Formelsammlung. Folgen und Reihen

Größe: px
Ab Seite anzeigen:

Download "Formelsammlung. Folgen und Reihen"

Transkript

1 Lehrstuhl für BWL, insb. Mthemtik und Sttistik Dipl.-Mth. Mrie Hielscher Mthemtik für Betriebswirte II Formelsmmlung Folgen und Reihen en Folge n ) n N0 : D R, n n := n) mit D N 0 n-te Prtilsumme von n ) n N0 n s n = Reihe s n ) n N0 k Wichtige Folgen & Reihen Explizite Folgendrstellung Prtilsumme Arithmetische Folge mit n+ n = d n N 0 n+ = 0 + n + )d s n = Geometrische Folge mit n+ n = q n N 0 ; q R \ {0} n 0 +kd) = n+) 0 + nd ) 2 q { n+ q k 0 = q q 0 n + ) q = n+ = q n+ 0 s n = 0 n Eigenschften einer Folge n mit, c R Beschränkt n c n N 0 Nch unten beschränkt n c n N 0 Nch oben beschränkt n c n N 0 Monoton wchsend n n+ n N 0 Monoton fllend n n+ n N 0 Konvergent mit Grenzwert ε > 0 n 0 N 0 : n < ε n n 0 Rechenregeln für konvergente Folgen mit n n =, n b n = b und c R n ± b n ) = n ± b n = ± b n n n ) c n c n = n = c, flls n > 0, > 0 n n cn = c n n Konvergenzkriterien für Reihen ) = c, flls c > 0 n nb n ) = n n n c n = c n n = c b n = b n n n n = n b n b = n b, flls b n 0, b 0 n Eine Reihe k heiÿt bsolut konvergent, wenn die Reihe k konvergent ist. Konvergenzkriterium Quotientenkriterium k+ k q 0 < q < ; k 0 ; k k 0 ; k 0 N 0 Wurzelkriterium k k q 0 < q < ; k k 0 ; k 0 N 0

2 Lehrstuhl für BWL, insb. Mthemtik und Sttistik Dipl.-Mth. Mrie Hielscher Mthemtik für Betriebswirte II Dierenzierbrkeit im R n Häufungspunkt und Grenzwert Häufungspunkt x 0 R n x 0 R n heiÿt Häufungspunkt der Menge D R n, wenn zu jedem ε > 0 unendlich viele x D mit x x 0 < ε existieren. Isolierter Punkt x 0 R n Ist x 0 kein Häufungspunkt der Menge, ber gilt x 0 D, dnn wird x 0 ls isolierter Punkt bezeichnet. Grenzwert c R Ist x 0 ein Häufungspunkt, dnn sgt mn, dss die Funktion f für x x 0 gegen den Grenzwert c R konvergiert, wenn für jede Folge x k ) k N D mit x k x 0 für lle k N und x k = x 0 stets fx k) = c gilt. k k Stetigkeit Stetigkeit Eine Funktion f : D R n R heiÿt stetig n der Stelle x 0, wenn x 0 kein Häufungspunkt der Menge D ist oder flls x 0 ein Häufungspunkt der Menge D ist und die Funktion f für x x 0 gegen den Grenzwert fx 0 ) konvergiert, d.h. wenn x x0 fx) = fx 0 ) gilt. Kurvendiskussion in R Sei f : D R R eine reellwertige, geeignet oft dierenzierbre Funktion, d.h. der Grenzwert fx 0 + x) fx 0 ) Dierentilquotient) existiert, sowie ε > 0. Dnn gilt: x x 0 Bedingungen Supremum c von f Inmum c von f c ist die kleinste obere Schrnke von f c ist die gröÿte untere Schrnke von f globle Minimlstelle x 0 x 0 D mit fx 0 ) fx) x D f x 0 ) = 0 f x) > 0 globle Mximlstelle x 0 x 0 D mit fx 0 ) fx) x D f x 0 ) = 0 f x) < 0 lokle Minimlstelle x 0 x 0 D mit fx 0 ) fx) f x 0 ) = 0 f x 0 ) > 0 x D {x R n : x x 0 < ε} lokle Mximlstelle x 0 x 0 D mit fx 0 ) fx) f x 0 ) = 0 f x 0 ) < 0 x D {x R n : x x 0 < ε} Wendestelle x 0 ε > 0 mit f [x 0 ε, x 0 ] streng konvex f x 0 ) = 0 f x 0 ) < 0 konvex / konkv und f [x 0, x 0 ε] streng konkv Wendestelle x 0 ε > 0 mit f [x 0 ε, x 0 ] streng konkv f x 0 ) = 0 f x 0 ) > 0 konkv / konvex und f [x 0, x 0 ε] streng konvex Sttelstelle x 0 f x 0 ) = 0 f x 0 ) = 0 f x 0 ) 0

