VORSCHAU. b) Sprinter Spezialschuhe mit einer extra glatten reibungsfreien Sohle anziehen. Würden sie dann jeden Wettkampf gewinnen?

Größe: px
Ab Seite anzeigen:

Download "VORSCHAU. b) Sprinter Spezialschuhe mit einer extra glatten reibungsfreien Sohle anziehen. Würden sie dann jeden Wettkampf gewinnen?"

Transkript

1 Newtonsche Gesetze der Dynamik 1. Entscheide, ob die Aussagen richtig oder falsch sind. Wenn du denkst, es handelt sich um eine falsche Aussage, dann berichtige sie. Aussage richtig falsch Die Aussage müsste richtig heißen: Ist die resultierende Kraft auf einen Körper gleich Null, so befi ndet sich der Körper in Ruhe oder gleichförmiger, geradliniger Bewegung. Je schwerer die Ladung eines LKWs, umso größer ist seine Beschleunigung. Wirken mehrere Kräfte, die sich aufheben, auf einen Körper, so befi ndet er sich in Ruhe oder bewegt sich mit konstanter Geschwindigkeit. Wenn ein Körper beschleunigt, besteht kein Kräftegleichgewicht. 2. Ordne die drei Grundgesetze der Dynamik zu. Verbinde. Trägheitsgesetz Wechselwirkungsgesetz Newtonsche Grundgesetz Der Fußballer schießt den Ball in das Tor. Beim Anfahren eines LKWs rutscht die Ladung herunter. Das Auto mit dem größeren Motor fährt an der Kreuzung schneller an. Ein aufgeblasener Luftballon wird losgelassen und fl iegt durch den Raum. Die Decke unter einem Teller wird so schnell weggezogen, dass der Teller stehen bleibt. 3. Was wäre, wenn Begründe deine Antworten. a) Wellensittiche passende Sauerstoffmasken tragen. Könnten sie dann durch einen luftleeren Raum fliegen? b) Sprinter Spezialschuhe mit einer extra glatten reibungsfreien Sohle anziehen. Würden sie dann jeden Wettkampf gewinnen? c) Schnecken an ihrem Fuß Spikes hätten. Wären sie dann schneller? 1

2 Arbeit und Energie 1. Vervollständige. Wird ein Karton von unten in ein Regal gehoben, so wird verrichtet. Der Karton besitzt dann Energie. Fällt der Karton herunter, nimmt seine Energie zu, die Energie ab. 2. Im Heide-Park Soltau eröffnete im Jahre 2001 die damals größte Holzachterbahn der Welt. Aus einer Höhe von 48,5 m fahren bis zu 30 Personen in einem Zug die Bahn fast senkrecht nach unten. a) Welche potenzielle Energie besitzt der Zug, wenn der Zug inklusive Fahrgäste eine Masse von kg besitzt? b) Welche Geschwindigkeit erreicht der Zug, wenn das Gefälle und die Reibung unberücksichtigt bleiben? 3. Um das Verhalten eines Fahrzeugs, seiner Insassen und der Ladung zu untersuchen, führt die Automobilindustrie Crashtests durch. Das Fahrzeug wird dazu auf 64 km beschleunigt und prallt dann frontal gegen eine Barriere. h a) Mit welcher kinetischen Energie prallt das Fahrzeug (1150 kg) auf die Barriere? b) Einem Sturz aus welcher Höhe entspricht dieser Aufprall? c) Maximilian behauptet, dass die berechnete Höhe für leichte und schwere Fahrzeuge gleich ist. Was sagst du dazu? Begründe deine Aussage. 3

3 5. Der Turm der Großen Olympiaschanze in Garmisch-Partenkirchen hat eine Höhe von 60,4 m. a) Welche potenzielle Energie besitzt ein Skispringer mit einer Masse von 84 kg? b) Wie groß ist die Geschwindigkeit, mit der er vom Schanzentisch abspringt? (Die Neigung, die Reibung und der Luftwiderstand bleiben unberücksichtigt.) 6. Veröffentlichte Nachricht in einer regionalen Zeitung. a) Wie groß war seine Beschleunigung? , Sao Paulo Formel 1 Großer Preis von Brasilien Am Wochenende endete die Saison mit einem spannenden Finale. Die Fahrer fuhren 71 Runden à 4309 m. Den Sieg bei diesem Rennen holte sich Jenson Button. Er beschleunigte in 11,3 Sekunden von 0 auf 300 km/h. Seine Höchstgeschwindigkeit betrug 303 km/h. Den Weltmeistertitel konnte sich jedoch Sebastian Vettel zum dritten Mal sichern. b) Wie groß war die Kraft beim Anfahren, wenn sein vollgetanktes Auto mit Fahrer eine Masse von ca. 700 kg hatte? c) Wie groß ist die Energie des Ferraris bei der Höchstgeschwindigkeit? d) Einem Sturz aus welcher Höhe entspricht dies? 5

