.5.7 i) Der Aufwand des oben beschriebenen Verfahrens, eine Matrix A R n n in obere Hessenbergform zu überführen, beträgt ungefähr 5 3 n3 Operationen. Hierbei

Mehr

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.1 Reelle Matrizen Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 81 Reelle Matrizen Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas 1 / 32 8 Lineare Algebra: 1 Reelle Matrizen Grundbegriffe Definition

Mehr

Einführung in die Grundlagen der Numerik

Einführung in die Grundlagen der Numerik Einführung in die Grundlagen der Numerik Institut für Numerische Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Wintersemester 2014/2015 Definition Eigenwertproblem Zu einer Matrix A R n n sind

Mehr

c i u i. (10.2) x = i

c i u i. (10.2) x = i Kapitel 0 Von Mises Wielandt Verfahren Im Folgenden wollen wir uns ausschließlich auf reelle, symmetrischen Matrizen der Ordnung n beschränken. Wie im letzten Kapitel diskutiert, sind für solche Matrizen

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 13. Übung: Woche vom (Lin.Alg.

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 13. Übung: Woche vom (Lin.Alg. Übungsaufgaben 13. Übung: Woche vom 23. 1.-27. 1. 2017 (Lin.Alg. II): Heft Ü 3: 1.1.3; 1.1.7 (a,b); 1.1.8; 1.1.11; 3.4.3 (b); 1.3.3 (c); 1.2.3 (b,d); Hinweis 1: 3. Test (Integration, analyt. Geom.) ist

Mehr

Begleitmaterial zur Vorlesung Numerik II

Begleitmaterial zur Vorlesung Numerik II Begleitmaterial zur Vorlesung Numerik II Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik II 1 / 35 Inhalte der Numerik

Mehr

Parallelrechnern. 12. März Technische Universität Chemnitz. Der Jacobi-Davidson Algorithmus auf. Parallelrechnern. Patrick Kürschner.

Parallelrechnern. 12. März Technische Universität Chemnitz. Der Jacobi-Davidson Algorithmus auf. Parallelrechnern. Patrick Kürschner. Technische Universität Chemnitz 12. März 2008 - sweise Gliederung - sweise - sweise Eigenwertprobleme Ziel: Lösung von Eigenwertproblemen Dabei: Ax = λx Matrix A C n n sehr groß, dünnbesetzt (sparse) Gesucht:

Mehr

QR-Algorithmus. Proseminar - Numerische Mathematik Sommersemester Universität Hamburg Fachbereich Mathematik geleitet von Prof.

QR-Algorithmus. Proseminar - Numerische Mathematik Sommersemester Universität Hamburg Fachbereich Mathematik geleitet von Prof. QR-Algorithmus Proseminar - Numerische Mathematik Sommersemester 2005 - Universität Hamburg Fachbereich Mathematik geleitet von Prof. Wolf Hofmann 1 Im Laufe der Jahre wurde immer wieder versucht, die

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru T. Welti

Lineare Algebra für D-ITET, D-MATL, RW. Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru T. Welti Dr. V. Gradinaru T. Welti Herbstsemester 27 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Serie Aufgabe. Multiple Choice: Online abzugeben..a) Bezüglich des euklidischen Skalarprodukts in R

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe Beispiel einer Koordinatentransformation Gegeben seien zwei

Mehr

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren

III. Iterative Löser. III.1 Direkte Löser und ihre Nachteile. III.2 Klassische lineare Iterationsverfahren III. Iterative Löser III.1 Direkte Löser und ihre Nachteile III.2 Klassische lineare Iterationsverfahren Typeset by FoilTEX 1 Erinnerung: Lineares Gleichungssystem bei FDM Diskretisierung einer linearen

Mehr

Musterlösung Serie 21

Musterlösung Serie 21 D-MATH Lineare Algebra II FS 09 Prof. Richard Pink Musterlösung Serie Positiv-Definitheit und Singulärwertzerlegung. Welche der folgenden drei reellen symmetrischen Matrizen sind positiv definit? A : 6

