Klausuraufschrieb. )(: )( $!) $ 0!( $ 12!)!( 23- Kosinussatz : 45# $ 6. wegen gleichschenkligem Trapez )(77,8 $ 05,6 $ 12 7,8 5, ,8 )(11,41

Größe: px
Ab Seite anzeigen:

Download "Klausuraufschrieb. )(: )( $!) $ 0!( $ 12!)!( 23- Kosinussatz : 45# $ 6. wegen gleichschenkligem Trapez )(77,8 $ 05,6 $ 12 7,8 5, ,8 )(11,41"

Transkript

1 Lösung W1b/2003 Lösungslogik In nebenstehender Grafik sind aus Übersichtsgründen nur die Werte 1; 3; 5 und 7 dargestellt. Der jeweilige Winkel ergibt sich aus dem über. Tabelle und Schaubild siehe. bis : ; tan ,0 14,0 26,6 36,9 45,0 51,3 56,3 60,3 30 : ,3! "# 4 2,34,6 & 60 : ,9! "# 4 6,913,8 & Lösung W4a/2003 Lösungslogik (einfach) Die Strecke () errechnet sich mit dem Kosinussatz über!(,!) und dem Winkel. Danach lässt sich mit dem Sinussatz der Winkel * ermitteln. Berechnung von! dann über den *. Berechnung von +. Berechnung von ( mit dem Satz des Pythagoras. Berechnung, als Abstand des Punktes von, mit -.+. )(: )(!) 0!( 12!)!( 23- Kosinussatz : 45# 6 45# 5, 115,8 )(77,8 05,6 12 7,8 5, ,8 )(11,41 wegen gleichschenkligem Trapez

2 *: Realschulabschluss Trigonometrie (Wahlteil ohne e-aufgaben) von :; 89:= "< < -.* 89:= < : * "B "!) 89:>,?!) 7,80,6155 Sinussatz,!!( *5,6 37,98 4,37 +: + 1*115,8 137,98 77,82! (: ( C! 0!( 74,37 05,6 Satz des Pythagoras (7,10,: -.+ BD ( B, ( -.+7,1 -.77,82 6,94 Die Strecke! ist etwa 4,42E lang. Der Abstand des Punktes von (F beträgt 6,92E. Lösungslogik (umständlich) Berechnung von G)!& über den -.H. Berechnung G! über den Satz des Pythagoras im Dreieck!)G. Berechnung G( aus G!0!(. Berechnung )( über den Satz des Pythagoras im Dreieck G(). Berechnung von * über den. Berechnung von! über den * Berechnung von ( über den Satz des Pythagoras im Dreieck!(. Berechnung von über die Winkelsumme im Viereck. Berechnung von +. Berechnung von, über den -.+. G): -.H I< "< G)!) -.H7,8 -.64,2 7,0225 G!: G! C!) 1G) 77,8 17,0225 G!3,3948 G(: G(G!0!(3,394805,68,9948!) Satz des Pythagoras )(: )( C G) 0G( 77, ,9948 Satz des Pythagoras )(11,41 *: * I<,#> 0,7807 I?,JJ? *tan 0,780737,98! : * "B "!!( *5,6 37,98 4,37!

3 (: ( C! 0!( 74,37 05,6 Satz des Pythagoras (7,1033 : 45# 6 45# 5, 115,8 wegen gleichschenkligem Trapez +: +1*115,8 137,98 77,82,: -.+ BD ( B, ( -.+7,1 -.77,82 6,94 Die Strecke! ist etwa 4,42E lang. Der Abstand des Punktes von (F beträgt 6,92E. Lösung W3a/2004 Lösungslogik (einfach) Berechnung von F über 23-H. Berechnung von. Berechnung von () mit dem Kosinussatz. Berechnung von! "<B aus der Summe von F und! BK< abzüglich! K<. (): () C F) 0(F 12 F) (F 23- Kosinussatz F: 23-H K< F; 23-H BK F K<, 4,91 MN86 MN844, (F: (F F 4,91 : 90 0H90 033,4 123,4 ()74,1 04, ,1 4, ,4 7,94! "<B :! "<B! "K< 0! BK< 1! K<! "K< :! "K< F 4,91 24,11 2E! BK< :! BK< F F) -.H trigonometrischer Flächeninhalt! BK< 4,91 4,1 -.33,4 5,54 2E! K< :! K< F F) -. trigonometrischer Flächeninhalt.! BK< 4,91 4, ,4 8,40 2E! "<B :! "<B 24,1105,5418,4021,25 2E Die Strecke () ist 7,9 2E lang. Die Fläche des Vierecks!() beträgt 21,3 2E.

4 Lösungslogik (umständlich) Berechnung von F!( über den 23-H. Berechnung von &) über den -.H. Berechnung von & über den H. Berechnung von &F aus Differenz von F und &. Die rote Fläche lässt sich jetzt berechnen aus: Fläche Rechteck!,& 0 Fläche Dreieck &)0 Fläche Dreieck (),. Berechnung der Strecke () über den Satz des Pythagoras. F: 23-H K< BK F K<, 4,91 MN86 MN844, &): -.H O< K< &)F) -.H4,1 -.33,4 2,257 &: H BO O< F; 23-H F) & O< PQ:6,> PQ:44, 3,423 &F: &F F1 & 4,9113,4231,487! "<B :! "<B! "DOB 0! BO< 0! <D! "DOB :! "DOB &!(1,4882 4,917,307! BO< :! BO< & &) 1,4882 2,2571,6794 ); H! <D :! <D &F R!(0&)S "<B :! "<B 7,30701, ,266321,2527 (): ()C&F 0R!(0&)S Satz des Pythagoras ()73,423 0@4,911202,0257A 7,9435 Die Strecke () ist 7,9 2E lang. Die Fläche des Vierecks!() beträgt 21,3 2E. Lösung W4b/2005 Lösungslogik (einfach) Das Viereck!) & ist ein Trapez mit den beiden parallelen Seiten!) und & und der Höhe T. Berechnung von!f über -.. Berechnung von &F aus Differenz von!f und!&. Berechnung von T über -.. Berechnung von!) über den zweiten Strahlensatz.! "<BO R!)0& S T!F: -. K "K!F K 89:= 89: 20,15!F; -.

5 &F: &F!F1!& 20,1517,113,05 T: -. U!& "O T!& -.7, ,93!): "< OB "K OK!) OB >,#!F 20,157,72 OK 4,#>! 4,9331,35!F (2. Strahlensatz) Das Viereck!) & hat eine Fläche von 31,4 2E. Lösungslogik (umständlich) Berechnung von!f, &F und T wie in Lösungslogik (einfach), dann: Berechnung von!( über. Berechnung von &, über. Berechnung von, aus Differenz von &, und &. Berechnung Winkel * über. Berechnung von )( über *. Berechnung von!) aus Differenz von!( und )(.!F, &F und T siehe Lösung (einfach).!(: K!(; "!( K 14,4974 PQ:= PQ: &,: DK KU &,; OD OD &, KU,J4 9,3923 PQ:= PQ:,:, &,1& 9,392315,04,3923 *: * BD,4J4 0,4843 KU,J4 *tan 0,484325,84 )(: * < (F K )((F *14 25,84 6,78!):!)!(1)(14,497416,787,72! 4,9331,35 Das Viereck!) & hat eine Fläche von 31,4 2E. Lösung W1a/2006 Lösungslogik Berechnung von über die Winkelsumme im Viereck. Berechnung von!, über -.V. Berechnung von G( über Berechnung von )F. Berechnung von GF über den Satz des Pythagoras.

