Übersicht. Künstliche Intelligenz: 13. Unsicherheiten Frank Puppe 1

Größe: px
Ab Seite anzeigen:

Download "Übersicht. Künstliche Intelligenz: 13. Unsicherheiten Frank Puppe 1"

Transkript

1 Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen 13. Unsicherheiten 14. Probabilistisches Schließen 15. Probabilistisches zeitliches Schließen 16. Treffen einfacher Entscheidungen 17. Treffen komplexer Entscheidungen VI Lernen VII Kommunizieren, Wahrnehmen und Handeln Künstliche Intelligenz: 13. Unsicherheiten Frank Puppe 1

2 Probleme der PK1 mit Unsicherheiten Beispiel1: Wieviel Zeit brauche ich zum Flughafen? Logisch nicht zu beantworten! Beispiel2: Medizinische Diagnose a) Zahnschmerzen Karies (falsch) b) Zahnschmerzen Karies Paradontose Weisheitszahn... c) Karies Zahnschmerzen (besser, aber ebenfalls falsch) In der realen Welt kommt man mit reiner Logik nicht sehr weit! Probleme der Prädikatenlogik 1. Stufe: Faulheit: Es ist zu aufwendig, exakte Regeln zu schreiben. Theoretische Unwissenheit: Exakte Regeln sind im Anwendungsbereich nicht bekannt. Praktische Unwissenheit: Es sind bei einem konkreten Fall nicht alle Daten für die Regeln bekannt. Künstliche Intelligenz: 13. Unsicherheiten Frank Puppe 2

3 Lösung: Unsicheres Schließen Zusammenfassung vieler heterogener Fälle durch Wahrscheinlichkeiten und unsicheres Schließen, z.b. Zahnschmerzen Karies mit 80% Wahrscheinlichkeit Die Wahrscheinlichkeit gibt an, wie stark der Agent an die Schlussfolgerung glaubt, die unabhängig davon wahr oder falsch ist. Im Gegensatz zum probabilistischen Schließen geht die Fuzzy Theorie davon aus, daß es nicht nur wahre oder falsche Aussagen gibt, sondern auch halbwahre und formalisiert Wahrheitsgrade. Im Gegensatz zu logischen Sätzen kann sich der Status von Wahrscheinlichkeitsaussagen durch neue Evidenz ändern. Status vor neuer Evidenz: unbedingte (Apriori) Wahrscheinlichkeit Status nach neuer Evidenz: bedingte (Aposteriori)Wahrscheinlichkeit Künstliche Intelligenz: 13. Unsicherheiten Frank Puppe 3

4 Unsicherheit und rationale Entscheidungen Wie entscheidet ein Agent angesichts von Unsicherheiten? a) Er benötigt Präferenzen, wie nützlich verschiedene Ziele sind (Utility theory) b) Er berücksichtigt die Wahrscheinlichkeit, die Ziele zu erreichen (Probability theory) Decision theory = probability theory & utility theory Ein Agent handelt genau dann rational, wenn er immer die Aktion mit der größten zu erwartenden Nützlichkeit wählt (gemittelt über alle möglichen Ergebnisse der Aktion; Prinzip der maximalen erwarteten Nützlichkeit). Künstliche Intelligenz: 13. Unsicherheiten Frank Puppe 4

5 Basisbegriffe der Wahrscheinlichkeitstheorie unbedingte Wahrscheinlichkeit (prior probability): P(A) Zufallsvariablen (random variables) und Werte: boolean: z.b. Karies: ja / nein diskret: z.b. Wetter: sonnig, Regen, wolkig, Schnee kontinuierlich: z.b. Temperatur: 36,9 Wahrscheinlichkeitsverteilung:z.B.P(Wetter):(0,7 0,2 0,08 0,02) Bedingte Wahrscheinlichkeit (conditional probility): P (A B) P(A B) = P(A B) / P(B) P(A B) = P(A B) P(B) oder (Produkt Regel) Wahrscheinlichkeitsaxiome: 1. 0 P(A) 1 2. P(Wahr) = 1; P(Falsch) = 0 3. P(A B) = P(A) + P(B) - P(A B) Künstliche Intelligenz: 13. Unsicherheiten Frank Puppe 5

6 Wahrscheinlichkeitsverteilung Wahrscheinlichkeitsverteilung (Joint probilitity distribution): Zuweisung von Wahrscheinlichkeiten an alle möglichen Kombinationen von Variablen (atomic events). Beispiel: Zahnschmerz Zahnschmerz Karies 0,04 0,06 Karies 0,01 0,89 Aus der (vollständigen) Wahrscheinlichkeitsverteilung können z.b. bedingte Wahrscheinlichkeiten berechnet werden: P(Karies Zahnschmerz) = P (K Z) / P (Z) = 0,04 / 0,04+0,01 = 0,8 Künstliche Intelligenz: 13. Unsicherheiten Frank Puppe 6

7 Konsequenz der Wahrscheinlichkeitstheorie de Finetti: Wenn ein Agent entsprechend seinen Wahrscheinlichkeiten Wetten abschließt und seine Wahrscheinlichkeiten den Wahrscheinlichkeitsaxiomen widersprechen, dann kann ein zweiter Agent eine Wettstrategie entwickeln, so daß der erste Agent garantiert Geld verliert. Künstliche Intelligenz: 13. Unsicherheiten Frank Puppe 7