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme Vorlesungsskript HM-Numerik (SS 4): Kapitel Version: 9 Mai 4 Lineare Gleichungssysteme Gegeben: A R n n mit det(a) b R n Gesucht: x R n mit Ax = b Zeilenäquilibrierung Möchten zunächst die Kondition des

Mehr

III Das Symmetrische Eigenwertproblem (SEP)

III Das Symmetrische Eigenwertproblem (SEP) III Das Symmetrische Eigenwertproblem (SEP) III3 Algorithmen für symmetrische tridiagonale Eigenwertprobleme Sei im folgenden a b A = b a b b n a n b n b n a n R n n, zb nach Householder- oder Lanczos(im

Mehr

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153 3.3. SKALARPRODUKTE 153 Hierzu müssen wir noch die Eindeutigkeit (Unabhängigkeit von der Wahl der Basis bzw. des Koordinatensystems) zeigen. Sei hierzu β eine Bilinearform und q die entsprechende quadratische

Mehr

Zehnte Vorlesung, 4. Juni 2009, Inhalt. Eigenwerte und Eigenvektoren (2) Gewöhnliche Differentialgleichungen

Zehnte Vorlesung, 4. Juni 2009, Inhalt. Eigenwerte und Eigenvektoren (2) Gewöhnliche Differentialgleichungen Zehnte Vorlesung, 4. Juni 2009, Inhalt Eigenwerte und Eigenvektoren (2) Gewöhnliche Differentialgleichungen 1 Eigenwerte und Eigenvektoren Wichtige Feststellungen zur Eigenwertaufgabe Ax = λx: Eigenwerte

Mehr

Lernbuch Lineare Algebra und Analytische Geometrie, 2. Auflage 2012

Lernbuch Lineare Algebra und Analytische Geometrie, 2. Auflage 2012 Lernbuch Lineare Algebra und Analytische Geometrie, 2 Auflage 22 Korrekturen 8 statt y M lies y N 2 statt m + n = m +(n )=m +(n ) lies m + n = m +(n ) 2 statt #P(M) lies #P (M) 4 7 statt Beispiel c) lies

Mehr

Numerik für Informatiker und Bioinformatiker. Daniel Weiß

Numerik für Informatiker und Bioinformatiker. Daniel Weiß Numerik für Informatiker und Bioinformatiker Daniel Weiß SS 202 Folgende Literatur bildet die Grundlage dieser Vorlesung: P Deuflhard, A Hohmann, Numerische Mathematik, Eine algorithmisch orientierte Einführung,

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Prof Dr Stefan Etschberger HSA Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2016/17 Determinanten: Vorüberlegung Permutationen und Inversionen

Mehr

3 Eigenwertberechnung

3 Eigenwertberechnung 3 Eigenwertberechnung (3.) Definition Eine Matrix A R, heißt (obere) Block-Dreiecksmatrix, wenn ein n existiert, sodass A[n + :, : n] = 0 gilt, d.h.: A = ( ) A[ : n, : n] A[ : n,n + : ] 0 A[n + :,n + :

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.2. Primzahlen Definition: Eine natürliche Zahl m N heißt Teiler von n N, falls ein N existiert mit n = m Man schreibt dann auch m n. Jede Zahl besitzt offensichtlich die beiden

Mehr

Numerisches Programmieren (IN0019)

Numerisches Programmieren (IN0019) Numerisches Programmieren (IN0019) Frank R. Schmidt Winter Semester 2016/2017 9. Symmetrisches Eigenwertproblem.................................................................................... 2 Eigenwert-Problem

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2015 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

RUHR - UNIVERSITÄT BOCHUM KLAUSUR. Name. Vorname. Teilnehmer-Nr. Zur Beachtung. Bitte nicht ausfüllen