3 Eigenschften reeller Funktionen Lehrstuhl für BWL, insb. Mthemtik und Sttistik Dipl.-Mth. Mrie Hielscher Mthemtik für Betriebswirte II Seien f : D f R n R und g : D g R n R zwei reelle Funktionen und α R, dnn gilt: Bedingung flls f stetig bzw. dierenzierbr n der Stelle x 0 Eigenschft f + g, f g, fg und αf stetig bzw. dierenzierbr n der Stelle x 0 flls zusätzlich gx 0 ) 0 f g stetig bzw. dierenzierbr n der Stelle x 0 flls zusätzlich gd g ) D f und g n der Stelle x 0 D g f g : D g R n R n der Stelle x 0 und f n der Stelle y 0 = gx 0 ) stetig bzw. dierenzierbr stetig bzw. dierenzierbr flls f streng monoton uf D f f : fd f ) R stetig Rechenregeln für dierenzierbre Funktionen Seien f : D R n R und g : D R n R zwei reelle Funktionen, die n der Stelle x 0 dierenzierbr sind, und α R. f + g) x 0 ) = f x 0 ) + g x 0 ) αf) x 0 ) = αf x 0 ) f g) x 0 ) = f x 0 ) g x 0 ) fg) x 0 ) = f x 0 )gx 0 ) + fx 0 )g x 0 ) Regeln von L'Hôspitl f g ) x0 ) = f x 0)gx 0) fx 0)g x 0) g 2 x 0) f g) x 0 ) = f gx 0 ))g x 0 ) Die reellen Funktionen f, g :, b) R seien dierenzierbr mit g x) 0 x, b) und der Grenzwert f x) existiere im eigentlichen oder uneigentlichen Sinne. Dnn gilt: x b g x) Bedingung Erste Regel fx) = gx) = 0 Bedingung fx) = ± x b x b x b fx) x b gx) = f x) x b g x) Zweite Regel fx) x b gx) = f x) x b g x) gx) = ± x b Änderungsrte und Elstizität f : D R R dierenzierbr in x 0 mit fx 0 ) 0 f : D R n R prtiell dierenzierbr in x 0 mit fx 0 ) 0. Änderungsrte ρ f x 0 ) = f x 0 ) fx 0 ) Elstizität ε f x 0 ) = x 0 f x 0 ) fx 0 ) Prtielle Änderungsrte ρ f,xi x 0 ) = fx 0) x i fx 0 ) Prtielle Elstizität ε f;xi x 0 ) = fx 0) x i x i fx 0 )

4 Prtielle Dierentition Lehrstuhl für BWL, insb. Mthemtik und Sttistik Dipl.-Mth. Mrie Hielscher Mthemtik für Betriebswirte II Es sei f : D R n R eine reellwertige Funktion uf einer oenen Menge D, die geeignet oft prtiell dierenzierbr ist. Prtielle Dierentition f heiÿt n der Stelle x bzgl. der i-ten Vriblen x i prtiell dierenzierbr, wenn der Grenzwert fx + x e i ) fx) x 0 x existiert. =: fx) x i Grdient n der Stelle x grdfx) = fx) x ) T,, fx) x n Sttionäre Stelle x 0 grdfx 0 ) = 0 Hesse-Mtrix n der Stelle x x 2 x 2 x H f x)=. x n x x x 2 x 2 2. x n x 2 x x n x 2 x n... x 2 n Tngentilhyperebene tx) = fx 0 ) + grdfx 0 ) T x x 0 ) Totles Dierentil df n der Stelle x 0 df = grdfx 0 ) T dx = n fx 0) i= x i dx i Implizite Funktion Es seien D R n eine oene Menge und f : D, b) R n+ R eine stetig prtiell dierenzierbre Funktion mit fx fx 0, y 0 ) = 0 und 0, y 0 ) 0. y Dnn ist die implizite Funktion g : U 0, b 0 ) stetig prtiell dierenzierbr und für ihre prtiellen Ableitungen gilt fx,gx)) gx) x = i für lle i =,, n. x fx,gx)) i y

5 Optimierung Lehrstuhl für BWL, insb. Mthemtik und Sttistik Dipl.-Mth. Mrie Hielscher Mthemtik für Betriebswirte II Es sei f : D R n R eine prtiell dierenzierbre Funktion, g,, g k : D R n R stetig prtiell dierenzierbre Funktionen und λ der Lgrnge-Multipliktor. Lgrnge Funktion Lλ,, λ k, x) := fx) + k p= λ pg p x) Optimierung grdfx 0 ) = 0 H f x 0 ) / H f x) negtiv denit ohne Nebenbedingung lokles / globles Mximum bei x 0 grdfx 0 ) = 0 H f x 0 ) / H f x) positiv denit lokles / globles Minimum bei x 0 Lλ Optimierung,...,λ k,x 0) x j = 0 H f x 0 ) / H f x) negtiv denit unter Gleichheitsnebenbedingungen lokles / globles Mximum bei x 0 g p x) = 0 für p =,, k Lλ,...,λ k,x 0) x j = 0 H f x 0 ) / H f x) positiv denit lokles / globles Minimum bei x 0 Lλ,...,λ k,x 0) x j Optimierung unter Ungleichheitsnebenbedingungen globles Minimum bei x 0 min fx) g p x) 0 für p =,, k λ p 0 für p =,, k λ p g p x 0 ) = 0 für p =,, k = 0 H f x 0 ) positiv denit Approximtionsverfhren Tylor-Formel Tylorpolynom n-ten Grdes der Funktion f um den Entwicklungspunkt x 0 : T n;x0 x) = n f k) x 0 ) k! x x 0 ) k = fx 0 ) + f x 0 )x x 0 ) + f x 0 ) 2! Der Approximtionsfehler entspricht dem n-ten Restglied Newton-Verfhren und Sekntenverfhren Sei f : R R eine stetig dierenzierbre Funktion. R n;x0 x) = fx) T n;x0 x). x x 0 ) f n) x 0 ) x x 0 ) n n! Newton-Verfhren x n+ = x n fx n) f x n ) Vereinfchtes Newton-Verfhren x n+ = x n fx n) f x 0 ) mit f x n ) 0 mit f x 0 ) 0 Sekntenverfhren x n+ = fx n)x n fx n )x n fx n ) fx n )

