Levi-Kontraktionen. Dr. Uwe Scheffler. Mai [Technische Universität Dresden]

Größe: px
Ab Seite anzeigen:

Download "Levi-Kontraktionen. Dr. Uwe Scheffler. Mai [Technische Universität Dresden]"

Transkript

1 Levi-Kontraktionen Dr. Uwe Scheffler [Technische Universität Dresden] Mai 2011

2 Maximal-konsistente Mengen (ein bißchen Logik) konsistent heißt eine Menge A genau dann, wenn für kein α gilt: α Cn(A) & α Cn(A) inkonsistent heißt eine Menge A genau dann, wenn A nicht konsistent ist maximal-konsistent heißt eine Menge A genau dann, wenn A konsistent ist und für jedes α A gilt: A {α} ist inkonsistent [Lindenbaum-Lemma] Jede konsistente Menge läßt sich zu einer maximal-konsistenten erweitern. Dr. Uwe Scheffler 2

3 Eigenschaften maximal-konsistenter Mengen Sei A eine maximal-konsistente Menge. Negation Für jedes α gilt: α A genau dann, wenn α A. Subjunktion Für alle α, β gilt: α β A genau dann, wenn α A oder β A. Konjunktion Für alle α, β gilt: α β A genau dann, wenn α A und β A. Adjunktion Für alle α, β gilt: α β A genau dann, wenn α A oder β A. Dr. Uwe Scheffler 3

4 Restemengen, wieder mal Definition Sei A eine Satzmenge und α ein Satz. A α ist die Menge aller Mengen B so, daß: 1. B A 2. α Cn(B) 3. Es gibt kein B so, daß B B A und α Cn(B ). Dr. Uwe Scheffler 4

5 Eigenschaften von Restemengen von Überzeugungsmengen Sei A logisch abgeschlossen. 1. Wenn X A α, dann ist X logisch abgeschlossen. 2. Sei X A β und α 1, α 2 A. Dann ist α 1 α 2 X dann und nur dann, wenn α 1 X oder α 2 X. 3. Sei α β A. Wenn X A α β, dann ist genau eines der Fall: α X, oder β X, oder α β X. 4. Sei α A und X A α. Dann gilt für alle β: entweder α β X oder α β X. 5. (Recovery Lemma) Sei X A α und β A. Dann ist β Cn(X {α}). 6. A β A α genau dann, wenn α β 7. Sei α, β A, dann A α β = A α A β A α β = A α A β Dr. Uwe Scheffler 5

6 Restemengen von Sprachen Sprache Sei L = {α : α ist eine Formel } Beobachtung L ist inkonsistent, aber logisch abgeschlossen. Restemenge Elemente von L α sind logisch abgeschlossen und konsistent. alle konsistenten Restemengen-Elemente einer Sprache L = {X : X L α für ein α} Dr. Uwe Scheffler 6

7 Die X L sind maximal-konsistent Sei X L, dann gilt für alle α, β: 1. Entweder α X oder α X. 2. α X dann und nur dann, wenn α X. 3. α β X dann und nur dann, wenn entweder α X oder β X. 4. α β X dann und nur dann, wenn: falls α X, dann β X. Dr. Uwe Scheffler 7

8 Saturierbare Mengen 1 Definition Eine Menge X heißt dann und nur dann α-saturierbar, wenn 1. X = Cn(X), und 2. Cn(X { α}) L Beobachtung Sei A logisch abgeschlossen und α A. Dann sind alle X A α α-saturierbar. Alle Elemente von α-restemengen sind α-saturierbar. Dr. Uwe Scheffler 8

9 Saturierbare Mengen 2 Alle Elemente von α-restemengen von A sind α-saturierbar... aber das sind nicht die einzigen Untermengen von A, die α-saturierbar sind! L = {p, q, wahrheitsfunktionale Kombinationen} A = {Cn({p, q})}, also Cn({p q}) A p und Cn({q}) A p Beide sind p-saturierbar: Cn(Cn({p q}) { p}) = Cn({ p, q}) L Cn(Cn({q}) { p}) = Cn({ p, q}) L Aber es gibt p-saturierbare Untermengen von A, die nicht Element von A p sind: Cn(Cn({q p}) { p}) = Cn({ p, q}) L Dr. Uwe Scheffler 9

10 Saturierbare Mengen 3 Sei A logisch abgeschlossen. Dann ist X S(A, α) in der α-saturierbare Familie von A genau dann, wenn: (1) (2) (3) X A X = Cn(X) Cn(X { α}) L Für alle Überzeugungsmengen und Sätze gilt: A α S(A, α) Dr. Uwe Scheffler 10

11 Levi-Kontraktionen Sei A logisch abgeschlossen. Dann ist genau dann eine Levi-Kontraktion für A, wenn es eine Auswahlfunktion γ gibt, so daß für alle α: 1. wenn α A, dann ist A α = γ(s(a, α)), und 2. wenn α A, dann ist A α = A. ist ein Levi-Kontraktion, wenn die folgenden Bedingungen erfüllt sind: Closure Inclusion Success Vacuity Extensionality Failure Dr. Uwe Scheffler 11