6 Berechnung von über den. Berechnung von. Berechnung von )& über den : !,: -.V "D "B!,! -.V8, ,58 G(: -. 4 I K G((F , ,42 )F: )F!(1!,1G(12,215,5812,424,2 GF: GF C (F 1G( 74,7 12,42 GF 16,23364,03! (F : "I "I,, 2,4268 : , ,39 )&: 4 <O )F <K )& )F 4 4,2 22,39 1,73 Die Strecke )& ist 1,72E lang. Lösung W4b/2006 Lösungslogik (einfach) Berechnung von F( über die Flächenformel des Dreiecks!(F. Berechnung von!( über den Satz des Pythagoras. Berechnung von X(0,5!(. Berechnung von * über den -.. Berechnung der Fläche des Dreiecks X() 4! "K. Berechnung von () über den Sinussatz. Satz des Pythagoras! Y< :! Y<! 4 "K 34,511,5 2E 4 F(:! "K!F F( F( " Z[ "K 4,> >,? 11,9 2;!F!(:!( C!F 0F( 75,8 111,9 Satz des Pythagoras!(7175,2513,24 X( X(0,5!(0,5 13,246,62 *: -.* "K >,? 0,4381 " 4,

7 ():! Y< X( () -.* trigonometrischer Flächeninhalt 11,5 6,62 () A (),> 7,923 5,5 89:5 Die Länge der Strecke () beträgt 7,92E. Lösungslogik (umständlich) Berechnung von F(,!(, X(, * und! Y< wie in Lösungslogik (einfach). Berechnung von T über -.*. Berechnung von () über die Flächenformel des Dreiecks! Y< T (). F(,!(, X(, * und! Y< wie in Lösung (einfach). T: -.* U Y X( TX( -.*6, ,0 2,9020 ():! Y< T () 11,5 2,902 () 2; 2,902 (),> 7,9256,J# Die Länge der Strecke () beträgt 7,92E. Lösung W1a/2007 Lösungslogik Berechnung von H über die Ergänzungswinkel (Das Dreieck!(F ist gleichschenklig). Berechnung von +. Berechnung von!f (F über 23-. Berechnung von!& über 23-. Berechnung von &( als Differenz von!( und!&. Berechnung von )F als Differenz von!f und!). Berechnung von F über 23-H. Berechnung von ( als Differenz von F und F(. Berechnung! OB mit dem trigonometrischen Flächeninhalt.! OB &( ( -.+ trigonometrischer Flächeninhalt H: H : *: * !F: 23- #,> " "K!F; 23-!F #,> " MN8= MN8>?

8 !&: 23- "<!&; 23- "O!& "< 4,5 6,79 MN8= MN8>? &(: &(!(1!& 1016,793,21 )F: )F!F1!)9,4413,65,84 F : 23-H <K F ; 23-H KB F <K >,? 13,32 MN86 MN85 (: (F 1!F 13,3219,443,88! OB :! OB 3,21 3, ,28 Das Dreieck (& hat eine Fläche von 5,3 2E. Lösung W4a/2007 Lösungslogik Berechnung von! "DO aus 80 % des Rechtecks!(F). Berechnung von &, über die Flächenformel Trapez. Berechnung von &]. Berechnung von G über den ersten Strahlensatz.! "DO :! "DO 0,8!( (F 0, ,4. &,:! "DO R!(0&,S (F 3 2; 3?,? 60&, 16 4 &,?,? 163,6 4 &]: &] 0,5 &, 0,5 3,61,8 G: BI4 O^ BI4 BI Z _,? BI 4 3; 1,8 G13A1,8 G 3 G191,8 G 11,8 G; 09 1,2 G 9 :1,2 G J, 7,5 Der Abstand des Punktes zur Strecke!( beträgt 7,5 2E.

Aufgabe W1b/2006. Gegeben ist das rechtwinklige Trapez. Zeigen Sie ohne Verwendung gerundeter Werte, dass gilt:.

Aufgabe W1b/2006. Gegeben ist das rechtwinklige Trapez. Zeigen Sie ohne Verwendung gerundeter Werte, dass gilt:. Realschulabschluss Trigonometrie (Wahlteil nur e-aufgaben) von 2003-2009 7 Aufgaben im Dokument Aufgabe W4b/2003 Im nebenstehenden Dreieck ist der Mittelpunkt von. Zeigen Sie ohne Verwendung gerundeter

Mehr

Aufgabe W1b/2003. Aufgabe W4a/2003. Aufgabe W3a/2004. Realschulabschluss Trigonometrie (Wahlteil ohne e-aufgaben) von

Aufgabe W1b/2003. Aufgabe W4a/2003. Aufgabe W3a/2004. Realschulabschluss Trigonometrie (Wahlteil ohne e-aufgaben) von 8 Aufgaben im Dokument Aufgabe W1b/2003 Die Punkte 4 0 und 0 bilden mit dem Koordinatenursprung ein rechtwinkliges Dreieck. Der Punkt ist auf der Achse beweglich. Der Innenwinkel des Dreiecks bei wird

Mehr

Lösungslogik. Berechnung von als Ergänzungswinkel im. Dreieck 2. Berechnung von 1 aus der Differenz von 1 und 1. Berechnung von als Ergänzungswinkel

Lösungslogik. Berechnung von als Ergänzungswinkel im. Dreieck 2. Berechnung von 1 aus der Differenz von 1 und 1. Berechnung von als Ergänzungswinkel Lösung W1a/2008 Lösungslogik Berechnung von als Ergänzungswinkel im Dreieck. Berechnung von. Berechnung von über den. Berechnung von über den Satz des Pythagoras. Berechnung von über. Berechnung von über

Mehr

Klausuraufschrieb : : : 3,5 ' ( ') # * Satz des Pythagoras +5 (3,5 6,1 5. Satz des Pythagoras : ' ( ' () #

Klausuraufschrieb : : : 3,5 ' ( ') # * Satz des Pythagoras +5 (3,5 6,1 5. Satz des Pythagoras : ' ( ' () # Lösung Aufgabe W1a/2003 Berechnung der Teilstrecke über die halbe Diagonale des großen Quadrates. Berechnung der Teilstrecke über die halbe Diagonale des kleinen Quadrates. Berechnung der Teilstrecke über

Mehr

9, Im Dreck gilt: Berechnen Sie den Umfang des Dreiecks. Lösung: 27,9. und. Tipp: Dreimal Sinussatz für,