6 Integrtion Es sei die Riemnn-integriebre Funktion f : [; b] R gegeben. Dnn gilt: Lehrstuhl für BWL, insb. Mthemtik und Sttistik Dipl.-Mth. Mrie Hielscher Mthemtik für Betriebswirte II Stmmfunktion F : [; b] R F x) = fx) x [; b] Bestimmtes Riemnn-Integrl Unbestimmtes Riemnn-Integrl fx) dx = F b) F ) fx) dx = F x) + C mit C R Uneigentliches Riemnn-Integrl. Art mit f : [; ) R Uneigentliches Riemnn-Integrl 2. Art mit f : [; b) R mit fx) für x b fx) dx := b fx) dx := t b t fx) dx fx) dx Rechenregeln für Integrle mit α, β R, c b αfx) + βgx)) dx = α fx) dx + β fx)g x) dx = fx)gx) f x)gx) dx gx) dx c αfx) dx = αfx) dx + αfx) dx c fgt))g t) dt = fx) dx mit x = gt) Riemnn-Stieltjes-Integrl Es seien f : [, b] R und g : [, b] R zwei reelle Funktionen. Riemnn-Stieltjes-Integrl fx)dgx) Trnsformtionsstz Ist f Riemnn-integrierbr und g stetig dierenzierbr, dnn ist f bzgl. g Riemnn-Stieltjes-integrierbr und es gilt fx)dgx) = fx)g x)dx Riemnn-Integrl im R n Stz von Fubini Die reellwertige Funktion f : [, b] R n R sei stetig. Dnn gilt: bn b2 ) b fx) dx = fx,, x n ) dx [;b] n 2 dx 2 ) dx n = n n 2 2 fx,, x n ) dx dx 2 dx n

7 Ableitungen und Stmmfunktionen elementrer Funktionen fx) = F x) F x) + C = fx) dx Bemerkungen x + C x c c+ xc+ + C R für c N 0 R \ {0} für c { 2, 3, } R + für c > 0 R + \ {0} für c < 0 mit c x ln x + C x 0 e x e x + C e rx r erx + C r 0 x ln) x + C > 0, x x + lnx)) x x + C x > 0 lnx) xlnx) ) + C x > 0 log x) sinx) cosx) x ln) lnx) ) + C > 0, x > 0 cosx) + C sinx) + C tnx) ln cosx) + C x 2k + ) π 2, k Z cotx) ln sinx) + C x kπ, k Z sin 2 x) cotx) + C x kπ, k Z cos 2 x) tnx) + C x 2k + ) π 2, k Z x 2 rcsinx) + C x < +x 2 rctnx) + C

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschftsmthemtik für Interntionl Mngement (BA) und Betriebswirtschft (BA) Wintersemester 2013/14 Stefn Etschberger Hochschule Augsburg Mthemtik: Gliederung 1 Aussgenlogik 2 Linere Algebr 3 Linere

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mthemtik für Wirtschftsinformtik Wintersemester 202/3 Stefn Etschberger Hochschule Augsburg Existenz von bestimmten Integrlen Mthemtik 2 Stefn Etschberger Gegeben: Reelle Funktion f : [, b] R. Dnn gilt:

Mehr

1. Die reellen Zahlen

1. Die reellen Zahlen . Die reellen Zhlen Definition. (Verkettung). Die Verkettung oder Komposition der Abbildungen f : P N und g : M P ist die Abbildung f g : M N, x f(g(x)). Flls Definitionsbereich und Wertebereich gleich

Mehr

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse

Elemente der Analysis II: Zusammenfassung der wichtigsten Definitionen und Ergebnisse Elemente der Anlysis II: Zusmmenfssung der wichtigsten Definitionen und Ergebnisse J. Wengenroth Dies ist die einzige zugelssene Formelsmmlung, die bei der Klusur benutzt werden drf. Es dürfen Unterstreichungen

Mehr

6. Integration 6.1 Das Riemann-Integral

6. Integration 6.1 Das Riemann-Integral 6. Integrtion 6. Ds Riemnn-Integrl 6. Integrtion 6. Ds Riemnn-Integrl Mthemtik für Chemiker 6. Integrtion 6. Ds Riemnn-Integrl Flächenberechnung: Problemstellung und Lösungsidee Sei f : [, b] [0, ) eine

Mehr

Kapitel 8 Anwendungen der Di erentialrechnung

Kapitel 8 Anwendungen der Di erentialrechnung Kpitel 8 Anwendungen der Di erentilrechnung Kpitel 8 Anwendungen der Di erentilrechnung Mthemtischer Vorkurs TU Dortmund Seite 99 / 235 Kpitel 8 Anwendungen der Di erentilrechnung Stz 8.1 (Mittelwertstz

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

4.4 Partielle Integration

4.4 Partielle Integration Mthemtik für Nturwissenschftler I 4.4 4.4 Prtielle Integrtion Zwei Integrtionsregeln kennen wir bereits: Stz 4.. und Stz 4..8. Stz 4.. sgt, dss mit zwei Funktionen uch deren Summe oder Differenz integrierbr

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

1 Folgen und Reihen. Schreibweise: (a n ) n N.

1 Folgen und Reihen. Schreibweise: (a n ) n N. Krlsruhe Institute of Technology 1 Folgen und Reihen (1.1) Eine Folge reeller Zhlen ist eine Abbildung N R. Schreibweise: ( n ) n N. (1.2) Sei ( n ) n N eine Folge. ) Für n j N mit 1 n 1 < n 2

Mehr

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36 Kpitel 9 Integrtion Josef Leydold Auffrischungskurs Mthemtik WS 207/8 9 Integrtion / 36 Stmmfunktion Eine Funktion F(x) heißt Stmmfunktion einer Funktion f (x), flls F (x) = f (x) Berechnung: Vermuten

Mehr

Thema 7 Konvergenzkriterien (uneigentliche Integrale)

Thema 7 Konvergenzkriterien (uneigentliche Integrale) Them 7 Konvergenzkriterien (uneigentliche Integrle) In diesem Kpitel betrchten wir unendliche Reihen n= n, wobei ( n ) eine Folge von reellen Zhlen ist. Die Reihe konvergiert gegen s (oder s ist die Summe

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Krlsruher Institut für Technologie Institut für Anlysis Dr. Christoph Schmoeger Dipl.-Mth. Sebstin Schwrz Höhere Mthemtik für die Fchrichtung Physik Lösungsvorschläge zum. Übungsbltt Aufgbe 6 (Übung) )