12 Levi und Wiederherstellung Recovery gilt nicht: L = {p, q, wahrheitsfunktionale Kombinationen} A = {Cn({p, q})}, dann ist Cn({q p}) S(A, p). Also gibt es ein γ: γ(s(a, p)) = {Cn({q p})}, Cn((A p) {p}) = Cn({p}) A damit aber: Konservatismus Minimiere den Verlust von Informationswert (anstelle von Information). Dr. Uwe Scheffler 12

13 Informationswert Maß V (X) V (Y ) X hat höchstens soviel Informationswert wie Y. (Transitive und konnektive Relation auf der Menge der abgeschlossenen Untermengen) streng monoton Wenn X Y, dann V (X) < V (Y ) schwach monoton Wenn X Y, dann V (X) V (Y ) Keine Menge hat weniger Informationswert als eine ihrer Untermengen. Kontrahieren bringt keinen zusätzlichen Informationswert. Schwache Monotonie erlaubt Untermengen und Mengen, die den gleichen Informationswert haben. Dr. Uwe Scheffler 13

14 Wert-basierte Levi-Kontraktionen ist genau dann wert-basierte Levi-Kontraktion, wenn das zugehörige γ von einer Informationswertfunktion V generiert wird, so daß für alle α: γ(s(a, α)) = {X S(A, α) : V (Y ) V (X) für alle Y S(A, α)} Ist wert-basierte Levi-Kontraktion, dann erfüllt es Conjunctive Overlap Conjunctive Inclusion Dr. Uwe Scheffler 14

Überzeugungen aufgeben: Full meet, Maxichoice

Überzeugungen aufgeben: Full meet, Maxichoice Überzeugungen aufgeben: Full meet, Maxichoice Dr. Uwe Scheffler [Technische Universität Dresden] Mai 2011 Withdrawal die Rücknahme Rücknahme (Withdrawal, Makinson) heißt ein Operator auf einer Überzeugungsmenge,

Mehr

Die klassische AGM-Theorie

Die klassische AGM-Theorie Goethe-Universität Frankfurt am Main Institut für Philosophie Doxastische Dynamik 2008 Theorien des Überzeugungswandels Erster Teil: Die klassische AGM-Theorie André Fuhrmann epistemdynamik1 090507.1755

Mehr

Mögliche Welten. Dr. Uwe Scheffler. Oktober [Technische Universität Dresden]

Mögliche Welten. Dr. Uwe Scheffler. Oktober [Technische Universität Dresden] Mögliche Welten Dr. Uwe Scheffler [Technische Universität Dresden] Oktober 2011 Eine Sprache für die Aussagenlogik Bedeutungstragende Zeichen sind p, p 1, p 2,... sie sind Aussagenvariablen und bezeichnen

Mehr

3.3 Default-Logiken Reiter sche Default-Logik

3.3 Default-Logiken Reiter sche Default-Logik Darstellung, Verarbeitung und Erwerb von Wissen 3.3 Default-Logiken 3.3.1 Reiter sche Default-Logik DVEW WS 2004/05 c Gabriele Kern-Isberner 1 Prozesse (Whlg.) Default-Prozesse sind (endliche) Folgen Π

Mehr

Logische Äquivalenz. Definition Beispiel 2.23

Logische Äquivalenz. Definition Beispiel 2.23 Logische Äquivalenz Definition 2.22 Zwei aussagenlogische Formeln α, β A heißen logisch äquivalent, falls für jede Belegung I von α und β gilt: Schreibweise: α β. Beispiel 2.23 Aus Folgerung 2.6 ergibt

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 3 Tautologien In der letzten Vorlesung haben wir erklärt, wie man ausgehend von einer Wahrheitsbelegung λ der Aussagevariablen

Mehr

Rhetorik und Argumentationstheorie.

Rhetorik und Argumentationstheorie. Rhetorik und Argumentationstheorie 2 [frederik.gierlinger@univie.ac.at] Teil 2 Was ist ein Beweis? 2 Wichtige Grundlagen Tautologie nennt man eine zusammengesetzte Aussage, die wahr ist, unabhängig vom

Mehr

6. AUSSAGENLOGIK: TABLEAUS

6. AUSSAGENLOGIK: TABLEAUS 6. AUSSAGENLOGIK: TABLEAUS 6.1 Motivation 6.2 Wahrheitstafeln, Wahrheitsbedingungen und Tableauregeln 6.3 Tableaus und wahrheitsfunktionale Konsistenz 6.4 Das Tableauverfahren 6.5 Terminologie und Definitionen

Mehr

Metasprache und Sprache

Metasprache und Sprache Metasprache und Sprache Womit und worüber wir reden Prädikatenlogik Uwe Scheffler [Technische Universität Dresden] Oktober 2012 Theorien als sprachliche Objekte Eine Theorie ist eine Menge von Sätzen.