9, Im Dreck gilt: Berechnen Sie den Umfang des Dreiecks. Lösung: 27,9. und. Tipp: Dreimal Sinussatz für, Aufgabe P1/2014 Im Viereck sind gegeben 3,2 5,8 54,6 Berechnen Sie den Umfang des Dreiecks Lösung 17,4 14 Aufgaben im Dokument Aufgabe P2/2014 Das Dreieck und das Dreieck überdecken sich teilweise Es gilt

Mehr

Berechnen Sie die Länge von % im Körper. Tipp: Berechnung von % über den Kosinussatz. Lösung: (=69,1 ) %=8,3

Berechnen Sie die Länge von % im Körper. Tipp: Berechnung von % über den Kosinussatz. Lösung: (=69,1 ) %=8,3 Aufgabe W1a/2003 Zwei Quadrate mit den Seitenlängen 10,0 bzw. 7,0 werden wie rechts skizziert aneinandergelegt. und sind die Mittelpunkte der Diagonalen. ist der Mittelpunkt der Strecke. Berechnen Sie

Mehr

Aufgabe W4b/2010. Im Quadrat gilt:. 66,0 97,0 6,3 4,1 Berechnen Sie den Umfang des Vierecks. Lösung: 17,6.

Aufgabe W4b/2010. Im Quadrat gilt:. 66,0 97,0 6,3 4,1 Berechnen Sie den Umfang des Vierecks. Lösung: 17,6. Realschulabschluss Trigonometrie (Wahlteil ohne e-aufgaben) von 2008-2015 9 Aufgaben im Dokument Aufgabe W1a/2008 Gegeben ist das Trapez. Es gilt 8,0 4,2 41,0 Berechnen Sie den Winkel. Lösung 59,5. Aufgabe

Mehr

6,46 A 3, ,46 3,23 112,5 68, ,1345 8,2544 Das Volumen der Pyramide beträgt 69,1 D. Die Strecke ist 8,3 D lang.

6,46 A 3, ,46 3,23 112,5 68, ,1345 8,2544 Das Volumen der Pyramide beträgt 69,1 D. Die Strecke ist 8,3 D lang. Lösung W2b/2003 Volumen der Pyramide über (quadratische Pyramide). Berechnung des Innenwinkels und des Fünfecks. Berechnung von über den. Hieraus folgt. Berechnung der Strecke (entspricht der halben Diagonalen

Mehr

1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw.

1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw. Themenerläuterung In diesem Kapitel bekommst du Zeichnungen von zusammengesetzten Figuren aus Dreiecken, Quadraten, Rechtecken, Parallelogrammen, Trapezen und eventuell Kreisbögen. Einige Streckenlängen

Mehr

329 (Volumen der Pyramide) 7,0

329 (Volumen der Pyramide) 7,0 7 Aufgaben im Dokument Aufgabe W2b/2003 Die vier dunkel eingefärbten Teilflächen eines regelmäßigen Fünfecks mit der Seitenlänge 7,6 bilden den Mantel einer quadratischen Pyramide. Berechnen Sie das Volumen

Mehr

Abschluss Realschule BW 2005 Lösung W1a/2005 Lösungslogik Für die Strecke : Berechnung des Spitzenwinkels über die Ergänzungswinkel.

Abschluss Realschule BW 2005 Lösung W1a/2005 Lösungslogik Für die Strecke : Berechnung des Spitzenwinkels über die Ergänzungswinkel. Abschluss Realschule BW 2005 Lösung W1a/2005 Für die Strecke : Berechnung des Spitzenwinkels über die Ergänzungswinkel. Berechnung von über den. Berechnung von aus der Differenz von und. Berechnung von

Mehr

+,,-'. 0, 12, ,76

+,,-'. 0, 12, ,76 Lösung W1a/2017 Der Abstand von zur Strecke ist der kürzeste Abstand (Senkrechte auf ). ist so lang wie.. Berechnung der Strecke über den. Berechnung des Abstandes über. Der Winkel ist (wegen des gleichschenkligen

Mehr

!( :!( 4? 6 2 2<> 2 !1 :!1 2< D2 2 2? 3 !1 2<> 2 (1 : (1 3 3? 3? 3 3<> 2E2< > ? 3 q.e.d. = C

!( :!( 4? 6 2 2<> 2 !1 :!1 2< D2 2 2? 3 !1 2<> 2 (1 : (1 3 3? 3? 3 3<> 2E2< > ? 3 q.e.d. = C Lösung W1a/007 Berechnung von über die Ergänzungswinkel (Das Dreieck ist gleichschenklig). Berechnung von. Berechnung von über. Berechnung von über. Berechnung von als Differenz von und. Berechnung von

Mehr

: /1 4 ; /1. : 40 (gleichschenkliges Dreieck )

: /1 4 ; /1. : 40 (gleichschenkliges Dreieck ) Lösung W1a/2011 (einfach) Bestimmung von,, und. Berechnung von über den Sinussatz. Berechnung von über den Sinussatz. Berechnung von über den trigonometrischen Flächeninhalt. : 40 (gleichschenkliges Dreieck)

Mehr

Bestimmen Sie die Definitions- und Lösungsmenge der Gleichung:

Bestimmen Sie die Definitions- und Lösungsmenge der Gleichung: Aufgabe W1a/2005 Für die quadratische Pyramide gilt: =5,6 =65,0. = =3,0 Berechnen Sie die Länge sowie den Flächeninhalt des Vierecks. Lösung: =2,8 =13,6 Aufgabe W1b/2005 Gegeben ist das rechtwinklige Trapez.

Mehr

Aufgabe W2a/2004 = 2. Zeichnen Sie ein Schrägbild des Körpers mit dem Dreieck maßgerecht für =

Aufgabe W2a/2004 = 2. Zeichnen Sie ein Schrägbild des Körpers mit dem Dreieck maßgerecht für = Aufgabe W1a/2004 Ein Körper besteht aus zwei quadratischen Pyramiden mit gemeinsamer Grundfläche. Die Skizze zeigt den Diagonalschnitt des Körpers. Gegeben sind: =12,4 =52,8 Das Volumen der unteren Pyramide

Mehr

1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw.

1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw. Themenerläuterung Bei diesem Thema werden die unterschiedlichsten Körper vorgegeben wie Würfel, Prisma, Zylinder, Kegel und Pyramide. Auf den Außenflächen bzw. in den Körpern befinden sich Strecken, deren

Mehr

Aufgabe W1b/2017. Aufgabe W2a/ ,5. Lösung: Abstand von 5,2. Gegeben sind ein rechtwinkliges Trapez ABCD und ein regelmäßiges Sechseck.

Aufgabe W1b/2017. Aufgabe W2a/ ,5. Lösung: Abstand von 5,2. Gegeben sind ein rechtwinkliges Trapez ABCD und ein regelmäßiges Sechseck. Aufgabe W1a/2017 Das rechtwinklige Dreieck ABD und das gleichschenklige Dreieck ABC haben die Seite gemeinsam. Es gilt: 7,2 3,0 42. Berechnen Sie den Abstand des Punktes von sowie den Winkel. Lösung: Abstand

Mehr

Klausuraufschrieb. : 60 wegen gleichseitigem Dreieck das Dreieck ist rechtwinklig !