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSIÄ KARLSRUHE Institut für Anlysis HDoz. Dr. P. C. Kunstmnn Dipl.-Mth. M. Uhl Sommersemester 9 Höhere Mthemti II für die Fchrichtungen Eletroingenieurwesen, Physi und Geodäsie inlusive Komplexe Anlysis

Mehr

9.3 Der Hauptsatz und Anwendungen

9.3 Der Hauptsatz und Anwendungen 9.3 Der Huptstz und Anwendungen Definition: Seien Funktionen F, f : [, b] R Funktionen mit F (x) = f(x), x b. Dnn heißt F(x) Stmmfunktion von f(x). Bemerkung: Ist F(x) eine Stmmfunktion von f(x), so sind

Mehr

Uneigentliche Integrale & mehrdim. Differenzialrechnung

Uneigentliche Integrale & mehrdim. Differenzialrechnung Mthemtik I für Biologen, Geowissenschftler und Geoökologen Uneigentliche Integrle & mehrdimensionle Differenzilrechnung 25. Jnur 2010 Uneigentliche Integrle Unendlich Integrnd divergiert Grenze Prtielle

Mehr

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35

Kapitel 10. Integration. Josef Leydold Mathematik für VW WS 2015/16 10 Integration 1 / 35 Kpitel 0 Integrtion Josef Leydold Mthemtik für VW WS 205/6 0 Integrtion / 35 Flächeninhlt Berechnen Sie die Inhlte der ngegebenen Flächen! f (x) = Fläche: A = f (x) = +x 2 Approximtion durch Treppenfunktion

Mehr

Infinitesimalrechnung

Infinitesimalrechnung Vorlesung 17 Infinitesimlrechnung 17.1 Huptstz der Differentil- und Integrlrechnung Wir verknüpfen nun Differentil- mit Integrlrechnung. Definition 17.1.1. Eine differenzierbre Funktion F : I R heißt Stmmfunktion

Mehr

6.4 Uneigentliche Integrale

6.4 Uneigentliche Integrale 6.4 Uneigentliche Integrle 3 Beispiele : d + + d ( + ) t + d t t d t ( t + t + t ) + t + t t ln ( + t) + c + ln ( + + ) + c + t rctn + c 6.4 Uneigentliche Integrle bisher : beschränkte Funktionen uf endlichen

Mehr

Resultat: Hauptsatz der Differential- und Integralrechnung

Resultat: Hauptsatz der Differential- und Integralrechnung 17 Der Huptstz der Differentil- und Integrlrechnung Lernziele: Konzept: Stmmfunktion Resultt: Huptstz der Differentil- und Integrlrechnung Methoden: prtielle Integrtion, Substitutionsregel Kompetenzen:

Mehr

Mathematischer Vorkurs NAT-ING1

Mathematischer Vorkurs NAT-ING1 Mthemtischer Vorkurs NAT-ING1 (02.09. 20.09.2013) Dr. Robert Strehl WS 2013-2014 Mthemtischer Vorkurs TU Dortmund Seite 1 / 20 Mthemtischer Vorkurs TU Dortmund Seite 2 / 20 Definition 9.1 (Stmmfunktion)

Mehr

Hörsaalübung 4, Analysis II

Hörsaalübung 4, Analysis II Fchbereich Mthemtik der Universität Hmburg Dr. H. P. Kini Hörslübung 4, Anlysis II SoSe 28, 4./5. Mi Uneigentliche und prmeterbhängige Integrle Die ins Netz gestellten Kopien der Unterlgen sollen nur die

Mehr

Kapitel 9 Integralrechnung

Kapitel 9 Integralrechnung Kpitel 9 Integrlrechnung Kpitel 9 Integrlrechnung Mthemtischer Vorkurs TU Dortmund Seite 1 / 18 Kpitel 9 Integrlrechnung Definition 9.1 (Stmmfunktion) Es seien f, F : I R Funktionen. F heißt Stmmfunktion

Mehr

VI. Das Riemann-Stieltjes Integral.

VI. Das Riemann-Stieltjes Integral. VI. Ds Riemnn-Stieltjes Integrl. Es stellt sich herus, dss der hier entwickelte Integrlbegriff strk von der Ordnungsstruktur von R bhängt. Definition. Sei [, b] ein Intervll in R. Unter einer Prtition

Mehr

9.4 Integration rationaler Funktionen

9.4 Integration rationaler Funktionen 9.4 Integrtion rtionler Funktionen Ziel: Integrtion rtionler Funktionen R(x) = p(x) q(x) wobei p(x) = n k x k, q(x) = k=0 m b k x k. k=0 Methode: Prtilbruch-Zerlegung von rtionler Funktion R(x). Anstz:

Mehr

Formelsammlung für die Klausur: Mathematik für Chemiker I

Formelsammlung für die Klausur: Mathematik für Chemiker I Universität-Duisburg-Essen / Cmpus Essen 15. 1. 2004 FB 6 - Mthemtik Prof. Dr. D. Lutz / Dr. G. Wolf Formelsmmlung für die Klusur: Mthemtik für Chemiker I Binomilkoezienten, binomische Formel: n! = 1 2

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. M. Wolf Dr. M. Prähofer Aufgben TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik für Physiker 3 Anlysis ) Sommersemester Probeklusur Lösung) http://www-m5.m.tum.de/allgemeines/ma93 S

Mehr

Hilfsblätter Folgen und Reihen

Hilfsblätter Folgen und Reihen Hilfsblätter Folgen und Reihen Sebstin Suchnek unter Mithilfe von Klus Flittner Steffen Hofmnn Mtthis Stb c 2002 by Sebstin Suchnek Printed with L A TEX Inhltsverzeichnis 1 Folgen 1 1.1 Definition.........................................