4 Lösungen/Physik Mechanik 10 Newtonsche Gesetze der Dynamik S Aussage richtig falsch Die Aussage müsste richtig heißen: Ist die resultierende Kraft auf einen Körper gleich Null, so befindet sich der Körper in Ruhe oder gleichförmiger, geradliniger Bewegung. Je schwerer die Ladung eines LKWs, umso größer ist seine Beschleunigung. Wirken mehrere Kräfte, die sich aufheben, auf einen Körper, so befindet er sich in Ruhe oder bewegt sich mit konstanter Geschwindigkeit. Wenn ein Körper beschleunigt, besteht kein Kräftegleichgewicht. Je schwerer die Ladung eines LKWs, umso kleiner ist seine Beschleunigung. 2. Trägheitsgesetz Wechselwirkungsgesetz Newtonsche Grundgesetz Der Fußballer schießt den Ball in das Tor. Beim Anfahren eines LKWs rutscht die Ladung herunter. Das Auto mit dem größeren Motor fährt an der Kreuzung schneller an. Ein aufgeblasener Luftballon wird losgelassen und fliegt durch den Raum. Die Decke unter einem Teller wird so schnell weggezogen, dass der Teller stehen bleibt. 3. a) Die Wellensittiche könnten nicht durch einen luftleeren Raum fliegen. Es fehlt zu der von den Flügeln ausgehenden Kraft eine Gegenkraft. b) Mit glatten Sohlen verringert sich die Reibung. Dies könnte zum Vorteil sein, wenn die Sprinter über eine glatte Oberfläche gleiten wollen. Während eines Sprintlaufs müssen sie sich jedoch von dem Untergrund abstoßen. Durch den Halt, den die Sohlen mit Profil bieten, wirkt eine zu ihrer Beinkraft entgegengesetzt gerichtete Kraft. c) Mit Spikes an der Sohle könnte die Kraft der Schnecke auf den Untergrund wirken. Die gleich große entgegengesetzt gerichtete Kraft wirkt dann auf die Schnecke, sodass sie sich schneller fortbewegen kann. 4. F = m a; F = 700 kg 4 m s 2 ; F = N 5. Die Kraft der Ruderblätter wirkt zum Heck des Bootes (nach hinten). Nach dem Wechselwirkungsgesetz wirkt eine gleich große Kraft dann nach vorn zum Bug. Das Boot bewegt sich nach vorn. 6. a) Der Probekörper auf dem Wagen fällt beim plötzlichen Abbremsen des Wagens nach vorn. Aufgrund seiner Trägheit kann er sich der plötzlichen Bewegungsänderung nicht anpassen und setzt die Bewegung nach vorn fort Trägheitsgesetz. b) Fahre immer mit einem Gurt angeschnallt. Stelle deine Taschen immer auf den hinteren Sitz. c) Die Neigung der Ebene beeinflusst die Größe der Beschleunigung. Man kann das Experiment mit verschiedenen Neigungswinkeln wiederholen und jeweils die Bewegung des Probekörpers beobachten. Arbeit und Energie S Wird ein Karton von unten in ein Regal gehoben, so wird Hubarbeit verrichtet. Der Karton besitzt dann potenzielle Energie. Fällt der Karton herunter, nimmt seine kinetische Energie zu, die potenzielle Energie ab. 2. a) E pot = m g h; E pot = 8500 kg 9,81 N 48,5 m; E = 4044,2 kj kg pot b) v = 2 g h = 2 9,81 N kg 48,5 m; v = 30,8 m s = 111 km h 3. a) E kin = 1 m 2 v2 ; E kin = 1 2 m 1150 kg 17,782 ; E 2 s 2 kin = 181,7 kj b) E pot = E kin ; 181,7 kj = 1150 kg 9,81 N h; h = 181,7 kj ; h = 16,1 m kg kg 9,81 N kg c) Setzt man E pot und E kin gleich, kürzt sich die Masse heraus. 6

5 Lösungen/Physik Mechanik 10 Lernzielkontrolle S potenzielle Energie kinetische Energie Ein fliegender Schneeball Geröllberge im Hochgebirge Heißer Dampf, der in eine Turbine strömt Kokosnuss an einer Palme 2. Zu Beginn, weit oben, besitzt die Lawine eine große potenzielle Energie. Wenn sie sich nach unten bewegt, wird die potenzielle Energie in kinetische Energie umgewandelt. Die potenzielle Energie nimmt ab, die kinetische Energie zu. 3. a) Schnalle Gepäck zum sicheren Transport an. Stelle deine Kopfstützen auf die richtige Höhe ein. b) individuelle Antworten 4. Die Geschwindigkeiten sind gleich groß. 5. a) E pot = m g h; E pot = 84 kg 9,81 N 60,4 m; E = 49,8 kj kg pot b) v = 2 g h = 2 9,81 N kg 60,4 m; v = 34,4 m s = 123,9 km h 6. a) a = v ; a = 83,3 m s ; a = 7,37 m t 11,3 s s 2 b) F = m a; F = 700 kg 7,37 m s 2 ; F = 5 162,2 N c) E kin = 1 m 2 v2 ; E kin = 1 2 m 700kg 84,16 ; E 2 s 2 kin = 2479 kj d) h = v 2 ; h = 84,16 m 2 s 2 2 g 2 9,81 N kg ; h = 361 m 7

DOWNLOAD. Physik kompetenzorientiert: Mechanik 10. Physik III. Anke Ganzer. Downloadauszug aus dem Originaltitel: kompetenzorientierte Aufgaben

DOWNLOAD. Physik kompetenzorientiert: Mechanik 10. Physik III. Anke Ganzer. Downloadauszug aus dem Originaltitel: kompetenzorientierte Aufgaben DOWNLOAD Anke Ganzer Physik kompetenzorientiert: Mechanik 10 Anke Ganzer Bergedorfer Unterrichtsideen Downloadauszug aus dem Originaltitel: 9./10. Klasse Physik III kompetenzorientierte Aufgaben Optik,

Mehr

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2 Die Kraft Mechanik Newton sche Gesetze und ihre Anwendung (6 h) Physik Leistungskurs physikalische Bedeutung: Die Kraft gibt an, wie stark ein Körper auf einen anderen einwirkt. FZ: Einheit: N Gleichung:

Mehr

Physikunterricht 11. Jahrgang P. HEINECKE.

Physikunterricht 11. Jahrgang P. HEINECKE. Physikunterricht 11. Jahrgang P. HEINECKE Hannover, Juli 2008 Inhaltsverzeichnis 1 Kinematik 3 1.1 Gleichförmige Bewegung.................................. 3 1.2 Gleichmäßig

Mehr

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com

Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11. von Matthias Kolodziej aol.com GRUNDLAGEN DER MECHANIK Erklärungen, Formeln und gelöste Übungsaufgaben der Mechanik aus Klasse 11 von Matthias Kolodziej shorebreak13 @ aol.com Hagen, Westfalen September 2002 Inhalt: I. Kinematik 1.