Klausuraufschrieb. : 60 wegen gleichseitigem Dreieck das Dreieck ist rechtwinklig ! Hinweis zum Lösungsteil In den Graphiken stellen grüne Linien, Werte und Flächen vorgegebene Werte, rote Linien, Werte und Flächen gesuchte Werte und blaue Linien, Werte und Flächen zu ermittelnde Zwischenwerte

Mehr

Klausuraufschrieb. Berechnung von über den Satz des Pythagoras. Berechnung von als Differenz von und. Berechnung von als Differenz von und.

Klausuraufschrieb. Berechnung von über den Satz des Pythagoras. Berechnung von als Differenz von und. Berechnung von als Differenz von und. Lösung W1a/2012 Berechnung von über. Berechnung von über die Flächenformel des Trapezes. Bestimmung von. Berechnung von über die Flächenformel des Trapezes. Berechnung von über den Satz des Pythagoras.

Mehr

Bestimmen Sie die Definitions- und Lösungsmenge der Gleichung: 1 = R\4 ; 5; 6 = { 3}

Bestimmen Sie die Definitions- und Lösungsmenge der Gleichung: 1 = R\4 ; 5; 6 = { 3} Aufgabe W1a/007 Gegeben ist das gleichschenklige Dreieck und das rechtwinklige Dreieck. Es gilt: = = 10,0 = 3,6 = 58,0 Berechnen Sie den Flächeninhalt des Dreiecks. Lösung: = 5,3. Tipp: Trigonometrischer

Mehr

Aufgabe W2a/ Berechnen Sie die Länge. 28,8

Aufgabe W2a/ Berechnen Sie die Länge. 28,8 4 Aufgaben im Dokument Aufgabe W2a/2014 Eine regelmäßige achtseitige Pyramide hat die Grundkante 12,0. Berechnen Sie die Länge. Diese Pyramide hat das Volumen 836. Berechnen Sie die Länge. Tipp: Kosinussatz

Mehr

=329 (Volumen der Pyramide) =7,0

=329 (Volumen der Pyramide) =7,0 Aufgabe W1a/2011 Im Dreieck gilt: =10,8 =40,0 =58,0 = Berechnen Sie den Flächeninhalt des Dreiecks. Lösung: =19,3. Tipp: Zweimal Sinussatz für und dann trigonometrischen Flächeninhalt. Aufgabe W1b/2011

Mehr

Aufgabe W2a/2014 Eine regelmäßige achtseitige Pyramide hat die Grundkante 12,0 Berechnen Sie die Länge!". Diese Pyramide hat das Volumen 70,1

Aufgabe W2a/2014 Eine regelmäßige achtseitige Pyramide hat die Grundkante 12,0 Berechnen Sie die Länge!. Diese Pyramide hat das Volumen 70,1 Aufgabe W2b/2003 Die vier dunkel eingefärbten Teilflächen eines regelmäßigen Fünfecks mit der Seitenlänge 7,6 bilden den Mantel einer quadratischen Pyramide. Berechnen Sie das Volumen der Pyramide. Der

Mehr

Die Oberfläche des zusammengesetzten Körpers beträgt 748,5 ;<.

Die Oberfläche des zusammengesetzten Körpers beträgt 748,5 ;<. Lösung W1a/2004 Zur Beachtung: die Skizze zeigt den Diagonalschnitt, nicht den Parallelschnitt. Berechnung von über den und daraus. Berechnung von über den Satz des Berechnung der Kantenlänge der quadratischen

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel bekommst du Zeichnungen von zusammengesetzten Figuren aus Dreiecken, Quadraten, Rechtecken, Parallelogrammen, Trapezen und eventuell Kreisbögen. Einige Streckenlängen

Mehr

'4% : '4% () trigonometrischer Flächeninhalt '4% 6,868 ()110,46 22,096

'4% : '4% () trigonometrischer Flächeninhalt '4% 6,868 ()110,46 22,096 Aufgabe W1a/2014 Im Rechteck sind gegeben: =6,8 =4,2 =25,0 = Berechnen Sie die Länge. Lösung: =5,8 Tipp: Kosinussatz für. Aufgabe W1b/2014 Gegeben ist das Dreieck. ist der Mittelpunkt von. Weisen Sie ohne

Mehr

Tipp: Kosinussatz für Pyramidenkante.

Tipp: Kosinussatz für Pyramidenkante. 3 Aufgaben im Dokument Aufgabe W2b/2014 Aus einer Kreisfläche werden die Mantelflächen einer quadratischen Pyramide und eines Kegels ausgeschnitten. Der Kreis hat den Radius 20. Berechnen Sie die Differenz

Mehr

Klausuraufschrieb. Das Dreieck ist gleichschenklig. Deswegen gilt. : * : 3 49, Satz des Pythagoras 10,73043,2757

Klausuraufschrieb. Das Dreieck ist gleichschenklig. Deswegen gilt. : * : 3 49, Satz des Pythagoras 10,73043,2757 Lösung W1a/2016 Wegen mit einem Abstand von 9 lässt sich die Strecke über den berechnen. Wegen ist das Dreieck gleichseitig. Damit ist. Darüber berechnen wir die Strecke über den. Wir berechnen die Strecke

Mehr

Abschluss Realschule BW 2004 Aufgabe P1/2004 Im Viereck sind gegeben:

Abschluss Realschule BW 2004 Aufgabe P1/2004 Im Viereck sind gegeben: Abschluss Realschule BW 2004 Aufgabe P1/2004 Im Viereck sind gegeben: 10,7 5,5 9,6 48,2 Berechnen Sie den Winkel. Wie groß ist der Flächeninhalt des Dreiecks? Lösung: 42 21,9 Tipp: Sinussatz und trigonometrischen

Mehr

Aufgabe W1b/ ,0 11,6 54,0. sowie den Abstand des Punktes zur Strecke. Gegeben ist das Dreieck ABC. Es gilt: Berechnen Sie den Winkel

Aufgabe W1b/ ,0 11,6 54,0. sowie den Abstand des Punktes zur Strecke. Gegeben ist das Dreieck ABC. Es gilt: Berechnen Sie den Winkel Aufgabe W1a/2018 Gegeben ist das Dreieck ABC. Es gilt: 12,0 11,6 54,0 Berechnen Sie den Winkel sowie den Abstand des Punktes zur Strecke. Lösung: 62,5 Abstand von 5,9. Aufgabe W1b/2018 Im rechtwinkligen

Mehr

Tipp: Strecke % über den

Tipp: Strecke % über den Aufgabe W1a/2010 Im Quadrat gilt: =66,0 =97,0 =6,3 =4,1 Berechnen Sie den Umfang des Vierecks. Lösung: =17,6. Aufgabe W1b/2010 Im Dreieck liegt das gleichseitige Dreieck. Der Mittelpunkt der Strecke wird

Mehr

1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw.