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Infinitesimalrechnung, Mengenlehre und logische Verknüpfungen

Infinitesimalrechnung, Mengenlehre und logische Verknüpfungen Vorlesung 16 Infinitesimlrechnung, Mengenlehre und logische Verknüpfungen 16.1 Huptstz der Differentil- und Integrlrechnung Wir verknüpfen nun Differentil- mit Integrlrechnung. Definition 16.1.1. Eine

Mehr

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88 4. Funktionen Buchholz / Rudolph: MafI 2 88 Kapitelgliederung 4.1 Grundlegende Denitionen 4.2 Polynome und rationale Funktionen 4.3 Beschränkte und monotone Funktionen 4.4 Grenzwerte von Funktionen 4.5

Mehr

Ein Aufschrieb der Vorlesung Analysis I an der Uni Karlsruhe im Wintersemester 1998/99, gelesen von Priv.-Doz. Dr. G. Herzog.

Ein Aufschrieb der Vorlesung Analysis I an der Uni Karlsruhe im Wintersemester 1998/99, gelesen von Priv.-Doz. Dr. G. Herzog. Anlysis I Ein Aufschrieb der Vorlesung Anlysis I n der Uni Krlsruhe im Wintersemester 1998/99, gelesen von Priv.-Doz. Dr. G. Herzog. GeTEXt von Andres Klöckner (k@ixion.net). Für Kommentre und Berichtigungen

Mehr

Analysis I. 1 Mengen und Abbildungen

Analysis I. 1 Mengen und Abbildungen Anlysis I Ds Skript orientiert sich im wesentlichen nch den Skripten der Professoren Rüdiger Brun und Wilhelm Singhof. Die Beweise werden in den Vorlesungen, ber nicht in dem Skript gegeben. Mengen und

Mehr

3 Integration. viele Teilintervalle. Z (oder Z [a, b]) sei die Menge aller Zerlegungen von [a, b].

3 Integration. viele Teilintervalle. Z (oder Z [a, b]) sei die Menge aller Zerlegungen von [a, b]. Krlsruhe Institute of Technology 3 Integrtion (3.1) ) Z = {x,...,x n } mit = x < x 1 < < x n = b heißt eine Zerlegung von [,b] in endlich viele Teilintervlle. Z (oder Z [, b]) sei die Menge ller Zerlegungen

Mehr

1 Kurvendiskussion /40

1 Kurvendiskussion /40 009 Herbst, (Mthemtik) Aufgbenvorschlg B Kurvendiskussion /0 Gegeben ist eine Funktion f mit der Funktionsgleichung: f ( ) 0 6 = ; mit.. Untersuchen Sie ds Verhlten der Funktionswerte von f im Unendlichen.

Mehr

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. Analysis I, WiSe 2013/14, 04.02.2014 (Iske), Version A 1 Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an. a) Welche der folgenden Aussagen über Folgen sind sinnvoll und

Mehr

Integralrechnung. Fakultät Grundlagen

Integralrechnung. Fakultät Grundlagen Integrlrechnung Fkultät Grundlgen März 2016 Fkultät Grundlgen Integrlrechnung Bestimmtes Integrl I n Teilintervlle: x 0 = < x 1 < x 2

Mehr

Crashkurs - Integration

Crashkurs - Integration Crshkurs - Integrtion emerkung. Wir setzen hier elementre Kenntnisse des Differenzierens sowie der Produktregel, Quotientenregel und Kettenregel vorus (diese werden später in der VO noch usführlich erklärt).

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie 25.11.2015 LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Prof. Anres Herz, Dr. Stefn Häusler emil: heusler@biologie.uni-muenchen.e Deprtment Biologie II Telefon: 089-280-74800 Großhernerstr. 2 Fx:

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c.

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c. SBP Mthe Grundkurs 2 # 0 by Clifford Wolf # 0 Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7

1 Differenzen- und Differentialquotient 2. 2 Differentiationsregeln 5. 3 Ableitung spezieller Funktionen 6. 4 Unbestimmtes und bestimmtes Integral 7 Universität Bsel Wirtschftswissenschftliches Zentrum Abteilung Quntittive Methoden Mthemtischer Vorkurs Dr. Thoms Zehrt Differentil- und Integrlrechnung Inhltsverzeichnis 1 Differenzen- und Differentilquotient

Mehr

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei

nennt man eine Zerlegung (Partition, Unterteilung) des Intervalls [a, b]. Die Feinheit der Zerlegung ist dabei Kpitel 8: Integrtion Erläuterung uf Folie 8.1 Ds bestimmte Integrl Sei f : [, b] R eine beschränkte Funktion uf einem (zunächst) kompkten Intervll [, b]. Definition: 1) Eine Menge der Form Z = { = x 0

Mehr

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n

Thema 13 Integrale, die von einem Parameter abhängen, Integrale von Funktionen auf Teilmengen von R n Them 13 Integrle, die von einem Prmeter bhängen, Integrle von Funktionen uf Teilmengen von R n Wir erinnern drn, dß eine Funktion h : [, b] R eine Treppenfunktion ist, flls es eine Unterteilung x < x 1

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112

Mehr

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion.

9 Integralrechnung. 9.1 Das Riemann-Integral: Sei [a, b] ein beschränktes abgeschlossenes Intervall und f : [a, b] R eine beschränkte Funktion. 9 ntegrlrechnung 9. Ds Riemnn-ntegrl: Sei [, b] ein beschränktes bgeschlossenes ntervll und f : [, b] R eine beschränkte Funktion. Problem: Bestimme Flächeninhlt A zwischen Grphen von f und x-achse. Betrchte

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Zusammenfassung Analysis für Informatik

Zusammenfassung Analysis für Informatik Zusmmenfssung Anlysis für Informtik Stefn Hider e25543@student.tuwien.c.t Sommersemester 202 Prüfungsstoff 4. - 6.3, 7.5, 7.6 und 9. Inhltsverzeichnis Folgen reeller Zhlen 3. Beispiele für Folgen......................................