Mehr

Ein Fahrzeug ohne eigenen Antrieb startet auf der abgebildeten Bahn von dem Punkt (1) und fährt reibungsfrei über den Punkt (2) zum Punkt (3).

Ein Fahrzeug ohne eigenen Antrieb startet auf der abgebildeten Bahn von dem Punkt (1) und fährt reibungsfrei über den Punkt (2) zum Punkt (3). Achterbahn Ein Fahrzeug ohne eigenen Antrieb startet auf der abgebildeten Bahn von dem Punkt (1) und fährt reibungsfrei über den Punkt (2) zum Punkt (3). a) Warum bewegt sich das Fahrzeug? sidee b) Welche

Mehr

Was haben Sie zum Unterrichtsinhalt Translation gelernt?

Was haben Sie zum Unterrichtsinhalt Translation gelernt? Was haben Sie zum Unterrichtsinhalt Translation gelernt? Bewegung Veränderung des Ortes mit der Zeit relativ zu einem Bezugssystem Veränderung in Raum und Zeit von einem Standpunkt aus Mensch bewegt sich

Mehr

Zweisprachiger Wettbewerb Physik 1. Schuljahr

Zweisprachiger Wettbewerb Physik 1. Schuljahr Zweisprachiger Wettbewerb Physik 1. Schuljahr Lieber Schüler, liebe Schülerin, Der Wettbewerb besteht aus 20 Fragen. Sie sollten von den vorgegebenen Lösungsmöglichkeiten immer die einzige richtige Lösung

Mehr

2) Nennen und beschreiben Sie kurz die drei Newtonschen Axiome! 1. Newt. Axiom: 2. Newt. Axiom: 3. Newt. Axiom:

2) Nennen und beschreiben Sie kurz die drei Newtonschen Axiome! 1. Newt. Axiom: 2. Newt. Axiom: 3. Newt. Axiom: Übungsaufgaben zu 3.1 und 3.2 Wiederholung zur Dynamik 1) An welchen beiden Wirkungen kann man Kräfte erkennen? 2) Nennen und beschreiben Sie kurz die drei Newtonschen Axiome! 1. Newt. Axiom: 2. Newt.

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Grund- und Angleichungsvorlesung Energie, Arbeit & Leistung.

Grund- und Angleichungsvorlesung Energie, Arbeit & Leistung. 2 Grund- und Angleichungsvorlesung Physik. Energie, Arbeit & Leistung. WS 16/17 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell

Mehr

Grund- und Angleichungsvorlesung Energie, Arbeit & Leistung.

Grund- und Angleichungsvorlesung Energie, Arbeit & Leistung. 3 Grund- und Angleichungsvorlesung Physik. Energie, Arbeit & Leistung. WS 16/17 1. Sem. B.Sc. LM-Wissenschaften Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nichtkommerziell

Mehr

Energiearten, Energieumwandlung

Energiearten, Energieumwandlung Energie Aus dem täglichen Leben ist sicher folgende Aussage bekannt: Ich bin voller Energie Wenn Du aber voller Energie bist, dann hast du ein grosses Bedürfnis etwas zu tun, eine bestimmte Arbeit zu verrichten.

Mehr

DOWNLOAD Mechanik: Newtonsche Gesetze und Energie

DOWNLOAD Mechanik: Newtonsche Gesetze und Energie DOWNLOAD Kerstin Neumann Mechanik: Newtonsche Gesetze und Energie Physik selbst entdecken auszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutschen Urheberrecht.

Mehr

1.1 Eindimensionale Bewegung. Aufgaben

1.1 Eindimensionale Bewegung. Aufgaben 1.1 Eindimensionale Bewegung Aufgaben Aufgabe 1: Fahrzeug B fährt mit der Geschwindigkeit v B am Punkt Q vorbei und fährt anschließend mit konstanter Geschwindigkeit weiter. Eine Zeitspanne Δt später fährt

Mehr

Grundwissen Physik 7. Jahrgangsstufe

Grundwissen Physik 7. Jahrgangsstufe Grundwissen Physik 7. Jahrgangsstufe I. Elektrizitätslehre und Magnetismus 1. Der elektrische Strom ist nur durch seine Wirkungen erkennbar: magnetische, chemische, Licht- und Wärmewirkung. Vorsicht Strom

Mehr

Tutorium Physik 1. Arbeit, Energie, Leistung.

Tutorium Physik 1. Arbeit, Energie, Leistung. 2 Tutorium Physik 1. Arbeit, Energie, Leistung. WS 18/19 1. Sem. B.Sc. Catering und Hospitality Services Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nicht-kommerziell Weitergabe

Mehr

Kinematik von Punktmassen. Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h.

Kinematik von Punktmassen. Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h. Kinematik von Punktmassen Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h. a. Wie lange braucht der Ball bis ins Tor? Lsg.: a) 0,333s Aufgabe 2. Ein Basketball-Spieler

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt: Mechanik der Bewegungen - Eine Einführung Das komplette Material finden Sie hier: School-Scout.de SCHOOL-SCOUT Mechanik

Mehr

Tutorium Physik 1. Arbeit, Energie, Leistung

Tutorium Physik 1. Arbeit, Energie, Leistung 1 Tutorium Physik 1. Arbeit, Energie, Leistung WS 15/16 1.Semester BSc. Oec. und BSc. CH 3 3. ARBEIT, ENERGIE, LEISTUNG 3.1 Energie: Aufgabe (*) 4 a. Was ist Energie? b. Worin liegt der Unterschied zwischen

Mehr

Fachbezogene Ziele. Wirkung von Kräften. Bewegungsenergie. Reibung. Schubkraft. Bremsen.