8 Konsequenzen inkonsistenter Wahrscheinlichkeiten beim Wetten Agent2 bietet Agent1 eine Kombi-Wette an: 1. Wenn A zutrifft, zahlt Agent1 6, sonst bekommt er Wenn B zutrifft, zahlt Agent1 7, sonst bekommt er Wenn weder A noch B gilt, zahlt Agent1 8, sonst bekommt er 2. Agent1 verliert immer, egal welche Werte A und B haben. Künstliche Intelligenz: 13. Unsicherheiten Frank Puppe 8

9 Inferenz mit Wahrscheinlichkeitsverteilungen Eine einfache, allerdings ineffiziente Möglichkeit, bedingte Wahrscheinlichkeiten zu berechnen, basiert auf vollständigen Wahrscheinlichkeitsverteilungen Beispiel: volle Wahrscheinlichkeitsverteilung für Zahnschmerzen (toothache), Karies (cavity) und catch-test Die Summe aller Wahrscheinlichkeiten ist 1: Die Wahrscheinlichkeit einer Aussage a ist gleich der Summe der Wahrscheinlichkeiten aller Zustände (atomaren Ereignisse; e i ), in denen die Aussage gilt: Künstliche Intelligenz: 13. Unsicherheiten Frank Puppe 9

10 Marginalization und Conditioning Berechnung der Apriori-Wahrscheinlichkeit einer Variablen: Marginalization: Aufsummierung aller Terme der Wahrscheinlichkeitsverteilung, in der die Variable (Y) vorkommt: allgemein: P(Y) = z P (Y,z) Bsp.: P(cavity): 0, , , ,008 = 0,2 Conditioning: Aufsummierung aller Terme mit bedingten Wahrscheinlichkeiten, in der die Variable (Y) vorkommt: allgemein: P(Y) = z P (Y z) P(z) Berechnung bedingter Wahrscheinlichkeiten: Rückführung auf nicht-bedingte Wahrscheinlichkeiten und Berechnung mit Wahrscheinlichkeitsverteilung Bsp.: P(cavity toothache) = P (cavity toothache) / P (toothache) = (0, ,012) / (0, , , ,064) = 0,6 Bsp.: P( cavity toothache) = P ( cavity toothache) / P (toothache) = (0, ,064) / (0, , , ,064) = 0,4 Künstliche Intelligenz: 13. Unsicherheiten Frank Puppe 10

11 Allgemeine Inferenzprozedur Normalisierung: im letzten Beispiel ist der Nenner für cavity & cavity konstant und kann deshalb als eine Normalisierungskonstante α für die Verteilung P(cavity toothache) betrachtet werden, die gewährleistet, dass die Summe 1 ergibt: P (cavity toothache) = α P (cavity, toothache) = α [P(cavity, toothache, catch) + P(cavity, toothache, catch)] Inferenzprozedur für bedingte Anfrage mit einer Variable (X), wobei die Bedingungen E seien (im Beispiel: x = cavity, E = toothache), e die Ausprägungen von E und Y die restlichen unbeobachteten Variablen (im Beispiel: Y = catch) mit den Ausprägungen y: P(X e) = α P(X,e) = α y P(X,e,y) Exponentieller Aufwand (2 n ) bei n boolschen Variablen. Künstliche Intelligenz: 13. Unsicherheiten Frank Puppe 11

12 Unabhängigkeit Wenn zwei Variablen unabhängig voneinander sind, vereinfachen sich viele Gleichungen: P(a b) = P(a) P(a b) = P(a) * P(b) Beispiele: -Wetter ist unabhängig von Zahnproblemen - Münzwürfe sind untereinander unabhängig Künstliche Intelligenz: 13. Unsicherheiten Frank Puppe 12

13 Bayes' Theorem P (B A) = P(A B) P(B) / P(A) Begründung: P(A B) = P(A B) P(B) = P(B A) P(A) Beispiel für Anwendung: Es sei: P(Meningitis) = 1/ P(Nackensteife) = 1/20 P (Nackensteife Meningitis) = ½ Dann gilt: P(M N) = P(N M) P(M) / P(N) = 0,5 * 1/50000 / 1/20 = 0,0002 Warum ermittelt man bedingte Wahrscheinlichkeiten für Symptome und wendet dann Bayes' Theorem an und ermittelt nicht gleich bedingte Wahrscheinlichkeiten für Diagnosen? P (Symptom Diagnose) ist stabiler als P (Diagnose Symptom) bei geändertem Patientenkollektiv. Allerdings müssen die unbedingten Wahrscheinlichkeiten eventuell adaptiert werden. Künstliche Intelligenz: 13. Unsicherheiten Frank Puppe 13

