Vorkurs Mathematik - SoSe 2017

Größe: px
Ab Seite anzeigen:

Download "Vorkurs Mathematik - SoSe 2017"

Transkript

1 4 Vorkurs Mathematik - SoSe 2017 Regula Krapf Lösungen Übungsblatt 1 Aufgabe 1. Meiers werden uns heute abend besuchen, kündigt Frau Müller an. Die ganze Familie, also Herr und Frau Meier mit ihren drei Kindern Franziska, Kathrin und Walter? fragt Herr Müller bestürzt. Darauf Frau Müller, die keine Gelegenheit vorübergehen lässt, ihren Mann zu logischem Denken anzuregen: Nun, ich will es dir so erklären: Wenn Herr Meier kommt, dann bringt er auch seine Frau mit. Mindestens eines der beiden Kinder Walter und Kathrin kommt. Entweder kommt Frau Meier oder Franziska, aber nicht beide. Entweder kommt Franziska und Kathrin oder beide nicht. Und wenn Walter kommt, dann auch Kathrin und Herr Meier. So, jetzt weisst du, wer uns heute abend besuchen wird. Wer kommt und wer kommt nicht? Wir zeigen per Widerspruchsbeweis, dass Walter nicht kommt: Wir nehmen also an, dass Walter kommt. Dann kommen auch Kathrin und Herr Meier. Herr Meier bringt aber auch Frau Meier mit. Da Frau Meier kommt, kann Franziska nicht kommen. Dies steht aber im Widerspruch zur Annahme, dass entweder Kathrin oder Franziska kommen, aber nicht beide. Also kann Walter nicht kommen. Damit wissen wir aber, dass Kathrin kommt und somit auch Franziska. Da Franziska kommt, kann Frau Meier nicht kommen auch auch Herr Meier nicht, denn er würde ja seine Frau mitbringen. Also haben wir bewiesen, dass nur Kathrin und Franziska kommen. Alternativ kann man auch mit Wahrheitstafeln argumentieren; dies wäre aber ziemlich kompliziert, da es 5 verschiedene Personen und somit 2 5 = 32 Belegungen der Wahrheitswerte gibt, die zu überprüfen sind. Aufgabe 2. Gegeben seien folgende Aussagen: A: Es ist kalt. B: Es schneit. Drücken Sie die nachfolgenden Sätze als aussagenlogische Formeln mit Hilfe der Variablen A und B aus. Geben Sie zusätzlich für jede Formel die zugehörige

2 Wahrheitstafel an und kennzeichnen Sie die erfüllenden bzw. widerlegenden Variablenbelegungen. (a) Es ist kalt und es schneit. (b) Es ist kalt, aber es schneit nicht. (c) Es ist nicht kalt und es schneit nicht. (d) Es schneit oder es ist kalt (oder beides). (e) Entweder es schneit oder es ist kalt, aber nicht beides. (f) Wenn es schneit, ist es kalt. (g) Es schneit nicht, wenn es nicht kalt ist. (h) Entweder es schneit oder es ist kalt, aber es schneit nicht, wenn es kalt ist. (a) A B (b) A B (c) A B (d) B A (e) B A (B A) (f) B A (g) A B (h) B A (A B) Aufgabe 3. Eine Tautologie ist eine Aussage, die immer wahr ist, d.h. unabhängig vom Wahrheitswert der aussagenlogischen Variablen (hier A und B). Überlegen Sie sich informell, ob es sich bei den folgenden Beispielen um Tautologien handelt, und beweisen Sie Ihre Behauptung mit Hilfe von Wahrheitstafeln. (a) (A B) (B A) (b) ((A B) B) A. 5 (a) A B A B A B B A (A B) (B A) W W F F W W W W F F W W F F F W W F F W W F F W W W W W