Fachbezogene Ziele. Wirkung von Kräften. Bewegungsenergie. Reibung. Schubkraft. Bremsen. Kinetische Energie Die SchülerInnen sollen behalten Die Bewegungsenergie eines Körpers ist proportional zu seiner Masse und dem Quadrat seiner Geschwindigkeit. Die Bewegungsenergie wird bei einem eventuellen

Mehr

Länge der Feder (unbelastet): l 0 = 15 cm; Aus dem hookeschen Gesetz errechnet man die Ausdehnung s:

Länge der Feder (unbelastet): l 0 = 15 cm; Aus dem hookeschen Gesetz errechnet man die Ausdehnung s: Die Federkonstante ist für jede Feder eine charakteristische Größe und beschreibt den Härtegrad der Feder. Je größer bzw. kleiner die Federkonstante ist, desto härter bzw. weicher ist die Feder. RECHENBEISPIEL:

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Arbeit, Skalarprodukt, potentielle und kinetische Energie Energieerhaltungssatz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 4. Nov.

Mehr

Technische Mechanik. Martin Mayr. Statik - Kinematik - Kinetik - Schwingungen - Festigkeitslehre ISBN Leseprobe

Technische Mechanik. Martin Mayr. Statik - Kinematik - Kinetik - Schwingungen - Festigkeitslehre ISBN Leseprobe Technische Mechanik Martin Mayr Statik - Kinematik - Kinetik - Schwingungen - Festigkeitslehre ISBN 3-446-40711-1 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-40711-1

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 3: Dynamik und Kräfte Dr. Daniel Bick 09. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 09. November 2016 1 / 25 Übersicht 1 Wiederholung

Mehr

v = x t = 1 m s Geschwindigkeit zurückgelegter Weg benötigte Zeit x t Zeit-Ort-Funktion x = v t + x 0

v = x t = 1 m s Geschwindigkeit zurückgelegter Weg benötigte Zeit x t Zeit-Ort-Funktion x = v t + x 0 1. Kinematik ================================================================== 1.1 Geradlinige Bewegung 1.1. Gleichförmige Bewegung v = x v = 1 m s v x Geschwindigkeit zurückgelegter Weg benötigte Zeit

Mehr

Bewegung. Ich kenne den Zusammenhang zwischen Geschwindigkeit und Weg. 19

Bewegung. Ich kenne den Zusammenhang zwischen Geschwindigkeit und Weg. 19 2 Bewegung Kreuze an jetzt / nach Abschluss des Kapitels 2.1 Geschwindigkeit Ich kann verschiedene Geschwindigkeiten abschätzen. Lernziele Seite Einschätzung Ich kenne den Zusammenhang zwischen Geschwindigkeit

Mehr

Mechanik. Entwicklung der Mechanik

Mechanik. Entwicklung der Mechanik Mechanik Entwicklung der Mechanik ältester Zweig der Physik Kinematik Bewegung Dynamik Kraft Statik Gleichgewicht Antike: Mechanik = Kunst die Natur zu überlisten mit Newton Beginn Entwicklung Mechanik

Mehr

Gemessen wird die Zeit, die der Wagen bei einer beschleunigten Bewegung für die Messtrecke 1m braucht.

Gemessen wird die Zeit, die der Wagen bei einer beschleunigten Bewegung für die Messtrecke 1m braucht. R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 Beschleunigungsmessung an der Fahrbahn Protokoll und Auswertung einer Versuchsdurchführung. Gemessen wird die Zeit, die der Wagen bei einer beschleunigten

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

Dynamik. 4.Vorlesung EPI

Dynamik. 4.Vorlesung EPI 4.Vorlesung EPI I) Mechanik 1. Kinematik 2.Dynamik a) Newtons Axiome (Begriffe Masse und Kraft) b) Fundamentale Kräfte c) Schwerkraft (Gravitation) d) Federkraft e) Reibungskraft 1 Das 2. Newtonsche Prinzip

Mehr

Übung. Geradlinie gleichförmige und gleichmäßige Bewegung, Freier Fall, Senkrechter Wurf

Übung. Geradlinie gleichförmige und gleichmäßige Bewegung, Freier Fall, Senkrechter Wurf Übung Geradlinie gleichförmige und gleichmäßige Bewegung, Freier Fall, Senkrechter Wurf Wissensfragen 1. Welches sind die Grundeinheiten des SI-Systems? Nennen Sie die Größen, den Namen der Einheiten und

Mehr

PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert

PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert WS 2018/19 Übungsblatt 4 Lösung Übungsblatt 4 Lösung Aufgabe 1 Bungee-Jump revisited. Weil es einigen Menschen so gut gefällt von der Europabrücke

Mehr

1. Geradlinige Bewegung

1. Geradlinige Bewegung 1. Geradlinige Bewegung 1.1 Kinematik 1.2 Schwerpunktsatz 1.3 Dynamisches Gleichgewicht 1.4 Arbeit und Energie 1.5 Leistung Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.1-1 1.1 Kinematik Ort: Bei

Mehr

Deutschsprachiger Wettbewerb 2012/2013 Physik Jahrgang 1 2. Runde

Deutschsprachiger Wettbewerb 2012/2013 Physik Jahrgang 1 2. Runde Deutschsprachiger Wettbewerb 2012/2013 Physik Jahrgang 1 2. Runde Liebe Schülerin, lieber Schüler, diese Runde des Wettbewerbs hat 20 Fragen, Sie sollen von den vorgegebenen Lösungsmöglichkeiten immer

Mehr

Vorbereitung der Klausur Grundkurs Physik11-1 Mechanik

Vorbereitung der Klausur Grundkurs Physik11-1 Mechanik Vorbereitung der Klausur Grundkurs Physik11-1 Mechanik Themenschwerpunkte der Klausur 2014 Reibung und Reibungsarbeit Anwendungen des Energieerhaltungssatzes Grundlagen der Kinematik Definition der Bewegung,

Mehr

Aufgabenblatt Kräfte, Dichte, Reibung und Luftwiderstand

Aufgabenblatt Kräfte, Dichte, Reibung und Luftwiderstand Urs Wyder, 4057 Basel U.Wyder@ksh.ch Aufgabenblatt Kräfte, Dichte, Reibung und Luftwiderstand Hinweis: Verwenden Sie in Formeln immer die SI-Einheiten Meter, Kilogramm und Sekunden resp. Quadrat- und Kubikmeter!