Mehr

Aussagenlogischer Kalkül, Vollständigkeitssatz

Aussagenlogischer Kalkül, Vollständigkeitssatz Aussagenlogischer Kalkül, Vollständigkeitssatz Salome Vogelsang 22. Februar 2012 Eine Motivation für den Regelkalkül des Gentzen-Typus ist formuliert von Gentzen selbst: "Mein erster Gesichtspunkt war

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2016 Einführung in die mathematische Logik Arbeitsblatt 3 Übungsaufgaben Aufgabe 3.1. Beweise mittels Wahrheitstabellen, dass die folgenden Aussagen Tautologien sind.

Mehr

Metasprache und Sprache

Metasprache und Sprache Metasprache und Sprache Womit und worüber wir reden Prädikatenlogik Uwe Scheffler [Technische Universität Dresden] Oktober 2013 Reste Naive Mengenlehre haben wir drauf, hier noch ein Rest! Uwe Scheffler

Mehr

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski

Die reellen Zahlen als Dedekindsche Schnitte. Iwan Otschkowski Die reellen Zahlen als Dedekindsche Schnitte Iwan Otschkowski 14.12.2016 1 1 Einleitung In dieser Ausarbeitung konstruieren wir einen vollständig geordneten Körper aus gewissen Teilmengen von Q, den Dedekindschen

Mehr

Zufallsvariable, Verteilung, Verteilungsfunktion

Zufallsvariable, Verteilung, Verteilungsfunktion Kapitel 5 Zufallsvariable, Verteilung, Verteilungsfunktion 5.1 Zufallsvariable Sei (Ω, A, P ) ein beliebiger Wahrscheinlichkeitsraum. Häufig interessiert nicht ω selbst, sondern eine Kennzahl X(ω), d.h.

Mehr

Mathematik für Informatiker I Mitschrift zur Vorlesung vom

Mathematik für Informatiker I Mitschrift zur Vorlesung vom Mathematik für Informatiker I Mitschrift zur Vorlesung vom 18.11.2004 Zur Wiederholung: Das Kartesische Produkt dient dem Ordnen von Mengen. A B = {(a, b) : a A, b B)} Spezialfall A = Äquivalenzrelation

Mehr

4.4 Umkehrfunktion 77. Sei o.b.d.a. f(a) > 0 und f(b) < 0, setzen M = {y [a, b] mit f(x) > 0 für alle x [a, y]}

4.4 Umkehrfunktion 77. Sei o.b.d.a. f(a) > 0 und f(b) < 0, setzen M = {y [a, b] mit f(x) > 0 für alle x [a, y]} . Umkehrfunktion 77 B e w e i s : Sei o.b.d.a. fa) > und fb) für alle [a, y] M a M), M beschränkt y b) Aiom V ξ [a, b] : ξ sup M fa) f) n.z.z. : i) fξ) ii) ξ a, b) zu i):

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

Darstellung, Verarbeitung und Erwerb von Wissen

Darstellung, Verarbeitung und Erwerb von Wissen Darstellung, Verarbeitung und Erwerb von Wissen Gabriele Kern-Isberner LS 1 Information Engineering TU Dortmund Wintersemester 2015/16 WS 2015/16 G. Kern-Isberner (TU Dortmund) DVEW WS 2015/16 1 / 85 Struktur

Mehr

Mengen, Theorien, Modelle

Mengen, Theorien, Modelle Mengen, Theorien, Modelle Ein Crashkurs in formaler Logik Dr. Uwe Scheffler [Technische Universität Dresden] April 2011 Georg Cantor Menge nennt man jede Zusammenfassung von wohlunterschiedenen Objekten

Mehr

Formale Methoden 2 (Lehrstuhl I Logik in der Informatik)

Formale Methoden 2 (Lehrstuhl I Logik in der Informatik) Formale Methoden 2 Gaetano Geck (Lehrstuhl I Logik in der Informatik) Blatt 3 Beispiellösung WS 2015/16 Aufgabe 1 [Wiederholung: Relationen] 3 Punkte Begründe jeden deiner Lösungsvorschläge. a) Wir definieren

Mehr

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ).

Monotone Funktionen. Definition Es sei D R. Eine Funktion f : D R heißt. (ii) monoton fallend, wenn für alle x, x D gilt. x < x f (x) f (x ). Monotone Funktionen Definition 4.36 Es sei D R. Eine Funktion f : D R heißt (i) monoton wachsend, wenn für alle x, x D gilt x < x f (x) f (x ). Wenn sogar die strikte Ungleichung f (x) < f (x ) folgt,

Mehr

Die Logik der Sprache AL

Die Logik der Sprache AL II Die Logik der Sprache AL 10 Der Aufbau der Sprache AL Vorbemerkung Die Sprachen AL und PL enthalten nur Aussagesätze, da wir nur an Argumenten interessiert sind. Jeder Aussagesatz hat eine Syntax und

Mehr

Darstellung, Verarbeitung und Erwerb von Wissen

Darstellung, Verarbeitung und Erwerb von Wissen Darstellung, Verarbeitung und Erwerb von Wissen Gabriele Kern-Isberner LS 1 Information Engineering TU Dortmund WiSe 2017/18 G. Kern-Isberner (TU Dortmund) DVEW WiSe 2017/18 1 / 85 Struktur der Vorlesung