3 6 (b) Aus der Wahrheitstafel wird ersichtlich, dass (A B) (B A) keine Tautologie ist, denn der Eintrag in der zweiten Zeile ist F. A B A B A B (A B) B ((A B) B) A W W F F W F W W F F W F F W F W W F W F W F F W W W W W Somit ist ((A B) B) A eine Tautologie. Aufgabe 4 (Das Lügner-Paradoxon). Welche der folgenden Sätze sind Aussagen? Sind sie wahr oder falsch? (a) Ich lüge immer. (b) Ich lüge manchmal. (c) Ich lüge jetzt gerade. (a) Das ist eine falsche Aussage: Wenn sie wahr wäre, so würde ich beim Satz Ich lüge immer auch lügen, also wäre die Aussage Ich lüge immer gelogen. Dann würde ich also mindestens einmal die Wahrheit sagen und somit nicht immer lügen. Wenn die Aussage hingegen falsch ist, heißt das dass ich irgendwann mal nicht lüge, dies muss aber nicht jetzt der Fall sein. (b) Das ist eine wahre Aussage: Wenn ich manchmal lüge, heißt das ja noch nicht, dass ich immer lüge. Wäre die Aussage falsch, so würde ich nie lügen, was nicht möglich ist, da ich ja dann bei der Aussage Ich lüge manchmal lüge. Ist sie hingegen richtig, so führt das zu keinem Widerspruch, da es ja möglich ist, dass ich jetzt gerade die Wahrheit sage, aber eben nicht immer. (c) Dies ist keine Aussage: Wäre die Aussage wahr, so würde ich lügen, also wäre die Aussage gleichzeitig falsch. Dies ist aber nicht möglich. Wäre die Aussage falsch, so würde ich jetzt die Wahrheit sagen. Also ist die Aussage ich lüge jetzt gerade wahr, ein Widerspruch. Aufgabe 5. Seien a,b,u und v reelle Zahlen mit a,b,u,v > 0 und a,b 1. (a) Beweisen Sie das Logarithmengesetz log a (u v ) = v log a (u).

4 (b) Welches Potenzgesetz haben Sie in (a) verwendet? Zeigen Sie, dass dieses Potenzgesetz aus dem Logarithmusgesetz in (a) folgt. (c) Beweisen Sie Eulers Goldene Regel: log a x = log b (x) log b (a). (a) Es gilt u v = (a log a (u) ) v = a log a (u) v = a v log a (u). Also folgt log a (u v ) = log a (a v log a (u) ) = v log a (u). (b) Wir haben das Potenzgesetz (a x ) y = a xy für a,x,y R verwendet. Wir zeigen, dass dieses Potenzgesetz aus dem Logarithmengesetz in (a) folgt. Aus dem Logarithmusgesetz folgt: log a ((a x ) y ) = y log a (a x ) = y x = x y, also nach der Definition des Logarithmus (a x ) y = a log a ((ax ) y) = a x y wie gewünscht. (c) Wir zeigen die Gleichheit log a (x) log b (x) = log b (x). Es gilt b log b (x) = x = a log a (x) = (b log b (a) ) log a (x) = b log b (x) log a (x) = b log a (x) log b (x), also log b (x) = log a (x) log b (x). Aufgabe 6. Zeigen Sie, dass ein gleichschenklig-rechtwinkliges Dreieck keine ganzzahligen Seiten haben kann. Wir nehmen an, dass Δ = ΔABC ein gleichschenklig-rechtwikliges Dreieck ist mit Katheten a,b und Hypothenuse c, wobei a,b,c Z. Da Δ gleichschenklig ist, muss gelten a = b. Aus dem Satz von Pythagoras folgt dann 2a 2 = a 2 + b 2 = c 2, also 2 = c2. Dann ist aber 2 = c a 2 a eine rationale Zahl, ein Widerspruch. Also kann es kein gleichschenklig-rechtwinkliges Dreieck mit ganzzahligen Seiten geben. Aufgabe 7. Man verteilt 25 Quadrate auf einem karierten Brett der Grösse 25 25, und zwar so, dass sie bezüglich einer Diagonale symmetrisch verteilt sind und keine zwei Quadrate aufeinander liegen. Beweisen Sie durch Widerspruch, dass mindestens eines der Quadrate auf der Diagonalen liegt. 7