1. Satz des Pythagoras Ist im rechtwinkligen Dreieck die Hypothenuse (= längste Seite) und und die beiden Katheten, so gilt: bzw. bzw. bzw. Themenerläuterung Im Kapitel Zusammengesetzte Körper geht es um die Berechnung von Volumen und Oberfläche von zusammengesetzten Körpern aus z.b. Würfeln, Quadern, Pyramiden, Kegeln, Halbkugeln usw. Es

Mehr

Aufgabe P3/2008 6,6 10,8 47,0 132,0 8,4 10,2. Im Viereck sind bekannt:

Aufgabe P3/2008 6,6 10,8 47,0 132,0 8,4 10,2. Im Viereck sind bekannt: Aufgabe P1/2008 Gegeben sind das Rechteck und das gleichschenklige Dreieck. Es gilt: 38,0 5,4 4,2 Berechnen Sie den Flächeninhalt des Dreiecks. Lösung: 5,1. Tipp: Trigonometrischen Flächeninhalt für das

Mehr

Aufgabe W2a/2016. Aus einer Kreisfläche wird die Mantelfläche einer regelmäßigen, fünfseitigen Pyramide ausgeschnitten.

Aufgabe W2a/2016. Aus einer Kreisfläche wird die Mantelfläche einer regelmäßigen, fünfseitigen Pyramide ausgeschnitten. Aufgabe W1a/2016 Die Eckpunkte des Vierecks ABCD liegen auf den Parallelen g und h. Die Parallelen haben einen Abstand von 9,0. Es gilt: 10,4 70. Berechnen Sie den Umfang des Vierecks. Lösung: 39,5 Aufgabe

Mehr

Aufgabe W2a/2012 =2 21. Das Dreieck und haben die Seite gemeinsam. Zeigen Sie ohne Verwendung gerundeter Werte, dass gilt:

Aufgabe W2a/2012 =2 21. Das Dreieck und haben die Seite gemeinsam. Zeigen Sie ohne Verwendung gerundeter Werte, dass gilt: Aufgabe W1a/2012 Vom Trapez sind bekannt =9,2 =4,8 =4,0 =70 Ein Punkt liegt auf. ie Strecke halbiert die Trapezfläche. Berechnen Sie die Länge. Lösung =5,4 Aufgabe W1b/2012 as reieck und haben die Seite

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung Ähnlich dem Kapitel Quadratische Pyramiden geht es in diesem Kapitel um regelmäßige Pyramiden mit anderen Grundflächen als einem Quadrat. Es kommen dreiseitige, fünfseitige, sechsseitige

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Sin, Cos, Tan, Sinussatz, Kosinussatz, Flächenberechnung Dreieck, Pythagoras. 1.0 Gegeben ist ein Dreieck ABC mit a 8 cm, c 10 cm, 60 1.1 Berechnen Sie die Seite b sowie die Winkel und.

Mehr

Abituraufgaben Analytische Geometrie Wahlteil 2006 BW

Abituraufgaben Analytische Geometrie Wahlteil 2006 BW Aufgabe B1.1 Die Punkte 3 5 4, 4 1 4 und 4 9 0 legen eine Ebene fest. a) Bestimmen Sie eine Koordinatengleichung der Ebene. Zeigen Sie, dass das Dreieck gleichschenklig, aber nicht gleichseitig ist. Bestimmen

Mehr

14,8 12,3 67,75 8, , ,0 ; 2 2 8, ,67 )* +! 8,23 )*36 6,66 . /0' 1 ' 1 9, , /0' 5 67,69338,45

14,8 12,3 67,75 8, , ,0 ; 2 2 8, ,67 )* +! 8,23 )*36 6,66 . /0' 1 ' 1 9, , /0' 5 67,69338,45 Hinweis zu den Lösungen In den Graphiken stellen grüne Linien, Werte und Flächen vorgegebene Werte, rote Linien, Werte und Flächen gesuchte Werte und blaue Linien, Werte und Flächen zu ermittelnde Zwischenwerte

Mehr

Die Ankathete ist die Kathete, die an dem Winkel, um den es geht, anliegt.

Die Ankathete ist die Kathete, die an dem Winkel, um den es geht, anliegt. Themenerläuterung Ähnlich dem Kapitel Quadratische Pyramiden geht es in diesem Kapitel um regelmäßige Pyramiden mit anderen Grundflächen als einem Quadrat. Es kommen dreiseitige, fünfseitige, sechsseitige

Mehr

Aufgabe P2/2015. Aufgabe P3/2015 7, ; 30,0 16 ; 24,0 Läuft das Wasser über? Überprüfen Sie durch Rechnung. Berechnen Sie den Radius der Kugel.

Aufgabe P2/2015. Aufgabe P3/2015 7, ; 30,0 16 ; 24,0 Läuft das Wasser über? Überprüfen Sie durch Rechnung. Berechnen Sie den Radius der Kugel. Aufgabe P1/2015 Im Dreck gilt: 9,2 64 40 Berechnen Sie den Umfang des Dreiecks. Lösung: 27,9 Tipp: Dreimal Sinussatz für, und. Aufgabe P2/2015 Das Viereck ist ein Quadrat. Es gilt: 7,8 34 Berechnen Sie

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 VERMESSUNGSAUFGABEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 VERMESSUNGSAUFGABEN Mathematik Mag. Schmid Wolfgang Arbeitsblatt 4 3. Semester ARBEITSBLATT 4 VERMESSUNGSAUFGABEN Nun wollen wir unser Wissen über recht- und schiefwinkelige Aufgaben an einigen Aufgaben beweisen Beispiel

Mehr

Abituraufgaben Analytische Geometrie Wahlteil 2005 BW

Abituraufgaben Analytische Geometrie Wahlteil 2005 BW Lösung B1 Lösungslogik a) Koordinaten von und : Wir schneiden die Geraden durch die Punkte und bzw. und mit der Ebene. Nachweis gleichschenkliges Trapez : Nachweis des Trapezes über Parallelität zweier

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze.

6.1.2 Bem.: Für Vierecke ist der Begriff Innenwinkel im allgemeinen nicht sinnvoll. Skizze. 6 Flächeninhalt 6.1 Vierecke 6.1.1 Def.: Seien A, B, C, D vier verschiedene Punkte in E, keine drei auf einer Geraden, so dass AB, BC, CD, DA einander höchstens in Endpunkten treffen. Dann bilden diese

Mehr

Realschule Abschlussprüfung

Realschule Abschlussprüfung Realschule Abschlussprüfung Annegret Sonntag 4. Januar 2010 Inhaltsverzeichnis 1 Strategie zur Berechnung von ebenen Figuren (Trigonometrie) 3 1.1 Skizze.................................................

Mehr

Berechnung der Schnittpunkte durch Gleichsetzung. Bestimmung der Scheitelpunkte von und. Verdeutlichung der Situation durch ein Schaubild.