Mehr

Logik für Informatiker Logic for Computer Scientists

Logik für Informatiker Logic for Computer Scientists Logik für Informatiker Logic for Computer Scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 13 Vollständigkeit der Aussagenlogik Till Mossakowski Logik 2/ 13 Objekt- und Metatheorie

Mehr

Euler-Venn-Diagramme

Euler-Venn-Diagramme Euler-Venn-Diagramme Mengendiagramme dienen der graphischen Veranschaulichung der Mengenlehre. 1-E1 1-E2 Mathematische Symbole c leere Menge Folge-Pfeil Äquivalenz-Pfeil Existenzquantor, x für (mindestens)

Mehr

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14 Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

Der Satz vom Diktator

Der Satz vom Diktator Prof. Dr. Michael Eisermann Institut für Geometrie und Topologie Der Satz vom Diktator Kenneth Arrows geniale Antwort auf die Frage Wie schreibe ich meine Doktorarbeit in fünf Tagen und erhalte dafür den

Mehr

Ein Teddybär für Philosophen

Ein Teddybär für Philosophen Geo Siegwart Ein Teddybär für Philosophen Grammatik, Logik, Definitorik Break every rule! Tina Turner 1. Grammatik für Standardsprachen erster Stufe Sprachliche Gegebenheiten lassen sich im Lichte verschiedener

Mehr

Grundbegriffe für dreiwertige Logik

Grundbegriffe für dreiwertige Logik Grundbegriffe für dreiwertige Logik Hans Kleine Büning Universität Paderborn 1.11.2011 1 Syntax und Semantik Die klassische Aussagenlogik mit den Wahrheitswerten falsch und wahr bezeichnen wir im weiteren

Mehr

Ordinalzahlen. Sei (X, ) eine total geordnete Menge und a X. Dann

Ordinalzahlen. Sei (X, ) eine total geordnete Menge und a X. Dann Ordinalzahlen Im Rahmen der Ordnungsrelationen wurden bisher die Begriffe Partialordnung und Totalordnung (lineare Ordnung) erwähnt. Ein weiterer wichtiger Ordnungsbegriff ist die Wohlordnung. Wohlgeordnete

Mehr

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und Funktionentheorie, Woche 6 Analytische Funktionen 6. Holomorphe Funktionen und Potenzreihen Definition 6. Eine Funktion f : U C C nennt man analytisch in z 0 U, wenn es r > 0 gibt mit B r (z 0 ) U derart,

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 23 Der erste Gödelsche Unvollständigkeitssatz Wir haben gesehen, dass die Unentscheidbarkeit des Halteproblems über

Mehr

Satz 1.18 (Kompaktheitssatz der Aussagenlogik)

Satz 1.18 (Kompaktheitssatz der Aussagenlogik) Satz 1.18 (Kompaktheitssatz der Aussagenlogik) Σ F ist erfüllbar genau dann, wenn jede endliche Teilmenge von Σ erfüllbar ist. Σ F ist unerfüllbar genau dann, wenn es eine unerfüllbare endliche Teilmenge

Mehr

Ende und Schluß. Dr. Uwe Scheffler. Januar [Technische Universität Dresden]

Ende und Schluß. Dr. Uwe Scheffler. Januar [Technische Universität Dresden] Ende und Schluß Dr. Uwe Scheffler [Technische Universität Dresden] Januar 2011 Bestimmte Kennzeichnungen 1. Dasjenige, über welches hinaus nichts größeres gedacht werden kann, ist Gott. 2. Die erste Ursache

Mehr

Mathematische Grundlagen (01141) SoSe 2010

Mathematische Grundlagen (01141) SoSe 2010 Mathematische Grundlagen (4) SoSe Klausur am 8.8.: Musterlösungen Aufgabe Sei n. Es gilt (+) (+)(+). Es gilt somit der Induktionsanfang. Als Induktionsannahme nehmen wir an, dass n n(n+)(n+) für ein n

Mehr

Sei M Grundmodell von ZFC+GCH, E sog. Easton-Indexfunktion mit folgenden Eigenschaften:

Sei M Grundmodell von ZFC+GCH, E sog. Easton-Indexfunktion mit folgenden Eigenschaften: Satz (Easton): Sei M Grundmodell von ZFC+GCH, E sog. Easton-Indexfunktion mit folgenden Eigenschaften: 1. E : A = {κ Card κ regulär} Card 2. κ, λ A, κ < λ : E(κ) E(λ) 3. κ A : cof(e(κ)) > κ Dann existiert

Mehr

Logik. Logik. Quick Start Informatik Theoretischer Teil WS2011/ Oktober QSI - Theorie - WS2011/12

Logik. Logik. Quick Start Informatik Theoretischer Teil WS2011/ Oktober QSI - Theorie - WS2011/12 Logik Logik Quick Start Informatik Theoretischer Teil WS2/2 7. Oktober 2 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine wichtige

Mehr

Seminar Mathematische Logik L-Strukturen und Syntax der Prädikatenlogik

Seminar Mathematische Logik L-Strukturen und Syntax der Prädikatenlogik Seminar Mathematische Logik L-Strukturen und Syntax der Prädikatenlogik Linda Raabe 7. März 2012 1 L-Strukturen Definition 1.1 (Struktur) Eine Struktur A ist eine nichtleere Trägermenge A zusammen mit