14 Normalisierung Häufig ist man an der relativen Wahrscheinlichkeit einer Diagnose im Vergleich zu anderen Diagnosen interessiert. Dazu benötigt man nicht die Apriori-Wahrscheinlichkeit der Symptome. a) Vergleich der Wahrscheinlichkeiten zweier Diagnosen D1 & D2: P (D1 S) = P(S D1) P(D1) / P(S) P (D2 S) = P(S D2) P(D2) / P(S) P (D1 S) / P (D2 S) = P(S D1) P(D1) / P(S D2) P(D2) b) Berechnung der Wahrscheinlichkeit einer Diagnose aus einer Gruppe von 2 oder n Diagnosen. P (D S) = P(S D) P(D) / P(S) P ( D S) = P(S D) P( D) / P(S) Es gilt: P (D S) + P ( D S) = 1 Daraus folgt: P(S) = P(S D) P(D) + P(S D) P( D) Man kann also P(S) bzw. 1/P(S) durch eine normalisierende Konstante α ersetzen. Daraus folgt: P(D S) = α P(D) P(S D) Künstliche Intelligenz: 13. Unsicherheiten Frank Puppe 14

15 Kombination von Evidenzen Es sei P(Nackensteife Menigitis) = 0,5 P(Bewußtseinstrübung Menigitis) = 0,7 P(Fieber Menigitis) = 0,95 Wie groß ist die kombinierte Wahrscheinlichkeit von Menigitis, wenn alle drei Symptome zutreffen? P(Menigitis Nackensteife Bewußtseinstrübung Fieber) oder P(D S1 S2 S3) Falls S1 & S2... voneinander unabhängig sind (außer das sie durch D beeinflußt werden), dann gilt: P(D S1 S2 S3) = α P(D) P(S1 D) P(S2 D) P(S3 D) Künstliche Intelligenz: 13. Unsicherheiten Frank Puppe 15

16 Wo kommen die Wahrscheinlichkeiten her? a) durch Experimente und statistische Auswertungen b) durch Überlegungen c) durch Schätzungen Beispiele: Wie groß ist die Wahrscheinlichkeit, dass eine Karte eines Skatspiels ein Kreuz-Bube ist?... dass morgen die Sonne aufgeht?... dass Meningitis zu Nackensteife führt?... Künstliche Intelligenz: 13. Unsicherheiten Frank Puppe 16

Übersicht. 16. Treffen einfacher Entscheidungen

Übersicht. 16. Treffen einfacher Entscheidungen Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen 14. Unsicherheiten 15. Probabilistische Inferenzsysteme 16. Treffen

Mehr

Methoden der KI in der Biomedizin Unsicheres Schließen

Methoden der KI in der Biomedizin Unsicheres Schließen Methoden der KI in der Biomedizin Unsicheres Schließen Karl D. Fritscher Motivation Insofern sich die Gesetze der Mathematik auf die Wirklichkeit beziehen, sind sie nicht sicher. Und insofern sie sich

Mehr

Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl KI) Bayes-Netze (1) 1 / 22 Gliederung 1 Unsicheres Wissen 2 Schließen

Mehr

Maximierung der erwarteten Nützlichkeit. Übersicht. Bsp.: Maximierung der erwarteten Nützlichkeit. Grundlagen der Nützlichkeitstheorie

Maximierung der erwarteten Nützlichkeit. Übersicht. Bsp.: Maximierung der erwarteten Nützlichkeit. Grundlagen der Nützlichkeitstheorie Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen 13. Unsicherheiten 14. Probabilistisches Schließen 15. Probabilistisches

Mehr

12. Verarbeitung unsicheren Wissens

12. Verarbeitung unsicheren Wissens 12. Verarbeitung unsicheren Wissens Prof. Dr. Rudolf Kruse University of Magdeburg Faculty of Computer Science Magdeburg, Germany rudolf.kruse@cs.uni-magdeburg.de S 12. Verarbeitung unsicheren Wissens

Mehr

Bayes-Netze. Claudio Fischer Text- und Datamining (AG Digital Humanities)

Bayes-Netze. Claudio Fischer Text- und Datamining (AG Digital Humanities) Bayes-Netze Claudio Fischer 20.06.2013 Text- und Datamining (AG Digital Humanities) Agenda Wiederholung Wahrscheinlichkeitstheorie Beispiel Motivation Bayes-Netze Inferenz exakt Inferenz annäherend Belief

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

12. Verarbeitung unsicheren Wissens

12. Verarbeitung unsicheren Wissens 12. Verarbeitung unsicheren Wissens Prof. Dr. Rudolf Kruse University of Magdeburg Faculty of Computer Science Magdeburg, Germany rudolf.kruse@cs.uni-magdeburg.de S F UZZY 12. Verarbeitung unsicheren Wissens

Mehr

Bayes sche und probabilistische Netze

Bayes sche und probabilistische Netze Bayes sche und probabilistische Netze Gliederung Wahrscheinlichkeiten Bedingte Unabhängigkeit, Deduktion und Induktion Satz von Bayes Bayes sche Netze D-Separierung Probabilistische Inferenz Beispielanwendung

Mehr

Bayessche Netze. Kevin Klamt und Rona Erdem Künstliche Intelligenz II SoSe 2012 Dozent: Claes Neuefeind

Bayessche Netze. Kevin Klamt und Rona Erdem Künstliche Intelligenz II SoSe 2012 Dozent: Claes Neuefeind Bayessche Netze Kevin Klamt und Rona Erdem Künstliche Intelligenz II SoSe 2012 Dozent: Claes Neuefeind Einleitung Sicheres vs. Unsicheres Wissen Kausale Netzwerke Abhängigkeit Verbindungsarten Exkurs:

Mehr

Intelligente Systeme

Intelligente Systeme Intelligente Systeme Unsicheres Wissen Prof. Dr. R. Kruse C. Braune {kruse,cbraune}@iws.cs.uni-magdeburg.de Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke Universität

Mehr

Evidenzpropagation in Bayes-Netzen und Markov-Netzen

Evidenzpropagation in Bayes-Netzen und Markov-Netzen Einleitung in Bayes-Netzen und Markov-Netzen Thomas Thüm 20. Juni 2006 1/26 Thomas Thüm in Bayes-Netzen und Markov-Netzen Übersicht Einleitung Motivation Einordnung der Begriffe 1 Einleitung Motivation

Mehr

Wahrscheinlichkeitstheorie 2

Wahrscheinlichkeitstheorie 2 Wahrscheinlichkeitstheorie 2 Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 19.05.2011 Caroline Sporleder Wahrscheinlichkeitstheorie 2 (1) Wiederholung (1):

Mehr

Intelligente Systeme

Intelligente Systeme Intelligente Systeme Unsicheres Wissen Prof. Dr. R. Kruse C. Braune C. Doell {kruse,cmoewes,russ}@iws.cs.uni-magdeburg.de Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik Otto-von-Guericke

Mehr

Probabilistische Netze. Übersicht. Beispiel für Probabilistisches Modell. Vollständiges Probabilistisches Netz

Probabilistische Netze. Übersicht. Beispiel für Probabilistisches Modell. Vollständiges Probabilistisches Netz Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen 13. Unsicherheiten 14. Probabilistisches Schließen 15. Probabilistisches

Mehr

Übersicht. 7. Prädikatenlogik 1. Stufe

Übersicht. 7. Prädikatenlogik 1. Stufe Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern 6. Logisch schließende Agenten 7. Prädikatenlogik 1. Stufe 8. Entwicklung einer Wissensbasis 9. Schließen in der Prädikatenlogik

Mehr

Übersicht. Prädikatenlogik höherer Stufe. Syntax der Prädikatenlogik 1. Stufe (mit Gleichheit)

Übersicht. Prädikatenlogik höherer Stufe. Syntax der Prädikatenlogik 1. Stufe (mit Gleichheit) Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlussfolgern 7. Logische Agenten 8. Prädikatenlogik 1. Stufe 9. Schließen in der Prädikatenlogik 1. Stufe 10. Wissensrepräsentation IV

Mehr

Übersicht. 9. Schließen in der Prädikatenlogik 1. Stufe

Übersicht. 9. Schließen in der Prädikatenlogik 1. Stufe Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern 6. Logisch schließende Agenten 7. Prädikatenlogik 1. Stufe 8. Entwicklung einer Wissensbasis 9. Schließen in der Prädikatenlogik

Mehr

Planung von Handlungen bei unsicherer Information

Planung von Handlungen bei unsicherer Information Planung von Handlungen bei unsicherer Information Dr.-Ing. Bernd Ludwig Lehrstuhl für Künstliche Intelligenz Friedrich-Alexander-Universität Erlangen-Nürnberg 20.01.2010 Dr.-Ing. Bernd Ludwig (FAU ER)

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

PRAKTIKUM KÜNSTLICHE INTELLIGENZ Ausarbeitung zum 1. Meilenstein

PRAKTIKUM KÜNSTLICHE INTELLIGENZ Ausarbeitung zum 1. Meilenstein PRAKTIKUM KÜNSTLICHE INTELLIGENZ Ausarbeitung zum 1. Meilenstein Bayes'sche Netze Andreas Bahcecioglu Marcel Bergmann Ertan Samgam Sven Schebitz Jan Seewald Fachhochschule Köln Wintersemester 2014 / 2015

Mehr

3 Wahrscheinlichkeitstheorie

3 Wahrscheinlichkeitstheorie Einige mathematische Konzepte 3 Wahrscheinlichkeitstheorie 3.1 Wahrscheinlichkeit Die Wahrscheinlichkeitstheorie modelliert Situationen, in denen Unsicherheit über bestimmte Aspekte der Umwelt vorherrscht.

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Graphische Modelle iels Landwehr Überblick: Graphische Modelle Graphische Modelle: Werkzeug zur Modellierung einer Domäne mit verschiedenen

Mehr

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp

Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp Datenanalyse (PHY31) Herbstsemester 015 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung und

Mehr

Boole sches Retrieval als frühes, aber immer noch verbreitetes IR-Modell mit zahlreichen Erweiterungen

Boole sches Retrieval als frühes, aber immer noch verbreitetes IR-Modell mit zahlreichen Erweiterungen Rückblick Boole sches Retrieval als frühes, aber immer noch verbreitetes IR-Modell mit zahlreichen Erweiterungen Vektorraummodell stellt Anfrage und Dokumente als Vektoren in gemeinsamen Vektorraum dar

Mehr

Default-Typen und ihre Eigenschaften

Default-Typen und ihre Eigenschaften Default-Typen und ihre Eigenschaften Es kann von 0 bis beliebig viele Extensionen geben! Beispiele keine: ({: α / α}, {}) mehrere: ({:α /α, : α / α}, {}): Th({α}), Th({ α}) Sind alle Defaults einer Default-Theorie