Berechnung der Schnittpunkte durch Gleichsetzung. Bestimmung der Scheitelpunkte von und. Verdeutlichung der Situation durch ein Schaubild. Lösung W3a/2010 Aufstellung der Geradengleichungen und. Schnittpunktberechnung von durch Gleichsetzung. Aufstellung der Parabelgleichung durch die Punkte und. Umstellung der allgemeinen Parabelgleichung

Mehr

Aufgabe W1b/2013. Aufgabe W2a/2013 =3 (3+ 3) =3,4

Aufgabe W1b/2013. Aufgabe W2a/2013 =3 (3+ 3) =3,4 Aufgabe W1a/2013 Im rechtwinkligen Dreieck liegt das gleichschenklige Dreieck. Es gilt =6,5 =51,2 = =3,5 Berechnen Sie den Winkel. Berechnen Sie den Umfang des Dreiecks. Tipp Sinussatz für Lösung =32,4

Mehr

Hilfe Beispiel 1: Lösungsskizze und Ergebnis:

Hilfe Beispiel 1: Lösungsskizze und Ergebnis: Hilfe Beispiel 1: 1. Hauptbedingung erstellen (Volumen der Schachtel) 3. Nebenbedingungen finden, Grundkanten und Höhen ausdrücken, in Hauptbedingung einsetzen -> Funktion 4. 1. Ableitung, 0 setzen ->

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (2) - Planimetrie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Kopiervorlagen Geometrie (2) - Planimetrie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Kopiervorlagen Geometrie (2) - Planimetrie Das komplette Material finden Sie hier: School-Scout.de Hinweise zur Arbeit mit den Kopiervorlagen

Mehr

Aufgabe P4/2005. Aufgabe P5/2005 !"6;10% ' 57,0. Lösen Sie die Gleichung:

Aufgabe P4/2005. Aufgabe P5/2005 !6;10% ' 57,0. Lösen Sie die Gleichung: Aufgabe P1/2005 Von einer quadratischen Pyramide sind bekannt: 54,9 (Mantelfläche) 6,1. (Höhe einer Seitenfläche) Berechnen Sie das Volumen der Pyramide. Aufgabe P2/2005 Ein zusammengesetzter Körper besteht

Mehr

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9.

Koordinatengeometrie. Aufgabe 4 Untersuchen Sie die Funktion f(x) = x² 9. Koordinatengeometrie Aufgabe 1 Gegeben sind der Punkt P (-1; 9) sowie die Geraden g: 3x y + 6 = 0 und h: x + 4y 8 = 0. a) Die Geraden g und h schneiden einander im Punkt S. Berechnen Sie die exakten Koordinaten

Mehr

Lösung Aufgabe P1: 1. Berechnung der Grundseite a : zusammenfassen. Seiten tauschen

Lösung Aufgabe P1: 1. Berechnung der Grundseite a : zusammenfassen. Seiten tauschen Lösung Aufgabe P1: 1. Berechnung der Grundseite a : zusammenfassen Seiten tauschen 2. Berechnung der Pyramidenhöhe h: Pythagoras im gelben Schnittdreieck 3. Berechnung des Pyramidenvolumens V: 1 von 46

Mehr

größer ist als die des Zylinders. Lösung: 311,0

größer ist als die des Zylinders. Lösung: 311,0 Aufgabe W1a/2004 Ein Körper besteht aus zwei quadratischen Pyramiden mit gemeinsamer Grundfläche. Die Skizze zeigt den Diagonalschnitt des Körpers. Gegeben sind: 12,4 52,8 Das Volumen der unteren Pyramide

Mehr

Aufgabe W3b/2007. Aufgabe W2b/2009

Aufgabe W3b/2007. Aufgabe W2b/2009 8 Aufgaben im Dokument Aufgabe W1a/2004 Ein Körper besteht aus zwei quadratischen Pyramiden mit gemeinsamer Grundfläche. Die Skizze zeigt den Diagonalschnitt des Körpers. Gegeben sind: 12,4 52,8 Das Volumen

Mehr

Abituraufgaben Analytische Geometrie Wahlteil 2016 BW

Abituraufgaben Analytische Geometrie Wahlteil 2016 BW Abituraufgaben Analytische Geometrie Wahlteil 216 BW Aufgabe B1.1 In einem Koordinatensystem be-schreiben die Punkte 15, 15 2 und 2 6 Eckpunkte der rechteckigen Nutzfläche einer Tribüne (alle Koordinatenangaben

Mehr

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck:

Trigonometrie. bekannte Zusammenhänge. 4-Streckensatz: groß/klein = groß/klein. Zusammenhänge im allgemeinen Dreieck: Trigonometrie bekannte Zusammenhänge 4-Streckensatz: groß/klein = groß/klein Zusammenhänge im allgemeinen Dreieck: Summe zweier Seiten größer als dritte Seitenlänge: a + b > c Innenwinkelsumme: Summe der

Mehr

6,5 32,35 4,1165. = 3 : = 3 3,52,5964,116510,2125 Der Winkel ist 32,4 groß, der Umfang des Dreiecks beträgt 10,2 >.

6,5 32,35 4,1165. = 3 : = 3 3,52,5964,116510,2125 Der Winkel ist 32,4 groß, der Umfang des Dreiecks beträgt 10,2 >. Lösung W1a/2013 Berechnung im Dreieck über. Berechnung von im Dreieck über. Das Dreieck ist gleichschenklig, damit ist. Berechnung von über identisch mit ) Berechnung von im Dreieck über den. Berechnung

Mehr

Klausuraufschrieb. Berechnung von 0 über den Sinus. Berechnung von über den Sinus. Berechnung von über den Ergänzungswinkel

Klausuraufschrieb. Berechnung von 0 über den Sinus. Berechnung von über den Sinus. Berechnung von über den Ergänzungswinkel Lösung P1/2004 (einfach) Der Winkel wird direkt mit dem Sinussatz ermittelt. Berechnung von. läche des Dreiecks dann über den trigonometrischen lächeninhalt. : 96066883 # $066883%42 : 90 ( 90 (42 48 )

Mehr

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5 (Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei

Mehr

Die Oberfläche des zusammengesetzten Körpers beträgt 748,5 ;<.

Die Oberfläche des zusammengesetzten Körpers beträgt 748,5 ;<. Lösung W1a/2004 Zur Beachtung die Skizze zeigt den Diagonalschnitt, nicht den Parallelschnitt. Berechnung von über den und daraus. Berechnung von über den Satz des Berechnung der Kantenlänge der quadratischen

Mehr

Die nach oben geöffnete Normalparabel verläuft durch die Punkte 1 5 und Die Parabel hat die Gleichung 2. Besitzen die beiden Parabeln

Die nach oben geöffnete Normalparabel verläuft durch die Punkte 1 5 und Die Parabel hat die Gleichung 2. Besitzen die beiden Parabeln Dokument mit 11 Aufgaben Aufgabe W3a/2010 Im Schaubild sind die Geraden und dargestellt. Entnehmen Sie zur Bestimmung ihrer Gleichungen geeignete Werte. Berechnen Sie die Koordinaten des Schnittpunkts

Mehr

Abituraufgaben Analytische Geometrie Wahlteil 2012 BW

Abituraufgaben Analytische Geometrie Wahlteil 2012 BW Aufgabe B1 Die Ebene enthält die Punkte 6 1, 2 3 und 3 2,5. a) Bestimmen Sie eine Koordinatengleichung von. Stellen Sie die Ebene in einem Koordinatensystem dar. Unter welchem Winkel schneidet die -Achse?