Mehr

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern.

komplizierteren Funktionen versucht man, die Fläche durch mehrere Rechtecke anzunähern. Mthemtik für Nturwissenschftler I 4. 4 Integrlrechnung 4. Integrierbrkeit Die Grundidee der Integrlrechnung ist die Berechnung der Fläche zwischen dem Grphen einer Funktion und der x-achse. Recht einfch

Mehr

Kapitel 7. Integralrechnung für Funktionen einer Variablen

Kapitel 7. Integralrechnung für Funktionen einer Variablen Kpitel 7. Integrlrechnung für Funktionen einer Vriblen In diesem Kpitel sei stets D R, und I R ein Intervll. 7. Ds unbestimmte Integrl (Stmmfunktion) Es sei f : I R eine Funktion. Eine differenzierbre

Mehr

Analysis 2. Mitschrift von www.kuertz.name

Analysis 2. Mitschrift von www.kuertz.name Anlysis 2 Mitschrift von www.kuertz.nme Hinweis: Dies ist kein offizielles Script, sondern nur eine privte Mitschrift. Die Mitschriften sind teweilse unvollständig, flsch oder inktuell, d sie us dem Zeitrum

Mehr

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08)

Vorlesung Mathematik für Ingenieure I (Wintersemester 2007/08) 1 Vorlesung Mthemtik für Ingenieure I (Wintersemester 2007/08) Kpitel 6: Integrlrechnung R R Volker Kibel Otto-von-Guericke Universität Mgdeburg (Version vom 21. Dezember 2007) Stetige oder monotone Funktionen

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Uneigentliche Riemann-Integrale

Uneigentliche Riemann-Integrale Uneigentliche iemnn-integrle Zweck dieses Abschnitts ist es, die Vorussetzungen zu lockern, die wir n die Funktion f : [, b] bei der Einführung des iemnn-integrls gestellt hben. Diese Vorussetzungen wren:

Mehr

Unbestimmtes Integral, Mittelwertsätze

Unbestimmtes Integral, Mittelwertsätze Unbestimmtes Integrl, Mittelwertsätze Ist f R-integrierbr, dnn knn f(x)dx einfch bestimmt werden, wenn eine Stmmfunktion F (x) von f existiert und beknnt ist. Wir wissen, dss dnn uch F (x) = F (x) + C

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Ana I. a n eine Reihe mit a n 0 n N α mit 0 < α < 1, so dass an+1. Quotientenkriterium: Sei n=1

Ana I. a n eine Reihe mit a n 0 n N α mit 0 < α < 1, so dass an+1. Quotientenkriterium: Sei n=1 An I Zwischenwertstz: Sei f : [, b] R stetig mit f() < 0 < f(b). Dnn besitzt f eine Nullstelle in (, b). Mittelwertstz Sei < b und f : [, b] R stetig und in (, b) differenzierbr. Dnn gibt es ein x (, b)

Mehr

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36. F (x) = f (x) Vermuten und Verifizieren.

Kapitel 9. Integration. Josef Leydold Auffrischungskurs Mathematik WS 2017/18 9 Integration 1 / 36. F (x) = f (x) Vermuten und Verifizieren. Kpitel 9 Integrtion Josef Leydold Auffrischungskurs Mthemtik WS 27/8 9 Integrtion / 36 Stmmfunktion Eine Funktion F() heißt Stmmfunktion einer Funktion f (), flls F () = f () Berechnung: Vermuten und Verifizieren

Mehr

Taylorreihen - Uneigentlische Integrale

Taylorreihen - Uneigentlische Integrale Anlysis II für M, LG und Ph, WS 2006/07, Übung 2, Lösungsskizze Gruppenübung Tylorreihen - Uneigentlische Integrle G 5 Berechnen Sie die Tylorreihe mit der Entwicklungsmitte 0 von f (x) = log(x + ), f

Mehr

Mathematik für Physiker II. Carsten Schütt SS 2010

Mathematik für Physiker II. Carsten Schütt SS 2010 Crsten Schütt SS. Es sei f : [, ]! R durch f(x) = x definiert. Zeige nur unter der Benutzung der Definition des Riemnn-Integrls, dss diese Funktion Riemnn-integirerbr ist und berechne ds Integrl.. Es seien

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Ü b u n g s b l a t t 13. Organisatorisches:

Ü b u n g s b l a t t 13. Organisatorisches: MATHEMATIK FÜ INFOMATIKE I WINTESEMESTE 7/8 POF. D. FIEDICH EISENBAND D. KAI GEHS Ü b u n g s b l t t 13 Orgnistorisches: Dieses Übungsbltt wir nicht mehr korrigiert. D ie Aufgben ennoch klusurrelevnt

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg : Gliederung 1 Folgen und Reihen 2 Komplexe Zahlen 3 Reelle Funktionen 4 Differenzieren 1 5 Differenzieren 2 6 Integration 7 Zinsen 8

Mehr

4.1 Definition: Sei M nichtleere Menge. Eine Metrik oder ein Abstand auf M ist eine Abbildung d : M M Ê mit folgenden Eigenschaften: d (x, y) :=

4.1 Definition: Sei M nichtleere Menge. Eine Metrik oder ein Abstand auf M ist eine Abbildung d : M M Ê mit folgenden Eigenschaften: d (x, y) := Mthemtik II für inf/swt, Sommersemester 200/, Seite 06 4 Konvergenz 4. Abstände 4. Definition: Sei M nichtleere Menge. Eine Metrik oder ein Abstnd uf M ist eine Abbildung d : M M Ê mit folgenden Eigenschften:

Mehr

Formelsammlung MAT 182 Analysis für Naturwissenschaften

Formelsammlung MAT 182 Analysis für Naturwissenschaften Formelsmmlung MAT 8 Anlysis für Nturwissenschften Contents Einfche Zhlenwerte und Funktionen 3. Potenzen............................... 3. Wurzeln............................... 3.3 Logrithmen.............................