RUHR - UNIVERSITÄT BOCHUM KLAUSUR. Name. Vorname. Teilnehmer-Nr. Zur Beachtung. Bitte nicht ausfüllen RUHR - UNIVERSITÄT BOCHUM Fakultät für Wirtschaftswissenschaft KLAUSUR Mathematik für Ökonomen L i n e a r e A l g e b r a 6.2.997 (WS 97/98) Name Vorname Teilnehmer-Nr. Zur Beachtung Die Klausur umfaßt

Mehr

Lineare Algebra 1. . a n1 a n2 a n3 a nm

Lineare Algebra 1. . a n1 a n2 a n3 a nm Lineare Algebra 1 Lineare Algebra Hilfreiche Konzepte zur Vereinfachung der Darstellung und Berechnung stellt die lineare Algebra bereit. Auch wenn sie nur an wenigen Stellen des Buches verwendet wurden,

Mehr

Kapitel 2: Lineare Gleichungssysteme

Kapitel 2: Lineare Gleichungssysteme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 2: Lineare Gleichungssysteme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 205 HM: Numerik (SS 205), Kapitel

Mehr

a) Die Householder-Transformation, welche den ersten Spaltenvektor a 1 = der Matrix A auf , a 1 αe A = QR, A k =: Q k R k, A k+1 := R k Q k.

a) Die Householder-Transformation, welche den ersten Spaltenvektor a 1 = der Matrix A auf , a 1 αe A = QR, A k =: Q k R k, A k+1 := R k Q k. Karlsruher Institut für Technologie (KIT) Institut für Analysis Prof. Dr. W. Reichel Sommersemester 00 7.07.00 MODULPRÜFUNG Numerische Methoden (Höhere Mathematik IV für die Fachrichtung Meteorologie bzw.

Mehr

Orthogonale Matrix. Definition 4.19

Orthogonale Matrix. Definition 4.19 Orthogonale Matrix Ausgleichsprobleme sind häufig schlecht konditioniert. Matrix des Normalengleichungssystems kann nahezu singulär sein. Spezielle Matrixzerlegung für höhere numerische Stabilität: QR-Zerlegung

Mehr

Numerik I. Universität zu Köln SS 2009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva,

Numerik I. Universität zu Köln SS 2009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva, Universität zu Köln SS 009 Mathematisches Institut Prof. Dr. C. Tischendorf Dr. M. Selva, mselva@math.uni-koeln.de Numerik I Musterlösung 1. praktische Aufgabe, Bandmatrizen Bei der Diskretisierung von

Mehr

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 201 Prof. Richard Pink Lösung zu Serie 18 1. Sei V,, ein endlich-dimensionaler unitärer Vektorraum. Zeige, dass zu jeder Sesquilinearform f : V V C eine eindeutige lineare Abbildung

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren

Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Eine kurze Einführung in Quasi Newton Verfahren Ergänzungen zu dem Buch Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben von Carl Geiger und Christian Kanzow (Springer Verlag, 1999) Eine kurze Einführung in Quasi Newton Verfahren

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2017 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8

Mehr

Ausgleichsprobleme. 3 Nichtlineare Ausgleichsprobleme

Ausgleichsprobleme. 3 Nichtlineare Ausgleichsprobleme 1 Normalengleichung Ausgleichsprobleme A T A T = AA 2 Orthogonalisierungsverfahren A = Q R 3 Nichtlineare Ausgleichsprobleme Typeset by FoilTEX 1 Motivation Ausgleichsprobleme treten meist dann auf, wenn

Mehr

LR Zerlegung. Michael Sagraloff

LR Zerlegung. Michael Sagraloff LR Zerlegung Michael Sagraloff Beispiel eines linearen Gleichungssystems in der Ökonomie (Input-Output Analyse Wir nehmen an, dass es 3 Güter G, G, und G 3 gibt Dann entspricht der Eintrag a i,j der sogenannten

Mehr

Musterlösung. Aufgaben zu Iterative Lösung Linearer Gleichungssysteme. Vordiplomskurs Numerische Methoden Sommer 2008