Mehr

Theorie der Konsequenzoperationen und Grundbegrie der Logik

Theorie der Konsequenzoperationen und Grundbegrie der Logik Theorie der Konsequenzoperationen und Grundbegrie der Logik Christian Wallmann Abstract We give an elementary introduction into the theory of consequence operations. We proof some elementary results concerning

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 14 Die Korrektheit des Ableitungskalküls Im Laufe der Einführung des syntaktischen Prädikatenkalküls haben wir gesehen,

Mehr

Übersicht. 3 3 Kontextfreie Sprachen

Übersicht. 3 3 Kontextfreie Sprachen Formale Systeme, Automaten, Prozesse Übersicht 3 3.1 Kontextfreie Sprachen und Grammatiken 3.2 Ableitungsbäume 3.3 Die pre -Operation 3.4 Entscheidungsprobleme für CFGs 3.5 Normalformen für CFGs 3.6 Chomsky-Normalform

Mehr

3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik

3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik Deduktionssysteme der Aussagenlogik, Kap. 3: Tableaukalküle 38 3 Tableaukalküle 3.1 Klassische Aussagenlogik 3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik Ein zweites Entscheidungsverfahren

Mehr

Bemerkungen zur Notation

Bemerkungen zur Notation Bemerkungen zur Notation Wir haben gerade die Symbole für alle und es gibt gebraucht. Dies sind so genannte logische Quantoren, und zwar der All- und der Existenzquantor. Die Formel {a A; ( b B)[(a, b)

Mehr

Aufbau & Beweis eines mathematischen Lehrsatzes

Aufbau & Beweis eines mathematischen Lehrsatzes Aufbau & Beweis eines mathematischen Lehrsatzes Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 14. Dezember 2016 Inhaltsverzeichnis 1 Logische Grundbegriffe 1 2 Der Aufbau einer

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 16 S-Homomorphismen und elementare Äquivalenz Definition 16.1. Zwei S-Strukturen M und N über einem erststufigen Symbolalphabet

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 10 4.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Hauptklausur: Montag, 23.07.2012, 16:00-18:00,

Mehr

Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur

Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur Technische Universität Ilmenau WS 2008/2009 Institut für Mathematik Informatik, 1.FS Dr. Thomas Böhme Aufgabe 1 : Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur Gegeben sind die

Mehr

KAPITEL 2. Folgen und Reihen

KAPITEL 2. Folgen und Reihen KAPITEL 2 Folgen und Reihen 1. Konvergenz und Divergenz Definition 2.1 (Folgen). Eine Abbildung a : N R (bzw. a : N 0 R) nennt man Folge. Statt a : N R schreibt man meist (a n ) n N und a n statt a(n).

Mehr

- SMT und DPLL(T ) Entscheidungsverfahren mit Anwendungen in der Softwareverifikation.

- SMT und DPLL(T ) Entscheidungsverfahren mit Anwendungen in der Softwareverifikation. SMT und DPLL(T ) Entscheidungsverfahren mit Anwendungen in der Softwareverifikation STEPHAN FALKE INSTITUT FÜR THEORETISCHE INFORMATIK (ITI) 0 KIT 6. Universität Mai 2013 des S. Landes Falke Baden-Württemberg

Mehr

5. Bestimmen Sie die Fläche, die von den beiden Parabeln f ( x) und ( ) 2

5. Bestimmen Sie die Fläche, die von den beiden Parabeln f ( x) und ( ) 2 Klausur (Mathematik II) - Wintersemester 0/ Name: Matrikel-Nr: EMail: (optionale Schnell-Korrektur) Aufgabe 5 6 7 8 Punkte 0 0 0 0 6 0 Als Hilfsmittel sind die von dem Lehrbeauftragten zur Verfügung gestellten

Mehr

19 Übersetzung umgangssprachlicher Sätze in die Sprache PL

19 Übersetzung umgangssprachlicher Sätze in die Sprache PL 19 Übersetzung umgangssprachlicher Sätze in die Sprache PL Erinnerung Man kann die logischen Eigenschaften der Sätze einer Sprache L, deren Logik wir gut verstehen, zur Beurteilung der logischen Eigenschaften

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 4 Die Ableitungsbeziehung Definition 4.1. Es sei Γ L V eine Ausdrucksmenge in der Sprache der Aussagenlogik zu einer

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Prof. Dr. Peter Becker Fachbereich Informatik Mathematische Grundlagen Klausur Wintersemester 2015/16 16. März 2015 Name: Vorname: Matrikelnr.: Aufgabe 1 2 4 5 6 Summe Punkte 10 10 10 10 10 10 60 erreicht