Mehr

Trigonometrische Berechnungen

Trigonometrische Berechnungen Trigonometrische Berechnungen Aufgabe 1 Berechnen Sie im rechtwinkligen Dreieck die fehlenden Seiten und Winkel: a) p = 4,93, β = 70,3 b) p = 28, q = 63 c) a = 12,5, p = 4,4 d) h = 9,1, q = 6,0 e) a =

Mehr

Lösung P2/2018. Lösungslogik. : ( ) Satz des Pythagoras. : cos : 14,511,123,38 : 5,4. 5,429,646 Das Trapez hat eine Fläche von 29,667.

Lösung P2/2018. Lösungslogik. : ( ) Satz des Pythagoras. : cos : 14,511,123,38 : 5,4. 5,429,646 Das Trapez hat eine Fläche von 29,667. Lösung P1/2018 tan im Dreieck Berechnung von über Satz des Pythagoras Berechnung von als Ergänzungswinkel zu 90 von cos im Dreieck Berechnung von über Berechnung von : tan tan,4 tan2 6,9117 : 14,6,97,6

Mehr

Lösung P2/2017. Lösungslogik. : 3 410,65 5,8 Satz des Pythagoras 479,78258,93 : 8,933,155,78 : 10,656,65,7823,03 Der Umfang des Dreiecks beträgt 23 7.

Lösung P2/2017. Lösungslogik. : 3 410,65 5,8 Satz des Pythagoras 479,78258,93 : 8,933,155,78 : 10,656,65,7823,03 Der Umfang des Dreiecks beträgt 23 7. Berechnung von über den. Wegen ist 2. Berechnung von über den cos. Berechnung von über den Satz des Pythagoras. Berechnung von über den Satz des Pythagoras. Berechnung von. :,, 0,87879 # $,, %28,5 : 2

Mehr

Ein Beispiel: In einem rechtwinkligen Dreieck ist die Hypotenuse halb so lang wie die Hypotenuse.

Ein Beispiel: In einem rechtwinkligen Dreieck ist die Hypotenuse halb so lang wie die Hypotenuse. Item 2 Schreibe so viele Verallgemeinerungen (Sätze, Definitionen, Eigenschaften, Folgerungen) wie du kannst auf, die mit rechtwinkligen Dreiecken zu tun haben. Ein Beispiel: In einem rechtwinkligen Dreieck

Mehr

Lösung Aufgabe P1: 1. Berechnung der Strecke : Sinusfunktion im gelben rechtwinkligen Teildreieck. Seiten tauschen

Lösung Aufgabe P1: 1. Berechnung der Strecke : Sinusfunktion im gelben rechtwinkligen Teildreieck. Seiten tauschen Lösung Aufgabe P1: 1. Berechnung der Strecke : Sinusfunktion im gelben rechtwinkligen Teildreieck Seiten tauschen 2. Berechnung des Winkels : Kosinusfunktion im hellblauen rechtwinkligen Teildreieck 3.

Mehr

Lösung Aufgabe P1: 1. Berechnung der Strecke : Kosinusfunktion im gelben rechtwinkligen Teildreieck ADE

Lösung Aufgabe P1: 1. Berechnung der Strecke : Kosinusfunktion im gelben rechtwinkligen Teildreieck ADE Lösung Aufgabe P1: 1. Berechnung der Strecke : Kosinusfunktion im gelben rechtwinkligen Teildreieck ADE 2. Berechnung des Winkels : Tangensfunktion im hellblauen rechtwinkligen Teildreieck CDE 1 von 61

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Elemente, Buch I Stefan Witzel Vierecke Vier Punkte P, Q, R, S bilden ein Viereck PQRS, wenn sich weder die Segmente PQ und RS noch die Segmente

Mehr

Vierte Schularbeit Mathematik Klasse 3B am

Vierte Schularbeit Mathematik Klasse 3B am Vierte Schularbeit Mathematik Klasse 3B am 23.05.2016 SCHÜLERNAME: Gruppe A Lehrer: Dr. D. B. Westra Punkteanzahl : von 24 Punkten NOTE: NOTENSCHLÜSSEL 23-24 Punkte Sehr Gut (1) 20-22 Punkte Gut (2) 16-19

Mehr

Abituraufgaben Analytische Geometrie Wahlteil 2008 BW

Abituraufgaben Analytische Geometrie Wahlteil 2008 BW Aufgabe B In einem Würfel mit den Eckpunkten, und befindet sich eine Pyramide mit einem Dreieck als Grundfläche und der Spitze (vgl. Skizze). Die Eckpunkte der Pyramidengrundfläche sind 6, 6 und 5. a)

Mehr

Aufgabe P3/2009 6,8 57,7 3,9. Die Dreiecke und haben sie Seite gemeinsam. Es gilt:

Aufgabe P3/2009 6,8 57,7 3,9. Die Dreiecke und haben sie Seite gemeinsam. Es gilt: Aufgabe P1/2009 Gegeben ist ein gleichschenkliges Dreieck mit einem einbeschriebenen Rechteck. Es gilt: 51,3 3,1 7,2 Berechnen Sie den Flächeninhalt des Dreiecks. Lösung: 3,4 Aufgabe P2/2009 Die Dreiecke

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Elemente, Buch I Stefan Witzel Vierecke Vier Punkte P, Q, R, S bilden ein Viereck PQRS, wenn sich weder die Segmente PQ und RS noch die Segmente

Mehr

Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel

Universität Bielefeld. Elementare Geometrie. Sommersemester Elemente, Buch I. Stefan Witzel Universität Bielefeld Elementare Geometrie Sommersemester 2018 Elemente, Buch I Stefan Witzel Vierecke Vier Punkte P, Q, R, S bilden ein Viereck PQRS, wenn sich weder die Segmente PQ und RS noch die Segmente

Mehr

Lösung Aufgabe P1: 1. Bestimmung der Strecke : Kongruenz (Deckungsgleichheit) der Rechtecke ABCD und BEFG. 2. Bestimmung der Strecke :

Lösung Aufgabe P1: 1. Bestimmung der Strecke : Kongruenz (Deckungsgleichheit) der Rechtecke ABCD und BEFG. 2. Bestimmung der Strecke : Lösung Aufgabe P1: 1. Bestimmung der Strecke : Kongruenz (Deckungsgleichheit) der Rechtecke ABCD und BEFG 2. Bestimmung der Strecke : 3. Berechnung der Strecke : Tangensfunktion im gelben rechtwinkligen