Musterlösung. Aufgaben zu Iterative Lösung Linearer Gleichungssysteme. Vordiplomskurs Numerische Methoden Sommer 2008 Musterlösung Aufgaben zu Iterative Lösung Linearer Gleichungssysteme Vordiplomskurs Numerische Methoden Sommer 8. Betrachte das Gleichungssystem Ax b mit ( ( 3 A, b. 6 8 a Konvergiert das Jacobi Verfahren

Mehr

Kapitel 3. Lineare Ausgleichsrechnung. Problem: Löse A x = b, A R m n, b R m, wobei. Rang(A) < Rang([A;b])

Kapitel 3. Lineare Ausgleichsrechnung. Problem: Löse A x = b, A R m n, b R m, wobei. Rang(A) < Rang([A;b]) Kapitel 3. Lineare Ausgleichsrechnung Problem: Löse A x = b, A R m n, b R m, wobei Rang(A) < Rang([A;b]) zugelassen ist, d.h. Ax = b ist nur im weitesten Sinne lösbar. 3.1 Lineares Ausgleichsproblem: Zu

Mehr

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops

Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops 15. DETERMINANTEN 1 Für n Vektoren b 1,..., b n im R n definiert man ihre Determinante det(b 1,..., b n ) Anschaulich gilt det(b 1,..., b n ) = Orientierung der Vektoren b 1,..., b n Volumen des von den

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2

Mehr

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass I. a) Es sei (G, ) eine abelsche Gruppe mit neutralem Element e G. Zeigen Sie, dass U := {g G g 3 = e G } eine Untergruppe von G ist. b) In der symmetrischen Gruppe S 4 definieren wir analog zu a) die

Mehr

Numerische Methoden 2

Numerische Methoden 2 Numerische Methoden 2 von I. S. Beresin und N. P. Shidkow Mit 11 Abbildungen m VEB Deutscher Verlag der Wissenschaften Berlin 1971 INHALT 6. Lösung von linearen algebraischen Gleichungssystemen 9 6.1.

Mehr

Die Top 10 der Algorithmen Der QR-Algorithmus

Die Top 10 der Algorithmen Der QR-Algorithmus Die Top 10 der Algorithmen Der QR-Algorithmus Hans Hansen TU Chemnitz WS 04/05 17. Januar 2005 1 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis 1 Geschichte 3 2 Die Grundidee 3 3 Ähnlichkeitstransformationen

Mehr

A w w f f B w f w f A B w f w w A B A B A B. z = a 2 + b 2 =: r. c+id = ac+bd. 2 c 2 +d 2. z 2. z n = z. z = r cos(x) + ir sin(x) = reix

A w w f f B w f w f A B w f w w A B A B A B. z = a 2 + b 2 =: r. c+id = ac+bd. 2 c 2 +d 2. z 2. z n = z. z = r cos(x) + ir sin(x) = reix Formelsammlung Aussagenlogik Für beliebige Aussagen A, B gilt: Konjunktion Disjunktion Implikation Äquivalenz A B w f f f A B w w w f A B w f w w A B w f f w Mengenlehre Für beliebige Mengen A, B gilt:

Mehr

A w w f f B w f w f A B w f w w A B A B A B. z = a 2 + b 2 =: r. c+id = ac+bd. 2 c 2 +d 2. z 2. z n = z. z = r cos(x) + ir sin(x) = reix

A w w f f B w f w f A B w f w w A B A B A B. z = a 2 + b 2 =: r. c+id = ac+bd. 2 c 2 +d 2. z 2. z n = z. z = r cos(x) + ir sin(x) = reix Formelsammlung Aussagenlogik Für beliebige Aussagen A, B gilt: Konjunktion Disjunktion Implikation Äquivalenz A B w f f f A B w w w f A B w f w w A B w f f w Mengenlehre Für beliebige Mengen A, B gilt:

Mehr

D-ITET. D-MATL, RW Lineare Algebra HS 2017 Dr. V. Gradinaru T. Welti. Online-Test 2. Einsendeschluss: Sonntag, den