Mehr

2.0 Dynamik Kraft & Bewegung

2.0 Dynamik Kraft & Bewegung .0 Dynamik Kraft & Bewegung Kraft Alltag: Muskelkater Formänderung / statische Wirkung (Gebäudestabilität) Physik Beschleunigung / dynamische Wirkung (Impulsänderung) Masse Schwere Masse: Eigenschaft eines

Mehr

- Fahrgast in der Straßenbahn - Gepäck auf dem Autodach - Sicherheitsgurt

- Fahrgast in der Straßenbahn - Gepäck auf dem Autodach - Sicherheitsgurt PRÜFUNGSVORBEREITUNG MECHANIK 1.) Nenne das Trägheitsgesetz! Erläutere möglichst genau an folgenden Beispielen aus dem Straßenverkehr, warum Trägheit eine große Rolle bei Fragen der Verkehrssicherheit

Mehr

Impuls, Kraft, Impulsbilanz, Modellierung mit VENSIM, Energie

Impuls, Kraft, Impulsbilanz, Modellierung mit VENSIM, Energie Aufgaben 2 Translations-Mechanik Impuls, Kraft, Impulsbilanz, Modellierung mit VENSIM, Energie Lernziele - den Zusammenhang zwischen Impuls, Masse und Geschwindigkeit eines Körpers anwenden können. - das

Mehr

Prüfungsvorbereitung Physik: Bewegungen und Kräfte

Prüfungsvorbereitung Physik: Bewegungen und Kräfte Prüfungsvorbereitung Physik: Bewegungen und Kräfte Theoriefragen: Diese Begriffe müssen Sie auswendig in ein bis zwei Sätzen erklären können. a) Vektor/Skalar b) Woran erkennt man eine Kraft? c) Welche

Mehr

A. v = 8.9 m/s B. v = 6.3 m/s C. v = 12.5 m/s D. v = 4.4 m/s E. v = 1.3 m/s

A. v = 8.9 m/s B. v = 6.3 m/s C. v = 12.5 m/s D. v = 4.4 m/s E. v = 1.3 m/s Aufgabe 1: Wie schnell muss ein Wagen in einem Looping mit 8 m Durchmesser am höchsten Punkt sein, damit er gerade nicht herunterfällt? (im Schwerefeld der Erde) A. v = 8.9 m/s B. v = 6.3 m/s C. v = 12.5

Mehr

Wiederholung Physik I - Mechanik

Wiederholung Physik I - Mechanik Universität Siegen Wintersemester 2011/12 Naturwissenschaftlich-Technische Fakultät Prof. Dr. M. Risse, M. Niechciol Department Physik 9. Übungsblatt zur Vorlesung Physik II für Elektrotechnik-Ingenieure

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 9. Nov. Keplergleichungen, Gravitation u. Scheinkräfte Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Planetenbahnen http://www.astro.uni-bonn.de/~deboer/pdm/planet/sonnenap2/

Mehr

VORSCHAU. 4. Es werden mechanische und elektromagnetische Wellen unterschieden. Ordne folgende Beispiele.

VORSCHAU. 4. Es werden mechanische und elektromagnetische Wellen unterschieden. Ordne folgende Beispiele. Die mechanischen 1. Entscheide, ob die Aussagen richtig oder falsch sind. Wenn du denkst, es handelt sich um eine falsche Aussage, dann berichtige diese. Aussage richtig falsch Die Aussage müsste richtig

Mehr

Newtonsche Gesetze. Lösung: a = F m =

Newtonsche Gesetze. Lösung: a = F m = Newtonsche Gesetze 1. Der ICE 3 hat laut Hersteller eine axiale Anzugkraft von 300kN und ein,,leergewicht von 405t. Der Zug hat 415 Sitzplätze. Wir unterstellen für die Masse eines Passagiers eine Masse

Mehr

Kinematik ================================================================== 1. Zeit-Ort-Diagramm geradliniger Bewegungen

Kinematik ================================================================== 1. Zeit-Ort-Diagramm geradliniger Bewegungen Kinematik ================================================================== 1. Zeit-Ort-Diagramm geradliniger Bewegungen Bewegt sich ein Körper geradlinig, dann kann mit einem Zeit-Ort-Diagramm dargestellt

Mehr

Aufgabensammlung für Versuche mit der Crashschlittenbahn mit Lösungen

Aufgabensammlung für Versuche mit der Crashschlittenbahn mit Lösungen v in m/s Aufgabensammlung für Versuche mit der Crashschlittenbahn mit Lösungen Aufgabe 1 Mika fährt in seinem Sportsitz angeschnallt gegen zwei Dosen als Deformationselement. Seine Fahrt wurde mittels

Mehr

gibb / BMS Physik Berufsmatur 2008 Seite 1

gibb / BMS Physik Berufsmatur 2008 Seite 1 gibb / BMS Physik Berufsmatur 008 Seite 1 Aufgabe 1 Kreuzen Sie alle korrekten Lösungen direkt auf dem Blatt an. Es können mehrere Antworten richtig sein. Alle 4 Teile dieser Aufgabe werden mit je einem

Mehr

v 1 vor m 1 v 1 nach

v 1 vor m 1 v 1 nach Aufgaben Aufgabe 1 Ein Gleiter mit der Masse = 500g stößt elastisch auf einen zweiten Gleiter (Masse ist unbekannt). Die Geschwindigkeit des 1. Gleiters vor dem Stoß beträgt v 1 vor = 1,5 m/s, und nach