Mehr

Musterlösung der 1. Klausur zur Vorlesung

Musterlösung der 1. Klausur zur Vorlesung Prof. Dr. M. Röger Dipl.-Mth. C. Zwilling Fkultät für Mthemtik TU Dortmund Musterlösung der. Klusur zur Vorlesung Anlysis I (24.02.206) Wintersemester 205/6 Aufgbe. Sei R mit sin() 0. Der Beweis erfolgt

Mehr

1. Die reellen Zahlen

1. Die reellen Zahlen . Die reellen Zhlen Die reellen Zhlen sind eine Menge R zusmmen mit zwei Rechenvorschriften, die je zwei Elementen x, y R ein Element x + y R und ein Element x y R zuordnen, wobei ferner eine Teilmenge

Mehr

Definition 3.33 (Oberintegral und Unterintegral). Es sei f : [a,b] R eine beschränkte Funktion. Weiter sei

Definition 3.33 (Oberintegral und Unterintegral). Es sei f : [a,b] R eine beschränkte Funktion. Weiter sei 8. Integrierbre Funktionen Definition 3.3 (Treppenfunktionen). Eine Funktion t : [,b] R heißt Treppenfunktion, flls es endlih viele Punkte x < x 1 < < x n mit x = und x n = b gibt, so dss f uf jedem der

Mehr

(21) Berechnen Sie die uneigentlichen Rieman-Integrale. ln t dt = t ln t t. = x 1 x ln x. ln t dt = 1. ) xe. ( x 2 x) x + 1 (x + 1)

(21) Berechnen Sie die uneigentlichen Rieman-Integrale. ln t dt = t ln t t. = x 1 x ln x. ln t dt = 1. ) xe. ( x 2 x) x + 1 (x + 1) Mthemtik für die Physik II, Sommersemester 28 Lösungen zu Serie 5 2) Berechnen Sie die uneigentlichen Riemn-Integrle ln d und d +. Für jedes < < gilt ln t dt = t ln t t = ln und nch I. 2.Lemm 4 und I..Stz

Mehr

Kapitel 13. Taylorentwicklung Motivation

Kapitel 13. Taylorentwicklung Motivation Kpitel 13 Tylorentwicklung 13.1 Motivtion Sei D R offen. Sie erinnern sich: Eine in D stetig differenzierbre Funktion f : D R wird durch die linere Funktion g(x) = f() + f ()(x ) in einer Umgebung von

Mehr

Münchner Volkshochschule. Themen

Münchner Volkshochschule. Themen Themen Logik und Mengenlehre Zhlensysteme und Arithmetik Gleichungen und Ungleichungen Lin. Gleichungssysteme und spez. Anwendungen Geometrie und Trigonometrie Vektoren in der Ebene und Punktemengen Funktionen

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Analysis I. TU Dortmund, Wintersemester 2013/14. Ben Schweizer

Analysis I. TU Dortmund, Wintersemester 2013/14. Ben Schweizer Anlysis I TU Dortmund, Wintersemester 2013/14 Ben Schweizer Inhltsverzeichnis 1 Reelle Zhlen 1.1 Logische Grundlgen: Aussgen, Beweise, Mengen........ 3 1.2 Die Zhlenbereiche N, Z und Q..................

Mehr

Buch Kap Stetigkeit und Integrierbarkeit

Buch Kap Stetigkeit und Integrierbarkeit 12/94 Buch Kp. 2.13 Stetigkeit und Integrierbrkeit Stz 2.34: (Stetigkeit = Integrierbrkeit) Eine uf [, b] stetige Funktion ist integrierbr. Ds gilt uch für stückweise stetige Funktionen, die uf [, b] mit

Mehr

, für x 2, ax wenn x > 3. 2x+a wenn x Integralrechnung

, für x 2, ax wenn x > 3. 2x+a wenn x Integralrechnung . INTEGRALRECHNUNG 69 Aufgbe 9.3 Bestimme lle Extrem der Funktion f : [,] R, x ( x) +9x. Aufgbe 9.3 Bestimme die Extrem der Funktion f : R\{} R : x x4 5x 4 (x ) 3. Untersuche die Funktion hinsichtlich

Mehr

Analysis 3 Zweite Scheinklausur Ws 2018/

Analysis 3 Zweite Scheinklausur Ws 2018/ Anlysis 3 weite Scheinklusur Ws 8/9..9 Es gibt 8 Aufgben. Die jeweilige Punktzhl steht m linken Rnd. Die Mximlpunktzhl ist 7. um Bestehen der Klusur sind Punkte hinreichend. Die Berbeitungszeit beträgt

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen)

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen) VII. Folgen und Reihen von Funktionen (Vertuschung von Grenzprozessen) Definition. Sei {f n } eine Folge von Funktionen, die uf einer Menge E definiert sind. Die Folgen der Funktionswerte {f n (x)} seien

Mehr

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014

Analysis 2. Vorlesungsskript Sommersemester 2014. Bernd Schmidt. Version vom 15. Oktober 2014 Anlysis 2 Vorlesungsskript Sommersemester 214 Bernd Schmidt Version vom 15. Oktober 214 Institut für Mthemtik, Universität Augsburg, Universitätsstr. 14, 86135 Augsburg, bschmidt@mth.uni-ugsburg.de 1 Inhltsverzeichnis

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Mathematik II. Vorlesung 41. Satz Es sei f :[a,b] R n, t f(t), eine differenzierbare Kurve. Dann gibt es ein c [a,b] mit

Mathematik II. Vorlesung 41. Satz Es sei f :[a,b] R n, t f(t), eine differenzierbare Kurve. Dann gibt es ein c [a,b] mit Prof. Dr. H. Brenner Osnbrück SS 1 Mthemtik II Vorlesung 41 Die Mittelwertbschätzung für differenzierbre Kurven Stz 41.1. Es sei f :[,b] R n, t f(t), eine differenzierbre Kurve. Dnn gibt es ein c [,b]

Mehr

Ferienkurs Analysis 1

Ferienkurs Analysis 1 Skript Ferienkurs Anlysis 1 Fbin Hfner und Thoms Blduf TUM Wintersemester 2014/15 18.03.2015 Ds Skript wurde teilweise übernommen vom Skript des Ferienkurses WS 2014, verfsst von Andres Wörfel. Inhltsverzeichnis

Mehr

Analysis für Informatiker Panikzettel

Analysis für Informatiker Panikzettel pnikzettel.philworld.de Anlysis für Informtiker Pnikzettel Philipp Schröer Version 5 7.04.08 Inhltsverzeichnis Einleitung Grundlgen. Formeln und Ungleichungen.................................. Unendlichkeit..........................................