D-ITET. D-MATL, RW Lineare Algebra HS 2017 Dr. V. Gradinaru T. Welti. Online-Test 2. Einsendeschluss: Sonntag, den D-ITET. D-MATL, RW Lineare Algebra HS 7 Dr. V. Gradinaru T. Welti Online-Test Einsendeschluss: Sonntag, den..7 : Uhr Dieser Test dient, seriös bearbeitet, als Repetition des bisherigen Vorlesungsstoffes

Mehr

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung

Lösung 23: Sylvesters Trägheitssatz & Singulärwertzerlegung D-MATH Lineare Algebra I/II HS 07/FS 08 Dr Meike Akveld Lösung 3: Sylvesters Trägheitssatz & Singulärwertzerlegung Wir wissen, dass eine Basis B von R n existiert, sodass p [β Q ] B I I q 0 n p q gilt

Mehr

Lineare Algebra. 13. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 13. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 3. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 29, 27 Erinnerung Satz. Axiomatischer Zugang, Eigenschaften der Determinante. Die Abbildung det :

Mehr

Quadratische Formen und Definitheit

Quadratische Formen und Definitheit Universität Basel Wirtschaftswissenschaftliches Zentrum Quadratische Formen und Definitheit Dr. Thomas Zehrt Inhalt: 1. Quadratische Formen 2. Quadratische Approximation von Funktionen 3. Definitheit von

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

1 Euklidische Approximation

1 Euklidische Approximation 1 Euklidische Approximation Sei V ein reeller euklidischer Vektorraum. Das Skalarprodukt in V wird mit, V und die Norm mit V bezeichnet. V N V sei ein Teilraum der Dimension N < mit Basis {φ n } n=1,...,n.

Mehr

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren

2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren 2. Lineare Gleichungssysteme: direkte und iterative Lösungsverfahren Problem (P2): Löse Ax = b, A R n und b R. 2.1 Satz: Die folgenden Aussagen sind äquivalent: (i) Ax = b ist für jedes b eindeutig lösbar;

Mehr

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17

Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 2016/17 Institut für Analysis Prof Dr Michael Plum Lösungsvorschlag zur Modulprüfung Numerische Methoden - Wintersemester 6/7 837 Aufgabe Punkte): Gegeben sei das lineare Gleichungssystem Ax = b mit A = 6 3 und

Mehr

Numerische Verfahren

Numerische Verfahren Numerische Verfahren 1. Kapitel: Prof. Dr.-Ing. K. Warendorf Hochschule für Angewandte Wissenschaften München Fakultät 03 WS 13/14 Prof. Dr.-Ing. K. Warendorf (Fakultät 03) Numerische Verfahren WS 13/14

Mehr

Erweiterte Koordinaten

Erweiterte Koordinaten Erweiterte Koordinaten Sei K n ein n dimensionaler affiner Raum Die erweiterten Koordinaten des Punktes x x n K n sind x x n Kn+ (Das ist für alle K sinnvoll, weil in jedem Körper K wohldefiniert ist In

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Kapitel 2 Eigenwerte und Eigenvektoren Gemäß einer Aussage von Kurt Bryan muss ein Suchmaschinenanbieter, zum Beispiel Google, das Netz (World Wide Web durchforsten und Information auf den Webseiten sammeln

Mehr

Singulärwert-Zerlegung

Singulärwert-Zerlegung Singulärwert-Zerlegung Zu jeder komplexen (reellen) m n-matrix A existieren unitäre (orthogonale) Matrizen U und V mit s 1 0 U AV = S = s 2.. 0.. Singulärwert-Zerlegung 1-1 Singulärwert-Zerlegung Zu jeder

Mehr

Lösungen der Aufgaben zu Kapitel 11

Lösungen der Aufgaben zu Kapitel 11 Lösungen der Aufgaben zu Kapitel Vorbemerkung: Zur Bestimmung der Eigenwerte (bzw. des charakteristischen Polynoms) einer (, )-Matrix verwenden wir stets die Regel von Sarrus (Satz..) und zur Bestimmung

Mehr

Eigenwerte (Teschl/Teschl 14.2)