Mehr

Lösung II Veröentlicht:

Lösung II Veröentlicht: 1 Momentane Bewegung I Die Position eines Teilchens auf der x-achse ist gegeben durch x = 6m 60(m/s)t + 4(m/s 2 )t 2, wobei x in Metern t in Sekunden ist (a) Wo ist das Teilchen zur Zeit t= 0 s? (2 Punkte)

Mehr

2 Gleichmässig beschleunigte Bewegung

2 Gleichmässig beschleunigte Bewegung 2 Gleichmässig beschleunigte Bewegung Ziele dieses Kapitels Du kennst die Definition der Grösse Beschleunigung. Du kannst die gleichmässig beschleunigte Bewegung im v-t- und s-t-diagramm darstellen. Du

Mehr

zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung

zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung Fach: Physik/ L. Wenzl Datum: zu 2.1 / I. Wiederholungsaufgaben zur beschleunigten Bewegung Aufgabe 1: Ein Auto beschleunigt gleichmäßig in 12,0 s von 0 auf 100 kmh -1. Welchen Weg hat es in dieser Zeit

Mehr

Lösung II Veröffentlicht:

Lösung II Veröffentlicht: 1 Momentane Bewegung I Die Position eines Teilchens auf der x-achse, ist gegeben durch x = 3m 30(m/s)t + 2(m/s 3 )t 3, wobei x in Metern und t in Sekunden angeben wird (a) Die Position des Teilchens bei

Mehr

6 Dynamik der Translation

6 Dynamik der Translation 6 Dynamik der Translation Die Newton sche Axiome besagen, nach welchen Geseten sich Massenpunkte im Raum bewegen. 6.1.1 Erstes Newton sches Axiom (Trägheitsgeset = law of inertia) Das erste Newton sche

Mehr

Energie, Kinetische Energie, Potentielle Energie, Energiebilanz

Energie, Kinetische Energie, Potentielle Energie, Energiebilanz Aufgaben 3 Translations-Mechanik Energie, Kinetische Energie, Potentielle Energie, Energiebilanz Lernziele - den Impuls als Energieträger verstehen. - den Zusammenhang zwischen dem Impulsstrom und dem

Mehr

Zweisprachiger Wettbewerb Physik 2. Schuljahr

Zweisprachiger Wettbewerb Physik 2. Schuljahr Zweisprachiger Wettbewerb Physik 2. Schuljahr Lieber Schüler, liebe Schülerin, Der Wettbewerb besteht aus 20 Fragen. Sie sollten von den vorgegebenen Lösungsmöglichkeiten immer die einzige richtige Lösung

Mehr

EXPERIMENTALPHYSIK I - 4. Übungsblatt

EXPERIMENTALPHYSIK I - 4. Übungsblatt Musterlösung des Übungsblattes 5 der Vorlesung ExpPhys I (ET http://wwwet92unibw-muenchende/uebungen/ep1et-verm/uebun EXPERIMENTALPHYSIK I - 4 Übungsblatt VII Die mechanischen Energieformen potentielle

Mehr

Übungen: Kraftwirkung in magnetischen Feldern

Übungen: Kraftwirkung in magnetischen Feldern Übungen: Kraftwirkung in magnetischen Feldern Aufgabe 1: Zwei metallische Leiter werden durch einen runden, beweglichen Kohlestift verbunden. Welche Beobachtung macht ein(e) Schüler(in), wenn der Stromkreis

Mehr

A. p = Pa B. p = Pa C. p = 294 Pa D. p = Pa E. p = Pa

A. p = Pa B. p = Pa C. p = 294 Pa D. p = Pa E. p = Pa Aufgabe 1: Eine beidseitig geschlossene Orgelpfeife sei 4 m lang und mit Xenon gefüllt. Was ist die Frequenz f der niedrigsten Schwingungsmode? (Schallgeschwindigkeit in Xenon 176 m/s). A. f = 44 Hz B.

Mehr

V12 Beschleunigte Bewegungen

V12 Beschleunigte Bewegungen Aufgabenstellung: 1. Ermitteln Sie die Fallbeschleunigung g aus Rollexperimenten auf der Rollbahn. 2. Zeigen Sie, dass für die Bewegung eines Wagens auf der geneigten Ebene der Energieerhaltungssatz gilt.

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 13. Nov. Scheinkräfte Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Die Newtonschen Grundgesetze 1. Newtonsche Axiom (Trägheitsprinzip)

Mehr

Schiefe Ebene / Energieerhaltung

Schiefe Ebene / Energieerhaltung GP_A0093 Nr. 5: 1. Eine Stahlkugel der Masse 2,5 kg wird in der gezeichneten Lage von einem ortsfesten Elektromagneten gehalten. Der Strom wird nun abgeschaltet und die Kugel rollt den Abhang hinunter.

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie November 2012 Abzugeben bis zum 16. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie November 2012 Abzugeben bis zum 16. November Übungen zur Physik - Wintersemester 22/23 Serie 4 5. November 22 Abzugeben bis zum 6. November Aufgabe : Ein Apfel hängt in einem Baum an der Position r = (; ; m). Zum Zeitpunkt t = löst sich der Apfel

Mehr

Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/ Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS013/14 18.1.013 Diese Aufgaben entsprechen der Abschlußklausur, für die 1 ¾ Stunden

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.5 Beispiele 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer

Mehr

Tutorium Physik 1. Kinematik, Dynamik

Tutorium Physik 1. Kinematik, Dynamik 1 Tutorium Physik 1. Kinematik, Dynamik WS 15/16 1.Semester BSc. Oec. und BSc. CH 56 KINEMATIK, DYNAMIK (II) 2.16 Bungee-Sprung von der Brücke: Aufgabe (***) 57 Beim Sprung von der Europabrücke wird nach

Mehr

Schriftliche Abschlussprüfung Physik 1993/94. Lösungen

Schriftliche Abschlussprüfung Physik 1993/94. Lösungen Schriftliche Abschlussprüfung Physik 1993/94 Lösungen Hinweise: 1. Die vorliegenden Lösungen sind Musterlösungen von Uwe Hempel, Georg-Schumann-Schule in Leipzig, und keine offiziellen Lösungen des Sächsischen

Mehr

Mechanik I. Arbeitsblätter. (Lehrerversion) GIDA 2010

Mechanik I. Arbeitsblätter. (Lehrerversion) GIDA 2010 Arbeitsblätter (Lehrerversion) Sek. I Arbeitsblatt 1 Kräfte: Vervollständige den Lückentext! Überall in der Welt begegnen uns Kräfte. Man kann sie nicht direkt sehen, man erkennt sie nur an ihrer Wirkung.