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

6.3 NP-Vollständigkeit. alle anderen Probleme in NP darauf polynomiell reduzierbar. 1 Polynomielle Reduzierbarkeit p

6.3 NP-Vollständigkeit. alle anderen Probleme in NP darauf polynomiell reduzierbar. 1 Polynomielle Reduzierbarkeit p 6.3 NP-Vollständigkeit 1 Polynomielle Reduzierbarkeit p 2 NP-vollständige Probleme = härteste Probleme in NP, alle anderen Probleme in NP darauf polynomiell reduzierbar 3 Satz: SAT ist NP-vollständig Definition

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 7. Aussagenlogik Analytische Tableaus Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Tableaukalkül

Mehr

2.3 Deduktiver Aufbau der Aussagenlogik

2.3 Deduktiver Aufbau der Aussagenlogik 2.3 Deduktiver Aufbau der Aussagenlogik Dieser Abschnitt beschäftigt sich mit einem axiomatischen Aufbau der Aussagenlogik mittels eines Deduktiven Systems oder eines Kalküls. Eine syntaktisch korrekte

Mehr

Formale Methoden 1. Gerhard Jäger 7. November Uni Bielefeld, WS 2007/2008 1/18

Formale Methoden 1. Gerhard Jäger 7. November Uni Bielefeld, WS 2007/2008 1/18 1/18 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 7. November 2007 2/18 Geordnete Paare Mengen sind ungeordnet: {a, b} = {b, a} für viele Anwendungen braucht

Mehr

Semantik. Uwe Scheffler. November [Technische Universität Dresden]

Semantik. Uwe Scheffler. November [Technische Universität Dresden] Semantik Uwe Scheffler [Technische Universität Dresden] November 2013 Modelle Ein Modell für eine Sprache L (bei uns: die Sprache der Prädikatenlogik) ist ein Paar aus einer Trägermenge (die Gegenstände

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.11.2016 (Teil 2) 23. November 2016 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016

Mehr

Übung 8 Transitionssysteme Formale Techniken in der Software-Entwicklung

Übung 8 Transitionssysteme Formale Techniken in der Software-Entwicklung Übung 8 Transitionssysteme Formale Techniken in der Software-Entwicklung Christian Kroiß Christian Kroiß 1 Aufgabe 5-1 Sei T ein Transitionssystem, dass sich aus dem im Folgenden informell beschriebenen

Mehr

Logik erster Stufe FO

Logik erster Stufe FO Logik erster Stufe FO Sonderstellung als die Logik für die Grundlegung der Mathematik natürliche Semantik (Tarski) und große Ausdrucksstärke vollständige Beweiskalküle (Gödelscher Vollständigkeitssatz)

Mehr

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren:

Resolutionskalkül. wird t als eine Menge K t von Klauseln geschrieben, welche die einzelnen Maxterme repräsentieren: Resolutionskalkül Ein Kalkül ist eine Kollektion von syntaktischen Umformungsregeln, die unter gegebenen Voraussetzungen aus bereits vorhandenen Formeln neue Formeln erzeugen. Der Resolutionskalkül besteht

Mehr

Das deduktive System F

Das deduktive System F Das deduktive System Ziel: Konstruiere ein geeignetes deduktives System = (Ax, R) für die Prädikatenlogik erster Stufe. Geeignet: Korrektheit ( ) und Vollständigkeit ( ) A gdw. = A Σ A gdw. Σ = A Die Definition

Mehr

Vorkurs Mathematik. Vorlesung 4. Abbildungen

Vorkurs Mathematik. Vorlesung 4. Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Vorkurs Mathematik Vorlesung 4 Abbildungen Definition 4.1. Seien L und M zwei Mengen. Eine Abbildung F von L nach M ist dadurch gegeben, dass jedem Element der

Mehr

ML a t he m at ik. Präferenzen. Klaus Schindler. e h r st a b 0 Universität des Saarlandes Fakultät 1

ML a t he m at ik. Präferenzen. Klaus Schindler. e h r st a b 0 Universität des Saarlandes Fakultät 1 Präferenzen Klaus Schindler ML a t he m at ik e h r st a b 0 Universität des Saarlandes Fakultät 1 http://www.mathe.wiwi.uni-sb.de Advanced Quantitative Methods for Economists WS 2014/2015 Ordnung Lexikographische

Mehr

Abschnitt 1.3. Funktionen

Abschnitt 1.3. Funktionen Abschnitt 1.3 Funktionen Arbeitsdefinition des Begriffs Funktion Bereits an Ende von Abschnitt 1.1 wurde definiert: Eine Funktion f ordnet Elementen x einer Menge D Elemente f (x) zu, die in der Menge

Mehr

Motivation natürliche Sprachen

Motivation natürliche Sprachen Motivation natürliche Sprachen (Satz) (Substantivphrase)(Verbphrase) (Satz) (Substantivphrase)(Verbphrase)(Objektphrase) (Substantivphrase) (Artikel)(Substantiv) (Verbphrase) (Verb)(Adverb) (Substantiv)

Mehr

Das Lebesgue-Integral

Das Lebesgue-Integral Das Lebesgue-Integral Bei der Einführung des Integralbegriffs gehen wir schrittweise vor. Zunächst erklären wir das Integral von charakteristischen Funktionen, danach von positiven einfachen Funktionen

Mehr

Kapitel 6 Wahrheitsfunktionale Fuzzy-Logik. 10. Juni 2005

Kapitel 6 Wahrheitsfunktionale Fuzzy-Logik. 10. Juni 2005 Kapitel 6 Wahrheitsfunktionale Fuzzy-Logik 10. Juni 2005 Zusammenfassung Wahrheitsfunktionale Fuzzy-Semantik besteht aus Mengen aller wahrheitsfunktionalen Belegungen von Formeln, jedem Modell in M entspricht

Mehr

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/??