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 19/21, 29.04.2019 Wahrscheinlichkeit und Statistik Patric Müller WBL 2019 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

Reasoning and decision-making under uncertainty

Reasoning and decision-making under uncertainty Reasoning and decision-making under uncertainty 9. Vorlesung Actions, interventions and complex decisions Sebastian Ptock AG Sociable Agents Rückblick: Decision-Making A decision leads to states with values,

Mehr

KI Seminar Vortrag Nr. 9 Unsicheres Wissen. Einleitung. Grundlagen. Wissen Ansätze. Sicherheitsfaktoren. Ansatz Probleme. Schlussfolgerungsnetze

KI Seminar Vortrag Nr. 9 Unsicheres Wissen. Einleitung. Grundlagen. Wissen Ansätze. Sicherheitsfaktoren. Ansatz Probleme. Schlussfolgerungsnetze Einleitung KI Seminar 2005 Vortrag Nr. 9 Unsicheres 1 Motivation Vögel können fliegen! 2 : Zuordnung von Wahrheitswerten, Wahrscheinlichkeitsgraden,. zu Aussagen, Ereignissen, Zuständen, 3 3 Eigenschaften

Mehr

Unabhängigkeit von Zufallsvariablen

Unabhängigkeit von Zufallsvariablen Unabhängigkeit von Zufallsvariablen Seminar Gegenbeispiele in der Wahrscheinlichkeitstheorie Pascal Beckedorf 12. November 2012 Pascal Beckedorf Unabhängigkeit von Zufallsvariablen 12. November 2012 1

Mehr

Einführung in Web- und Data-Science Grundlagen der Stochastik

Einführung in Web- und Data-Science Grundlagen der Stochastik Einführung in Web- und Data-Science Grundlagen der Stochastik Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Tanya Braun (Übungen) Stochastik = Wahrscheinlichkeitstheorie

Mehr

Elementare Wahrscheinlichkeitslehre

Elementare Wahrscheinlichkeitslehre Elementare Wahrscheinlichkeitslehre Vorlesung Computerlinguistische Techniken Alexander Koller 13. November 2015 CL-Techniken: Ziele Ziel 1: Wie kann man die Struktur sprachlicher Ausdrücke berechnen?

Mehr

Population und Stichprobe: Wahrscheinlichkeitstheorie

Population und Stichprobe: Wahrscheinlichkeitstheorie Population und Stichprobe: Wahrscheinlichkeitstheorie SS 2001 4. Sitzung vom 15.05.2001 Wahrscheinlichkeitstheorie in den Sozialwissenschaften: Stichprobenziehung: Aussagen über Stichprobenzusammensetzung

Mehr

Wahrscheinlichkeiten

Wahrscheinlichkeiten Wahrscheinlichkeiten August, 2013 1 von 21 Wahrscheinlichkeiten Outline 1 Wahrscheinlichkeiten 2 von 21 Wahrscheinlichkeiten Zufallsexperimente Die möglichen Ergebnisse (outcome) i eines Zufallsexperimentes

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Winter 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Einführung in die Wahrscheinlichkeitsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Wahrscheinlichkeitsrechnung

Mehr

Aufgabenblock 3. Durch zählen erhält man P(A) = 10 / 36 P(B) = 3 / 36 P(C) = 18 / 36 und P(A B) = 3 /

Aufgabenblock 3. Durch zählen erhält man P(A) = 10 / 36 P(B) = 3 / 36 P(C) = 18 / 36 und P(A B) = 3 / Aufgabenblock 3 Aufgabe ) A sei das Ereignis: schwerer Verkehrsunfall B sei das Ereignis: Alkohol ist im Spiel Herr Walker betrachtet die Wahrscheinlichkeit P(B A) = 0.3 und errechnet daraus P(-B A) =

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression Übungsklausur Wahrscheinlichkeit und Regression 1. Welche der folgenden Aussagen treffen auf ein Zufallsexperiment zu? a) Ein Zufallsexperiment ist ein empirisches Phänomen, das in stochastischen Modellen

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Woche 2: Zufallsvariablen

Woche 2: Zufallsvariablen Woche 2: Zufallsvariablen Patric Müller ETHZ WBL 17/19, 24.04.2017 Wahrscheinlichkeit und Statistik Patric Müller WBL 2017 Teil III Zufallsvariablen Wahrscheinlichkeit

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen Unüberwachtes

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Schriftlicher Test Teilklausur 2

Schriftlicher Test Teilklausur 2 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2011 / 2012 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher

Mehr

Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen

Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Wahrscheinlichkeitstheorie Kapitel X - Randverteilung, bedingte Verteilung und Unabhängigkeit von Zufallsvariablen Georg Bol bol@statistik.uni-karlsruhe.de Markus Höchstötter hoechstoetter@statistik.uni-karlsruhe.de

Mehr

Wahrscheinlichkeitsrechnung und Statistik. 9. Vorlesung

Wahrscheinlichkeitsrechnung und Statistik. 9. Vorlesung Wahrscheinlichkeitsrechnung und Statistik 9. Vorlesung - 2018 Anwendung der Bayesschen Theorie in ML Bayessche Netzwerke Bayessche Netze werden in modernen Expertensystemen benutzt. Das Wissen wird über