Mehr

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen.

2.12 Potenzreihen. 1. Definitionen. 2. Berechnung 2.12. POTENZREIHEN 207. Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. 2.2. POTENZREIHEN 207 2.2 Potenzreihen. Definitionen Der wichtigste Spezialfall von Funktionenreihen sind Potenzreihen. Eine Potenzreihe mit Entwicklungspunkt x 0 ist eine Reihe a n x x 0 n. Es gilt: es

Mehr

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2

Zum Satz von Taylor. Klaus-R. Loeffler. 2 Der Satz von Taylor 2 Zum Stz von Tylor Klus-R. Loeffler Inhltsverzeichnis 1 Der verllgemeinerte Stz von Rolle 1 2 Der Stz von Tylor 2 3 Folgerungen, Anwendungen und Gegenbeispiele 4 3.1 Jede gnzrtionle Funktion ist ihr eigenes

Mehr

9.6 Parameterabhängige Integrale

9.6 Parameterabhängige Integrale Kpitel 9: Integrtion 9.6 Prmeterbhängige Integrle Beispiel: Die Gmm-Funktion Γ(x) := f(x, t)dt = e t t x 1 dt. Zunächst: Prmeterbhängige eigentliche Integrle. Sei f : I [, b] R, I R, so dss f für festes

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Analysis I, WS 04/05 Verzeichnis der wichtigsten Definitionen und Sätze

Analysis I, WS 04/05 Verzeichnis der wichtigsten Definitionen und Sätze Anlysis I, WS 04/05 Verzeichnis der wichtigsten Definitionen und Sätze Lorenz Schwchhöfer 8. Februr 2005 Inhltsverzeichnis 1 Mthemtische Grundlgen 1 2 Folgen und Reihen 6 3 Stetigkeit 12 4 Differenzierbrkeit

Mehr

Zusammenfassung Analysis für Informatik

Zusammenfassung Analysis für Informatik Zusmmenfssung Anlysis für Informtik Stefn Hider e1125543@student.tuwien.c.t Sommersemester 2012 Prüfungsstoff 4.1-6.3, 7.5, 7.6 und 9.1 Inhltsverzeichnis 1 Folgen reeller Zhlen 2 1.1 Beispiele für Folgen......................................

Mehr

a n := 5n4 + 2n 2 2n n + 1. a n := n 5n 2 n 2 + 7n + 8 b n := ( 1) n c n := ( 1) n+1 6n2 + 13n 5n 3 + 7

a n := 5n4 + 2n 2 2n n + 1. a n := n 5n 2 n 2 + 7n + 8 b n := ( 1) n c n := ( 1) n+1 6n2 + 13n 5n 3 + 7 Folgen und Reihen. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 2. Untersuchen Sie folgende Folgen auf Monotonie, Beschränktheit, Häufungspunkte und Konvergenz,

Mehr

f(t)dt; dabei heißt t die Integrationsvariable und f der Integrand. Schreibweise für den Zahlenwert eines Integrals über [a, b]: b

f(t)dt; dabei heißt t die Integrationsvariable und f der Integrand. Schreibweise für den Zahlenwert eines Integrals über [a, b]: b WS 7/8 Mthemtik: Them 7 Elementre Integrtion Wiederholung von Grundkenntnissen 62 Bestimmtes Integrl (Bestimmtes Riemnn-Integrl) Dies ist die einfchste und gleichzeitig für ökonomische Anwendungen wichtigste

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

HM2 Formelsammlung. Jan Höffgen 21. April 2013

HM2 Formelsammlung. Jan Höffgen 21. April 2013 HM2 Formelsmmlung Jn Höffgen 21. April 2013 Diese Zusmmenfssung wurde uf Bsis der Vorlesung Höhere Mthemtik II für Buingenieure im Sommersemester 2011 erstellt. Es besteht kein Anspruch uf Vollständigkeit

Mehr

c a+ bzw. f(x) dx. c a bzw. 1 =

c a+ bzw. f(x) dx. c a bzw. 1 = 3. Uneigentliche Integrle Die Funktion f sei uf dem rechts oenen Intervll x < b erklrt und uf jedem bgeschlossenen Teilintervll [, c], c < b, stuckweise stetig, b R { }. Dnn der Integrlbegri erweitert

Mehr

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)!

(1 ξ) f (k) (ξ) + k! z x n+1. (n + 1)! 2 f (n + 1)! 0.. Lösung der Aufgbe. Wir schreiben f = sup{ f : [0, ]}. Für ξ ]0, [ und n N gibt es nch dem Stz von Tlor ein c ]ξ, [ so, dss: f = fξ + n ξ k f k ξ + k! k= Aus der Ttsche, dss f k 0 für lle k N ist, folgt

Mehr

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 9. Übungsblatt

Höhere Mathematik I für die Fachrichtung Elektrotechnik und Informationstechnik Lösungsvorschläge zum 9. Übungsblatt Krlsruhe Institut für Technologie (KIT) Institut für Anlysis Priv.-Doz. Dr. P. C. Kunstmnn Dr. S. Wuglter WS 13/14 Aufgbe 1 Höhere Mthemtik I für die Fchrichtung Elektrotechnik und Informtionstechnik Lösungsvorschläge

Mehr