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/?? Äquivalenz Zwei Formeln F und G heißen (semantisch) äquivalent, falls für alle Belegungen A, die sowohl für F als auch für G passend sind, gilt A(F ) = A(G). Hierfür schreiben wir F G.. 1/?? Aufgabe Gelten

Mehr

Algorithmische Geometrie: Voronoi Diagramme (Teil 2)

Algorithmische Geometrie: Voronoi Diagramme (Teil 2) Algorithmische Geometrie: Voronoi Diagramme (Teil 2) Nico Düvelmeyer WS 2009/2010, 12.1.2010 Überblick 1 Definition und grundlegende Eigenschaften (Wied.) 2 Bestimmung des Voronoi Diagramms Gleitebenenverfahren

Mehr

Klauselmengen. Definition Sei

Klauselmengen. Definition Sei Klauselmengen Definition 2.38 Sei α = (p 11... p 1k1 )... (p n1... p nkn ) eine in aussagenlogische Formel in KNF. Dann heißen die Mengen {p i1,..., p iki }, 1 i n, der jeweils disjunktiv verknüpften Literale

Mehr

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S)

Grammatiken. Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V. Startsymbol S V. Kurzschreibweise G = (V, Σ, P, S) Grammatiken Eine Grammatik G mit Alphabet Σ besteht aus: Variablen V Startsymbol S V Produktionen P ( (V Σ) \ Σ ) (V Σ) Kurzschreibweise G = (V, Σ, P, S) Schreibweise für Produktion (α, β) P: α β 67 /

Mehr

Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren

Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren µfsr, TU Dresden Version vom 11. Oktober 2016, Fehler, Ideen, Anmerkungen und Verbesserungsvorschläge bitte an benedikt.bartsch@myfsr.de

Mehr

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf

Mehr

Beschreibungslogik Kapitel 7: ABoxen und Anfragebeantwortung

Beschreibungslogik Kapitel 7: ABoxen und Anfragebeantwortung Beschreibungslogik Kapitel 7: ABoxen und Anfragebeantwortung Sommersemester 2017 Thomas Schneider AG Theorie der künstlichen Intelligenz (TdKI) http://tinyurl.com/ss17-bl Beschreibungslogik SoSe 2017 7

Mehr

01. Gruppen, Ringe, Körper

01. Gruppen, Ringe, Körper 01. Gruppen, Ringe, Körper Gruppen, Ringe bzw. Körper sind wichtige abstrakte algebraische Strukturen. Sie entstehen dadurch, dass auf einer Menge M eine oder mehrere sogenannte Verknüpfungen definiert

Mehr

Auswahlaxiom, Zornsches Lemma und Wohlordnungssatz. 14.Oktober 97

Auswahlaxiom, Zornsches Lemma und Wohlordnungssatz. 14.Oktober 97 Auswahlaxiom, Zornsches Lemma und Wohlordnungssatz Uwe Liebe Sven Hermann 14.Oktober 97 Inhaltsverzeichnis 1 Einleitung 3 2 Auswahlaxiom 4 3 Ordnung 5 4 Zornsches Lemma 9 5 Wohlordnungssatz 11 6 Zurück

Mehr

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht

Thema: Logik: 2. Teil. Übersicht logische Operationen Name in der Logik. Negation (Verneinung) Nicht Thema: Logik: 2. Teil Übersicht logische Operationen Name in der Logik Symbol Umgangssprachlicher Name Negation (Verneinung) Nicht Konjunktion ^ Und Disjunktion v Oder Subjunktion (Implikation) Bijunktion

Mehr

Teil VI. Anwendungen, Teil 1: XML und deterministische reguläre Ausdrücke

Teil VI. Anwendungen, Teil 1: XML und deterministische reguläre Ausdrücke Teil VI Anwendungen, Teil 1: XML und deterministische reguläre Ausdrücke XML anhand von Beispielen... Anwendungen XML 1 / 10 XML-Schema In vielen Anwendungen sollen nur bestimmte XML-Dokumente zugelassen

Mehr

Kapitel 3 Fuzzy-Mengen und Relationen. 29. April 2005

Kapitel 3 Fuzzy-Mengen und Relationen. 29. April 2005 Kapitel 3 und Relationen 29. April 2005 Rückblick Tarski s Deduktionsbegriff, Verbandstheorie, Abstrakte Logik über Verbänden Wohldefinierte Eigenschaften P wohldefinierte Eigenschaft auf einer Menge M,

Mehr

Kontextfreie Sprachen Kontextfreie Sprachen und Grammatiken. Satzformen sind die Wörter aus (N T ). Notation: Wir verwenden oft