Mehr

Kapitel ML:IV (Fortsetzung)

Kapitel ML:IV (Fortsetzung) Kapitel ML:IV (Fortsetzung) IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-18 Statistical Learning c STEIN 2005-2011 Satz 3 (Bayes)

Mehr

x p 2 (x )dx, Hinweis: es ist nicht erforderlich, zu integrieren!

x p 2 (x )dx, Hinweis: es ist nicht erforderlich, zu integrieren! Aufgabe T- Gegeben seien zwei normalverteilte Zufallsvariablen X N(µ, σ) 2 und X 2 N(µ 2, σ2) 2 mit pdf p (x) bzw. p 2 (x). Bestimmen Sie x (als Funktion der µ i, σ i, sodass x p (x )dx = + x p 2 (x )dx,

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

Wahrscheinlichkeitstheorie und Naive Bayes

Wahrscheinlichkeitstheorie und Naive Bayes Wahrscheinlichkeitstheorie und Naive Bayes Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 12.05.2011 Caroline Sporleder Naive Bayes (1) Elementare Wahrscheinlichkeitstheorie

Mehr

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26 Ein Wahrscheinlichkeitsraum (Ω, P ist eine Menge Ω (Menge aller möglichen Ausgänge eines Zufallsexperiments: Ergebnismenge versehen mit einer Abbildung

Mehr

Statistik I. 1. Klausur Wintersemester 2010/2011 Hamburg, Art der Anmeldung: STiNE FlexNow Zulassung unter Vorbehalt

Statistik I. 1. Klausur Wintersemester 2010/2011 Hamburg, Art der Anmeldung: STiNE FlexNow Zulassung unter Vorbehalt Statistik I 1. Klausur Wintersemester 2010/2011 Hamburg, 11.02.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Schriftlicher Test Teilklausur 2

Schriftlicher Test Teilklausur 2 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2012 / 2013 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Sprachtechnologie. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Sprachtechnologie. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Sprachtechnologie Tobias Scheffer Thomas Vanck Statistik & Maschinelles Lernen Statistik: Deskriptive Statistik: Beschreibung (Tabellen,

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Review) 1 Diskrete Zufallsvariablen (Random variables) Eine Zufallsvariable X(c) ist eine Variable (genauer eine Funktion), deren Wert vom Ergebnis c

Mehr

= 7! = 6! = 0, 00612,

= 7! = 6! = 0, 00612, Die Wahrscheinlichkeit, dass Prof. L. die Wette verliert, lässt sich wie folgt berechnen: Ω = {(i 1,..., i 7 ) : i j {1... 7}, j = 1... 7}, wobei i, j für den Wochentag steht, an dem die Person j geboren

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Hidden Markov Modelle - 2 - Idee Zu klassifizierende Merkmalvektorfolge wurde von einem (unbekannten) System erzeugt. Nutze Referenzmerkmalvektorfolgen um ein Modell Des erzeugenden Systems zu bauen

Mehr

Syntaktische und Statistische Mustererkennung. Bernhard Jung

Syntaktische und Statistische Mustererkennung. Bernhard Jung Syntaktische und Statistische Mustererkennung VO 1.0 840.040 (UE 1.0 840.041) Bernhard Jung bernhard@jung.name http://bernhard.jung.name/vussme/ 1 Rückblick Nicht lineare Entscheidungsfunktionen SVM, Kernel

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Bruno de Finetti Wahrscheinlichkeitstheorie Einführende Synthese mit kritischem Anhang R. Oldenbourg Verlag Wien München 1981 Inhaltsverzeichnis Vorwort X I II III Einführung 1. Wozu ein neues Buch über

Mehr

Faire Spiele, bedingte Wahrscheinlichkeit und Unabhängigkeit

Faire Spiele, bedingte Wahrscheinlichkeit und Unabhängigkeit Faire Spiele, bedingte Wahrscheinlichkeit und Unabhängigkeit Dr. Elke Warmuth Sommersemester 2018 1 / 66 Faires Spiel Bedingte Wahrscheinlichkeit Verstehen des Konzepts Definition und Multiplikationsformel

Mehr

Semester-Fahrplan 1 / 17

Semester-Fahrplan 1 / 17 Semester-Fahrplan 1 / 17 Hydroinformatik I Einführung in die Hydrologische Modellierung Bayes sches Netz Olaf Kolditz *Helmholtz Centre for Environmental Research UFZ 1 Technische Universität Dresden TUDD

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 1

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 1 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 2013/ Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie svorschläge zu

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 11. Vorlesung Jochen Köhler 10.05.011 1 Inhalt der heutigen Vorlesung Zusammenfassung Parameterschätzung Übersicht über Schätzung und Modellbildung Modellevaluation

Mehr

Übungsblätter zu Methoden der Empirischen Sozialforschung III: Inferenzstatistik. Lösungsblatt zu Nr. 2