Eigenwerte (Teschl/Teschl 14.2) Eigenwerte (Teschl/Teschl 4.2 Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme Lineare Gleichungssysteme Wir wissen bereits, dass ein lineares Gleichungssystem genau dann eindeutig lösbar ist, wenn die zugehörige Matrix regulär ist. In diesem Kapitel lernen wir unterschiedliche Verfahren

Mehr

MODULPRÜFUNG Numerische Methoden (Elektrotechnik, Meteorologie, Geodäsie und Geoinformatik)

MODULPRÜFUNG Numerische Methoden (Elektrotechnik, Meteorologie, Geodäsie und Geoinformatik) Karlsruher Institut für Technologie KIT) Institut für Analysis Dr. S. Wugalter Herbst 7.9.7 MODULPRÜFUNG Numerische Methoden Elektrotechnik, Meteorologie, Geodäsie und Geoinformatik) Aufgabe 4 Punkte)

Mehr

Lanczos Methoden. Stefan Grell Im Rahmen eines Proseminar zur Numerischen Mathematik unter der Leitung von Prof. Wolf Hofmann. 15.

Lanczos Methoden. Stefan Grell Im Rahmen eines Proseminar zur Numerischen Mathematik unter der Leitung von Prof. Wolf Hofmann. 15. Lanczos Methoden Stefan Grell Im Rahmen eines Proseminar zur Numerischen Mathematik unter der Leitung von Prof. Wolf Hofmann 15. Juni 2005 Lanczos-Methoden Lanczos-Methoden sind iterative Verfahren zur

Mehr

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit.

KAPITEL 8. Normalformen. 1. Blockmatrizen. ,C K m 2 n 1. X = K (m 1+m 2 ) (n 1 +n 2 ) K L. und Y = M N Blockmatrizen mit. KAPITEL 8 Normalformen Definition 8.1 (Blockmatrizen). Sind 1. Blockmatrizen A K m 1 n 1,B K m 1 n 2,C K m 2 n 1 und D K m 2 n 2 so nennet man die Matrix X = ( A B C D ) K (m 1+m 2 ) (n 1 +n 2 ) eine Blockmatrix

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. Wir betrachten das überbestimmte Gleichungssystem Ax = y mit 1 1 1 1 A := 1 1 0 1 0 1, y := 2 3 0 0 1 4 Berechnen Sie die

Mehr

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( )

Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( ) Eigenwertprobleme 5. Oktober Autoren:. Herrmann, Hannes (45969). Kraus, Michael (9). Krückemeier, Paul (899) 4. Niedzielski, Björn (7) Eigenwertprobleme tauchen in der mathematischen Physik an Stellen

Mehr

a ij i - te Gleichung (Zeile), i = 1,2,3,..., m

a ij i - te Gleichung (Zeile), i = 1,2,3,..., m I) MATRIZEN Der Start: Lineare Gleichungen y ax+ a2x2 + a3x3 y2 a2x+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i,2,3,..., m j - te Variable (Spalte), j,2,3,..., n Definition m x n Matrix

Mehr

2 Direkte Lösungsverfahren für lineare Gleichungen

2 Direkte Lösungsverfahren für lineare Gleichungen (2.1) Sei x = (x n ) n=1,...,n R N, A = (a m,n ) m=1,...,m, n=1,...,n R M,N. a) Sei 1 m n N. Dann ist x[m : n] = (x k ) k=m,...,n R 1+n m Teilvektor von x. b) Seien 1 m 1 m 2 M, 1 n 1 n 2 N. Dann ist A[m

Mehr

Universität Tübingen Tübingen, den Mathematisches Institut D. Mansour, J. Seyrich

Universität Tübingen Tübingen, den Mathematisches Institut D. Mansour, J. Seyrich Universität Tübingen Tübingen, den 03.07.2013 Mathematisches Institut D. Mansour, J. Seyrich Probeklausur zu Algorithmen der Numerischen Mathematik SS 2013 ID Nummer: 1 Name:.........................................

Mehr