Kontextfreie Sprachen Kontextfreie Sprachen und Grammatiken. Satzformen sind die Wörter aus (N T ). Notation: Wir verwenden oft und Grammatiken (Folie 119, eite 202 im kript) atzformen sind die Wörter aus (N T ). Notation: Wir verwenden oft a, b, c,... für Terminalsymbole A, B, C,... für Nonterminale u, v, w,... für Terminalwörter

Mehr

Beschreibungskomplexität von Grammatiken Definitionen

Beschreibungskomplexität von Grammatiken Definitionen Beschreibungskomplexität von Grammatiken Definitionen Für eine Grammatik G = (N, T, P, S) führen wir die folgenden drei Komplexitätsmaße ein: Var(G) = #(N), Prod(G) = #(P ), Symb(G) = ( α + β + 1). α β

Mehr

Einführung in die Semantik, 5. Sitzung Aussagenlogik

Einführung in die Semantik, 5. Sitzung Aussagenlogik Einführung in die, 5. Sitzung Aussagenlogik Göttingen 9. November 2006 Aussagenlogik Warum die formalen Sprachen der Logik? formale Sprachen haben wie jede Sprache ein Vokabular, eine und eine. Die Relation

Mehr

Nachteile: STD existiert nur für Verteilungen mit E(FL 2 ) <, d.h. nicht ansetzbar bei leptokurtischen ( fat tailed ) Verlustverteilungen;

Nachteile: STD existiert nur für Verteilungen mit E(FL 2 ) <, d.h. nicht ansetzbar bei leptokurtischen ( fat tailed ) Verlustverteilungen; Risikomaße basierend auf die Verlustverteilung Sei F L := F Ln+1 die Verteilung der Verlust L n+1. Die Parameter von F Ln+1 werden anhand von historischen Daten entweder direkt oder mit Hilfe der Risikofaktoren

Mehr

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B. SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1 SBP Mathe Grundkurs 1 # 0 by Clifford Wolf SBP Mathe Grundkurs 1 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Kapitel 3 Fuzzy-Mengen und Relationen. 12. Mai 2005

Kapitel 3 Fuzzy-Mengen und Relationen. 12. Mai 2005 Kapitel 3 Fuzzy-Mengen und Relationen 12. Mai 2005 Rückblick Darstellung unscharfer Konzepte mit Hilfe von Fuzzy-Mengen, Definition von Fuzzy-Mengen, Fuzzy-Mengen über einem festen Universum bilden einen

Mehr

Formale Logik. 4. Sitzung. Die Logik der Sprache AL. Die Logik der Sprache AL. Die Logik der Sprache AL

Formale Logik. 4. Sitzung. Die Logik der Sprache AL. Die Logik der Sprache AL. Die Logik der Sprache AL ormale Logik 4. Sitzung Prof. Dr. Ansgar Beckermann Sommersemester 2005 Erinnerung Ein Satz ist genau dann logisch wahr, wenn er unabhängig davon, was die in ihm vorkommenden deskriptiven Zeichen bedeuten

Mehr

Mathematik für Ökonomen 1

Mathematik für Ökonomen 1 Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen

Mehr

Lösungsvorschläge für das 5. Übungsblatt

Lösungsvorschläge für das 5. Übungsblatt Lösungsvorschläge für das 5. Übungsblatt Aufgabe 6 a) Sei = [0, ], f(x) := [e x ] für x. Hierbei ist [y] := maxk Z k y} für y. Behauptung: f ist messbar und es ist f(x) dx = 2 log 2. falls x [0, log 2),

Mehr

Die Prädikatenlogik erster Stufe: Syntax und Semantik

Die Prädikatenlogik erster Stufe: Syntax und Semantik Die Prädikatenlogik erster Stufe: Syntax und Semantik 1 Mathematische Strukturen und deren Typen Definition 1.1 Eine Struktur A ist ein 4-Tupel A = (A; (R A i i I); (f A j j J); (c A k k K)) wobei I, J,

Mehr

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 23 Die Logik der Booleschen Junktoren Till Mossakowski Logik 2/ 23 Aussagenlogische

Mehr

Prädikatenlogik. Einführende Beispiele Geschwister x y ( u v (Eltern(u, v, x) Eltern(u, v, y) Geschwister(x, y)))

Prädikatenlogik. Einführende Beispiele Geschwister x y ( u v (Eltern(u, v, x) Eltern(u, v, y) Geschwister(x, y))) Prädikatenlogik Einführende Beispiele Geschwister x y ( u v (Eltern(u, v, x) Eltern(u, v, y) Geschwister(x, y))) symmetrische Relation x y (R(x, y) R(y, x)) Das Zeichen bezeichnen wir als Existenzquantor

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Jens Struckmeier Fachbereich Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2010/11 Jens Struckmeier (Mathematik,

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

Semantik und Pragmatik

Semantik und Pragmatik Semantik und Pragmatik SS 2005 Universität Bielefeld Teil 3, 29. April 2005 Gerhard Jäger Semantik und Pragmatik p.1/26 Übersetzung Deutsch Aussagenlogik Motivation für Übersetzung: Deutsch als Objektsprache:

Mehr