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 06 Prof. Dr. Matthias Lesch, Regula Krapf Übungsblatt 8 Aufgabe 7 (8 Punkte). Ein Parallelogramm ist ein Rechteck ABCD mit Seiten a, b, c, d wie unten dargestellt, mit

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung Ähnlich dem Kapitel Quadratische Pyramiden geht es in diesem Kapitel um regelmäßige Pyramiden mit anderen Grundflächen als einem Quadrat. Es kommen dreiseitige, fünfseitige, sechsseitige

Mehr

Dreiecke (in der Ebene)

Dreiecke (in der Ebene) Dreiecke (in der Ebene) 1) EinfÄhrung Trigonometrie bedeutet: die Lehre von den Dreiecken. Ein Dreieck entsteht aus drei geraden, nicht parallelen Seiten, die sich jeweils unter einem Winkel treffen. Dies

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln 1. Der Umgang mit der Mitternachtsformel

Themenerläuterung. Die wichtigsten benötigten Formeln 1. Der Umgang mit der Mitternachtsformel Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene

Mehr

Mathematik Name: Klassenarbeit Nr. 2 Klasse 9a Punkte: /30 Note: Schnitt:

Mathematik Name: Klassenarbeit Nr. 2 Klasse 9a Punkte: /30 Note: Schnitt: Aufgabe 1: [4P] Erkläre mit zwei Skizzen, vier Formeln und ein paar Worten die jeweils zwei Varianten der beiden Strahlensätze. Lösung 1: Es gibt viele Arten, die beiden Strahlensätze zu erklären, etwa:

Mehr

Mittlerer Schulabschluss 2013

Mittlerer Schulabschluss 2013 Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Bildung, Jugend und Sport Brandenburg und der Senatsverwaltung für Bildung, Jugend und

Mehr

Aufgabe P3/2012 Auf einem gleichschenkligen Dreiecksprisma liegt der Streckenzug +,-. mit der Länge 23,4. Es gilt:

Aufgabe P3/2012 Auf einem gleichschenkligen Dreiecksprisma liegt der Streckenzug +,-. mit der Länge 23,4. Es gilt: Abschluss Realschule BW 2012 Aufgabe P1/2012 Die Rechtecke und sind kongruent. Sie haben die Punkte und gemeinsam, wobei auf der Strecke liegt. Es gilt: 4,5 29 Berechnen Sie den Flächeninhalt des Vierecks.

Mehr

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit

Mehr

Inhaltsverzeichnis. I Planimetrie.

Inhaltsverzeichnis. I Planimetrie. Inhaltsverzeichnis I Planimetrie. Winkel 1.1 Einführung 1.1.1 Definition eines Winkels 1 1.1.2 Messung von Winkeln in Grad (Altgrad) 1 1.1.3 Orientierte Winkel 2 1.1.4 Winkelkategorien 2 1.2 Winkel an

Mehr

Lösungen zur Prüfung 2005: Pflichtbereich

Lösungen zur Prüfung 2005: Pflichtbereich 005 Pflichtbereich Lösungen zur Prüfung 005: Pflichtbereich Aufgabe P1: erechnung des Pyramidenvolumens: ür das Volumen V p einer Pyramide gilt: V P = 1 3 a h Dabei ist a die Kantenlänge der quadratischen

Mehr

Ausführliche Lösungen

Ausführliche Lösungen Ausführliche Lösungen 11.1 Die Aussage gilt für a) Rechteck, Quadrat b) Raute, Quadrat, Drachen c) Parallelogramm, Raute, Rechteck, Quadrat d) Rechteck, Quadrat e) Parallelogramm 11.2 Bei einem Parallelogramm

Mehr

Curriculum Mathematik

Curriculum Mathematik Klasse 5 Natürliche Zahlen Rechnen mit natürlichen Zahlen: Kopfrechnen, Überschlag, Runden, schriftliches Rechnen, Rechengesetze, Vorrangregeln, Terme berechnen Zahlenstrahl und Maßstäbe Darstellung von

Mehr

Trigonometrie. Unterrichtsinhalte und Beispiele. Olaf Schimmel

Trigonometrie. Unterrichtsinhalte und Beispiele. Olaf Schimmel Trigonometrie Unterrichtsinhalte und Beispiele Olaf Schimmel 1 Die Definition der Winkelfunktioen 1.1 Die Winkelfunktionen im rechtwinkligen Dreieck Gegeben sei ein rechtwinkliges Dreieck mit den Katheten

Mehr

% $ % ' 6 $ ' $ % 3 $ = 0 % ' 3 $ = 0 $ 3 = 0

% $ % ' 6 $ ' $ % 3 $ = 0 % ' 3 $ = 0 $ 3 = 0 Aufgabe 1.1 Lösungslogik 1.1.1 Schnittpunkte von mit den Koordinatenachsen: Schnittpunkt mit der y Achse über 0. Schnittpunkt mit der x Achse über = 0. Lösung per GTR oder WTR. Extrempunkte von : Über

Mehr

Die Oberfläche der Verpackung besteht aus sechs Teilen: 2 Trapeze (vorne und hinten), und 4 Rechtecke.

Die Oberfläche der Verpackung besteht aus sechs Teilen: 2 Trapeze (vorne und hinten), und 4 Rechtecke. Aufgabe 1a) Schritt 1: Oberflächenformel aufstellen Gesucht ist die Oberfläche des Prismas. Das heißt, 2, mit G als Grundfläche und M als Mantel. Die Oberfläche der Verpackung besteht aus sechs Teilen:

Mehr

Abituraufgaben Analytische Geometrie Wahlteil 2012 BW

Abituraufgaben Analytische Geometrie Wahlteil 2012 BW Aufgabe 1 Lösungslogik a) Wir erstellen die Koordinatengleichung durch Bildung des Normalenvektors über das Kreuzprodukt. Zum Einzeichnen der Ebene in das Koordinatensystem stellen wir die Achsenabschnittsform

Mehr

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren

Mehr

Aufgabe P3/2017 Ein Körper setzt sich aus einem halben Zylinder und einer quadratischen Pyramide zusammen. Es gilt: 16 58

Aufgabe P3/2017 Ein Körper setzt sich aus einem halben Zylinder und einer quadratischen Pyramide zusammen. Es gilt: 16 58 Aufgabe P1/2017 Gegeben ist das rechtwinklige Dreieck ABC. Es gilt: 5,8 6,6 halbiert den Winkel. Berechnen Sie den Umfang des Dreiecks. Lösung: 23 Aufgabe P2/2017 Im Quadrat ABCD liegen das rechtwinklige

Mehr

Fit in Mathe. März Klassenstufe 9 n-ecke. = 3,also x=6

Fit in Mathe. März Klassenstufe 9 n-ecke. = 3,also x=6 Thema Musterlösung 1 n-ecke Wie groß ist der Flächeninhalt des nebenstehenden n-ecks? Die Figur lässt sich z.b. aus den folgenden Teilfiguren zusammensetzen: 1. Dreieck (ECD): F 1 = 3 =3. Dreieck (AEF):

Mehr