Übungsblätter zu Methoden der Empirischen Sozialforschung III: Inferenzstatistik. Lösungsblatt zu Nr. 2 Martin-Luther-Universität Halle-Wittenberg Institut für Soziologie Dr. Wolfgang Langer 1 Übungsblätter zu Methoden der Empirischen Sozialforschung III: Inferenzstatistik Lösungsblatt zu Nr. 2 1. Für die

Mehr

Kapitel 2. Wahrscheinlichkeit (wird heute behandelt) Kapitel 2. Wahrscheinlichkeit

Kapitel 2. Wahrscheinlichkeit (wird heute behandelt) Kapitel 2. Wahrscheinlichkeit Teil I: Wahrscheinlichkeitstheorie 1 Kapitel 2. Wahrscheinlichkeit (wird heute behandelt) Kapitel 3: Bedingte Wahrscheinlichkeit Kapitel 4: Zufallsvariablen Kapitel 5: Erwartungswerte, Varianz, Kovarianz

Mehr

Wie liest man Konfidenzintervalle? Teil II. Premiu m

Wie liest man Konfidenzintervalle? Teil II. Premiu m Wie liest man Konfidenzintervalle? Teil II Premiu m - Hintergrund Anderer Wahrscheinlichkeitsbegriff subjektiver Wahrscheinlichkeitsbegriff Beispiel: Was ist die Wahrscheinlichkeit dafür, dass ein Patient

Mehr

Konzept diskreter Zufallsvariablen

Konzept diskreter Zufallsvariablen Statistik 1 für SoziologInnen Konzept diskreter Zufallsvariablen Univ.Prof. Dr. Marcus Hudec Beispiel: Zufallsvariable 3 Münzen werden unabhängig voneinander geworfen. Jede Münze kann entweder Kopf oder

Mehr

Aufgabe 1 Probabilistische Inferenz

Aufgabe 1 Probabilistische Inferenz Seite 1 von 11 Aufgabe 1 Probabilistische Inferenz (28 Punkte) Es existieren zwei Krankheiten, die das gleiche Symptom hervorrufen. Folgende Erkenntnisse konnten in wissenschaftlichen Studien festgestellt

Mehr

1 Axiomatische Definition von Wahrscheinlichkeit

1 Axiomatische Definition von Wahrscheinlichkeit Schülerbuchseite 174 176 Lösungen vorläufig und Unabhängigkeit 1 Axiomatische Definition von Wahrscheinlichkeit S. 174 1 Ein Schätzwert für die Wahrscheinlichkeit von Sau kann nur mithilfe der relativen

Mehr

Kombinatorik & Stochastik Übung im Sommersemester 2018

Kombinatorik & Stochastik Übung im Sommersemester 2018 Kombinatorik & Stochastik Übung im Sommersemester 2018 Kombinatorik Formeln & Begriffe Begrifflichkeiten Permutation = Anordnung in einer bestimmten Reihenfolge Kombination = Anordnung ohne bestimmte Reihenfolge

Mehr

Schriftlicher Test Teilklausur 2

Schriftlicher Test Teilklausur 2 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2014 / 2015 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher

Mehr

Bayes-Netze (2) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Bayes-Netze (2) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Bayes-Netze (2) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl KI) Bayes-Netze (2) 1 / 23 Gliederung 1 Zusammenhang zwischen Graphenstruktur

Mehr

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.)

Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) Einige Konzepte aus der Wahrscheinlichkeitstheorie (Wiederh.) 1 Zusammenfassung Bedingte Verteilung: P (y x) = P (x, y) P (x) mit P (x) > 0 Produktsatz P (x, y) = P (x y)p (y) = P (y x)p (x) Kettenregel

Mehr

Bayesnetzmodelle (BNM) in der Kardiologie

Bayesnetzmodelle (BNM) in der Kardiologie Bayesnetzmodelle (BNM) in der Kardiologie Vorgehensmodell - Ergebnisse Claus Möbus - Heiko Seebold Jan-Ole Janssen, Andreas Lüdtke, Iris Najman, Heinz-Jürgen Thole Besonderen Dank an: Herrn Reinke (Münster)

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Unabhängigkeit Prof. Dr. Achim Klenke http://www.aklenke.de 6. Vorlesung: 02.12.2011 1/30 Inhalt 1 Wahrscheinlichkeit 2 2/30 Wahrscheinlichkeit

Mehr

Ideen und Konzepte der Informatik. Programme und Algorithmen Kurt Mehlhorn

Ideen und Konzepte der Informatik. Programme und Algorithmen Kurt Mehlhorn Ideen und Konzepte der Informatik Programme und Algorithmen Kurt Mehlhorn Algorithmen und Programme Algorithmus Schritt-für-Schritt Vorschrift zur Lösung eines Problems. Formuliert man umgangssprachlich,

Mehr

1 Bedingte Erwartungswerte

1 Bedingte Erwartungswerte Die folgenden Regeln sind das alltägliche Handwerkszeug für den Umgang mit bedingten Erwartungen und werden in diesem Abschnitt, allerdings ohne Beweise, zitiert. Es ist durchaus eine lohnenswerte Übung,

Mehr

Fuzzy Logic und Wahrscheinlichkeit

Fuzzy Logic und Wahrscheinlichkeit Philosophische Fakultät Institut für Philosophie, Lehrstuhl für Theoretische Philosophie, Holm Bräuer M.A. Fuzzy Logic und Wahrscheinlichkeit Ein Kurzüberblick Was ist Fuzzy Logic? Fuzzy-Logik (englisch:

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Aufgabenblock 1. Aufgabe 1)

Aufgabenblock 1. Aufgabe 1) Aufgabenblock 1 Aufgabe 1) (i) Wie viele Möglichkeiten gibt es für den Wirt, ein Tablett mit drei Bieren (ii) (iii) (iv) zusammenzustellen? Es werden hierbei k Elemente (= 3) aus einer Menge von n Objekten

Mehr

Bayesianische Netzwerke - Lernen und Inferenz

Bayesianische Netzwerke - Lernen und Inferenz Bayesianische Netzwerke - Lernen und Inferenz Manuela Hummel 9. Mai 2003 Gliederung 1. Allgemeines 2. Bayesianische Netzwerke zur Auswertung von Genexpressionsdaten 3. Automatische Modellselektion 4. Beispiel

Mehr

Aufgabe 1 Probabilistische Inferenz

Aufgabe 1 Probabilistische Inferenz Seite 1 von 8 Aufgabe 1 Probabilistische Inferenz (32 Punkte) In einer medizinischen Studie werden zwei Tests zur Diagnose von Leberschäden verglichen. Dabei wurde folgendes festgestellt: Test 1 erkennt

Mehr

Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten

Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten Vorlesung 9b Bedingte Verteilungen und bedingte Wahrscheinlichkeiten 1 Voriges Mal: Aufbau der gemeinsamen Verteilung von X 1 und X 2 aus der Verteilung ρ von X 1 und Übergangswahrscheinlichkeiten P(a

Mehr

Probabilistische Graphische Modelle

Probabilistische Graphische Modelle Probabilistische Graphische Modelle 1 Probabilistische Graphische Modelle Sven Wachsmuth Universität Bielefeld, Technische Fakultät, AG Angewandte Informatik WS 2006/2007 Probabilistische Graphische Modelle

Mehr

Grundlagen der Objektmodellierung

Grundlagen der Objektmodellierung Grundlagen der Objektmodellierung Daniel Göhring 30.10.2006 Gliederung Grundlagen der Wahrscheinlichkeitsrechnung Begriffe zur Umweltmodellierung Bayesfilter Zusammenfassung Grundlagen der Wahrscheinlichkeitsrechnung

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Christoph Sawade/Niels Landwehr/Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Christoph Sawade/Niels Landwehr/Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Graphische Modelle Christoph Sawade/Niels Landwehr/Tobias Scheffer Graphische Modelle Werkzeug zur Modellierung einer Domäne mit

Mehr

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein.

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein. Lösungsvorschläge zu den Aufgaben von Blatt 6: 43) 7 Telefonzellen ( 7 Kugeln in der Urne); 3 davon sind von je einem Benutzer besetzt ( 3 Kugeln in die Stichprobe). Die Telefonzellen werden nicht mehrfach

Mehr

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen

Zusammenfassung: diskrete und stetige Verteilungen. Woche 4: Gemeinsame Verteilungen. Zusammenfassung: diskrete und stetige Verteilungen Zusammenfassung: e und e Verteilungen Woche 4: Gemeinsame Verteilungen Wahrscheinlichkeitsverteilung p() Wahrscheinlichkeitsdichte f () WBL 15/17, 11.05.2015 Alain Hauser P(X = k

Mehr

Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie

Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie Johannes Leitner Inhalt I Modellierung von Unschärfe Unscharfe Mengen Unscharfe

Mehr

Übungsaufgaben, Statistik 1

Übungsaufgaben, Statistik 1 Übungsaufgaben, Statistik 1 Kapitel 3: Wahrscheinlichkeiten [ 4 ] 3. Übungswoche Der Spiegel berichtet in Heft 29/2007 von folgender Umfrage vom 3. und 4. Juli 2007:,, Immer wieder werden der Dalai Lama

Mehr

SEMINAR KLASSIFIKATION & CLUSTERING STATISTISCHE GRUNDLAGEN. Stefan Langer WINTERSEMESTER 2014/15.

SEMINAR KLASSIFIKATION & CLUSTERING STATISTISCHE GRUNDLAGEN. Stefan Langer WINTERSEMESTER 2014/15. SEMINAR KLASSIFIKATION & CLUSTERING WINTERSEMESTER 2014/15 STATISTISCHE GRUNDLAGEN Stefan Langer stefan.langer@cis.uni-muenchen.de Frequenz & Häufigkeit: Übersicht Absolute Häufigkeit Relative Häufigkeit

Mehr

Schriftlicher Test Teilklausur 2

Schriftlicher Test Teilklausur 2 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2009 / 2010 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher

Mehr

1 Inhaltsverzeichnis. 1 Einführung...1

1 Inhaltsverzeichnis. 1 Einführung...1 1 Inhaltsverzeichnis 1 Einführung...1 1.1 Arten der stochastischen Abhängigkeit...2 1.2 Wo kommen regressive Abhängigkeiten vor?...3 1.3 Hauptaufgaben von Regressionsmodellen...3 1.4 Wissenschaftstheoretische

Mehr