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 015/16 Übungsblatt 6 Übungsblatt 6 Lösung Aufgabe 1 Gravitation. a) Berechnen Sie die Beschleunigung g auf der Sonnenoberfläche. Gegeben

Mehr

! den Ausdruck W = F. s schreiben darf?

! den Ausdruck W = F. s schreiben darf? Probeklausur 1. ufgabe Ohne die Luftreibung wären Regentropfen sehr gefährlich, sie könnten uns "erschießen". Welchen Betrag in km/h hätte die Geschwindigkeit eines Regentropfens, der frei (ohne Luftreibung)

Mehr

Bewegungen im Alltag A 51

Bewegungen im Alltag A 51 Bewegungen im Alltag A 51 Beschreibe jede der abgebildeten Bewegungen. Gehe dabei auf die Bahnform und der Bewegungsart ein. ahrstuhl (oto:daniel Patzke) Hackschnitzel auf örderband (oto: wohnen pege)

Mehr

Liebe Schülerin, lieber Schüler,

Liebe Schülerin, lieber Schüler, Liebe Schülerin, lieber Schüler, Wir gratulieren herzlich, dass Sie in die zweite Runde weitergekommen sind. Der erste Teil der zweiten Runde des Wettbewerbs besteht darin, dass Sie einen Test, wie in

Mehr

Allgemeine Bewegungsgleichung

Allgemeine Bewegungsgleichung Freier Fall Allgemeine Bewegungsgleichung (gleichmäßig beschleunigte Bewegung) s 0, v 0 Ableitung nach t 15 Freier Fall Sprung vom 5-Meter Turm s 0 = 0; v 0 = 0 (Aufprallgeschwindigkeit: v = -10m/s) Weg-Zeit

Mehr

Inhalt. Vorwort. Grundlagen der Mechanik. Mechanik der Flüssigkeiten und Gase

Inhalt. Vorwort. Grundlagen der Mechanik. Mechanik der Flüssigkeiten und Gase MEHR ERFAHREN Inhalt Vorwort Grundlagen der Mechanik 1 Physikalische Größen und Einheiten; Länge... 1 2 Kraft... 12 3 Addition und Zerlegung von Kräften *... 18 4 Gravitation und Gewichtskraft... 21 5

Mehr

Impuls und Impulserhaltung

Impuls und Impulserhaltung Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Impuls und Impulserhaltung Impuls. Einführung und Definition Der Impuls (engl. momentum) eines Körpers ist das, was in der Umgangssprache als Schwung oder Wucht

Mehr

Grundwissen Physik 8. Klasse Schuljahr 2011/12

Grundwissen Physik 8. Klasse Schuljahr 2011/12 1. Was du aus der 7. Klasse Natur und Technik unbedingt noch wissen solltest a) Vorsilben (Präfixe) und Zehnerpotenzen Bezeichnung Buchstabe Wert Beispiel Kilo k 1.000=10 3 1 kg=1000 g=10 3 g Mega M 1.000.000=10

Mehr

www.italyontheroad.it HEADREST KOPFSTÜTZE Allgemeine Hinweise und Ratschläge. Der häufigste Verkehrsunfall ist der Auffahrunfall, der von einem von hinten nachfolgenden Fahrzeug verursacht wird. Der Frontal-

Mehr

Lernstation I. Abstrakte Formulierungen die drei Größen in der Kraftformel. 4. Zum Ausprobieren: Auf dem Tisch liegen verschieden

Lernstation I. Abstrakte Formulierungen die drei Größen in der Kraftformel. 4. Zum Ausprobieren: Auf dem Tisch liegen verschieden Lernstation I Abstrakte Formulierungen die drei Größen in der Kraftformel 1. Welche Kraft wird benötigt, um einen Körper der Masse m = 1 kg mit a = 1 m s 2 zu beschleunigen? Schreiben sie einen Antwortsatz!

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben Technische Mechanik 3 2.2-1 Prof. Dr. Wandinger Aufgabe 1 Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt.

Mehr

Aufgaben zu den Bewegungen

Aufgaben zu den Bewegungen Aufgaben zu den Bewegungen 1. Im Märchen Rapunzel wird das Mädchen von einer Zauberin in einen Turm eingesperrt, der ohne Tür war und nur oben ein kleines Fenster hatte. Wenn die Zauberin hinein wollte,

Mehr

Aufgabenübersicht für tägliche Übungen mit zugehörigen Klassenstufen:

Aufgabenübersicht für tägliche Übungen mit zugehörigen Klassenstufen: Aufgabenübersicht für tägliche Übungen mit zugehörigen Klassenstufen: Größen mit Formelzeichen, Einheiten und Umrechnungen: Bsp.: 520 mm : 10 = 52 cm Bsp.: 120 h : 24 = 5 d 6 Weg FZ: s Einheiten: mm; cm;

Mehr

r r oder: Fres r F t m v Der Kraftstoss F t m v res

r r oder: Fres r F t m v Der Kraftstoss F t m v res KAPITEL 5 Impuls 5.1 Der Kraftstoss Einführungsbeispiel Bei der Ausführung eines Freistosses tritt Beckham mit einer Kraft von 1000 N auf den Ball. a) Mit welcher Geschwindigkeit fliegt der Ball (m = 450

Mehr

Beachten sie bitte die Punkteverteilung

Beachten sie bitte die Punkteverteilung Tutor oder Tutorium: Semester: Fachrichtung: Beachten sie bitte die Punkteverteilung Aufgabe Punkte 1 7 2 11 3 6 4 9 5 7 Gesamt 40 Nützliche Formeln und Konstanten: Volumenelement Zylinderkoordinaten:

Mehr

Prüfungshinweise Physik. 1. Prüfungstermine: 2. Bearbeitungszeit: 3. Anzahl und Art der Aufgaben: 4. Zugelassene Hilfsmittel:

Prüfungshinweise Physik. 1. Prüfungstermine: 2. Bearbeitungszeit: 3. Anzahl und Art der Aufgaben: 4. Zugelassene Hilfsmittel: Prüfungshinweise Physik 1. Prüfungstermine: Hauptprüfung: 27.03.03 / Nachprüfung: 07.04.03 2. Bearbeitungszeit: 120 Minuten 3. Anzahl und Art der Aufgaben: sechs Aufgaben 4. Zugelassene Hilfsmittel: Zeichengerät,

Mehr

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik?

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik? Was ist der Differentialquotient in der Physik? Ein Auto fährt auf der A1 von Wien nach Salzburg. Wir können diese Fahrt durch eine Funktion Y(T) beschreiben, die zu jedem Zeitpunkt T (Stunden oder Sekunden)

Mehr

2.2 Arbeit und Energie. Aufgaben

2.2 Arbeit und Energie. Aufgaben 2.2 Arbeit und Energie Aufgaben Aufgabe 1: Auf eine Katapult befindet sich eine Kugel der Masse, die durch eine Feder beschleunigt wird. Die Feder ist a Anfang u die Strecke s 0 zusaengedrückt. Für die

Mehr

MECHANIK I. Kinematik Dynamik

MECHANIK I. Kinematik Dynamik MECHANIK I Kinematik Dynamik Mechanik iki Versuche Luftkissenbahn Fallschnur Mechanik iki Kinematik Kinematik beschreibt Ablauf einer Bewegungeg Bewegung sei definiert relativ zu Bezugssystem Koordinatensystem

Mehr

Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse

Kapitel 1 PUNKTMECHANIK LERNZIELE INHALT. Körper. Masse Kapitel 1 PUNKTMECHANIK LERNZIELE Definition der physikalischen Begriffe Körper, Masse, Ort, Geschwindigkeit, Beschleunigung, Kraft. Newtons Axiome Die Benutzung eines Bezugssystems / Koordinatensystems.

Mehr

05. Eine Gewehrkugel soll bei einer Schussweite von 120 m nicht mehr als 0,5 m fallen. Wie groß muss die Anfangsgeschwindigkeit mindestens sein?

05. Eine Gewehrkugel soll bei einer Schussweite von 120 m nicht mehr als 0,5 m fallen. Wie groß muss die Anfangsgeschwindigkeit mindestens sein? Übungsaufgaben a) Würfe 01. Ein Körper wird vertikal nach oben geworfen, er kehrt nach der Zeit t=5 s zum Erdboden zurück. a) Welche Anfangsgeschwindigkeit v 0 hatte er? b) Welche Höhe h hatte der Körper

Mehr

Was versteht man unter Bewegung?

Was versteht man unter Bewegung? Bewegungen Was versteht man unter Bewegung? Beobachten: Beschreiben: Ortsveränderung in einer bestimmten Zeit Messen: Objektivierte Darstellung durch Vergleiche mit allgemein gültigen Standards: Längenmaß,

Mehr

Übungsauftrag zur Kinematik - Lösungen

Übungsauftrag zur Kinematik - Lösungen Übungsauftrag zur Kinematik - Lösungen Aufgaben zu Bewegungsdiagrammen 1. Autofahrt Die Bewegung eines Autos lässt sich durch folgendes Diagramm beschreiben: (a) Beschreibe die Bewegung so genau wie möglich

Mehr

Impuls und Impulserhaltung

Impuls und Impulserhaltung Impuls und Impulserhaltung Zielsetzung: In diesem Experiment ist es unser Ziel, den Impuls an einem Wagen mit seinen Impulsänderungen zu vergleichen. Die Bewegung des Autos, wenn es mit einer Kraftsonde

Mehr

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1 3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe

Mehr

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen!

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen! Physik 1 / Klausur Anfang SS 0 Heift / Kurtz Name: Vorname: Matrikel-Nr.: Unterschrift: Formeln siehe letzte Rückseite! Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen!

Mehr

Physik 1 Zusammenfassung

Physik 1 Zusammenfassung Physik 1 Zusammenfassung Lukas Wilhelm 31. August 009 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Mathe...................................... 3 1.1.1 Einheiten................................ 3 1. Trigonometrie..................................

Mehr

Physik 1. Energie, Arbeit & Leistung.

Physik 1. Energie, Arbeit & Leistung. 2 Physik 1. Energie, Arbeit & Leistung. WS 18/19 1. Sem. B.Sc. Catering und Hospitality Services Diese Präsentation ist lizenziert unter einer Creative Commons Namensnennung Nicht-kommerziell Weitergabe

Mehr

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit

Mehr

Höhenenergie, kinetischen Energie, Spannenergie, Energieerhaltung

Höhenenergie, kinetischen Energie, Spannenergie, Energieerhaltung Höhenenergie, kinetischen Energie, Spannenergie, Energieerhaltung 1. Trapolinspringer I Diagra unten siehst du in Abhängigkeit von der Höhe die Energieforen eines Trapolinspringers, der sich in unterschiedlichen

Mehr