5 8 Nehmen wir an, kein Quadrat liege auf der Diagonalen. Da die Quadrate symmetrisch verteilt sind, muss es für jedes Quadrat auf der einen Seite ein entsprechendes Quadrat auf der anderen Seite geben. Es gibt also auf beiden Seiten gleich viele Quadrate. Dies ist aber nicht möglich, da 25 eine ungerade Zahl ist. Also muss ein Quadrat auf der Diagonalen liegen. Aufgabe 8. Gegeben seien zwei Halbgeraden h 1,h 2, die von einem Punkt S ausgehen, sowie Punkte P 1,Q 1 auf h 1 und P 2,Q 2 auf h 2. Der 1. Strahlensatz besagt Folgendes: Falls die Geraden P 1 P 2 und Q 1 Q 2 parallel sind, so gilt SP 1 : SQ 1 = SP 2 : SQ 2. (a) Formulieren Sie die Umkehrung des 1. Strahlensatzes. (b) Beweisen Sie die Umkehrung per Kontrapositionsbeweis. (a) Gilt SP 1 : SQ 1 = SP 2 : SQ 2, so sind die Geraden P 1 P 2 und Q 1 Q 2 parallel. (b) Wir nehmen an, dass P 1 P 2 und Q 1 Q 2 nicht parallel sind. Sei nun Q 2 der Schnittpunkt der Parallelen zu P 1 P 2 durch Q 1 und h 2. Aus dem 1. Strahlensatz folgt Also folgt SP 1 : SQ 1 = SP 2 : SQ 2. SQ 2 = SP 1 SQ 1 SP 2. Es gilt Q 2 Q 2, und da Q 2 und Q 2 beide auf h 2 liegen, gilt SQ 2 SQ 2. Also gilt und somit SP SQ 2 1 SQ 1 SP 2 SP 1 : SQ 1 SP 2 : SQ 2. Aufgabe 9. Seien A und B Aussagen. Dann heisst A hinreichend für B, falls A B wahr ist. In diesem Fall heisst B notwendig für A. (a) Überlegen Sie sich kurz, wieso diese Terminologie Sinn macht. (b) Für eine reelle Zahl x sei A die Aussage x 2 < 4. Geben Sie jeweils eine Bedingung für x an, die für A (i) notwendig, aber nicht hinreichend (ii) hinreichend, aber nicht notwendig (iii) hinreichend und notwendig

6 9 (iv) weder notwendig noch hinreichend ist. (a) Hinreichend bedeutet, dass A ausreicht für B; dies ist ja genau die Bedeutung von A B, denn damit B wahr ist, genügt es, dass A wahr ist. Der Begriff notwendig macht ebenfalls Sinn, denn falls A B wahr ist, muss B wahr sein, wenn A wahr ist. (b) Hier gibt es viele verschiedene Lösungen; wir geben lediglich eine an: (i) x < 2 (ii) x = 1 (iii) 2 < x < 2 (iv) x = 2 Aufgabe 10 (Wasons Auswahlaufgabe 2 ). Die abgebildeten vier Karten enthalten jeweils auf einer Seite einen Buchstaben und auf der anderen eine Zahl. Welche Karten muss man notwendigerweise umdrehen, wenn man feststellen will, ob folgende Aussage für alle Karten gilt: Wenn auf einer Seite der Karte ein Vokal abgebildet ist, dann steht auf der anderen Seite eine gerade Zahl? Die Aussage ist äquivalent zu Entweder es steht auf der einen Seite ein Konsonant oder auf der Rückseite steht eine gerade Zahl. Man muss die Karten E und 7 umdrehen: Da auf der Karte mit dem K kein Vokal drauf sein kann, ist für diese Karte die Aussage sowieso wahr. Da auf der Karte mit der 4 eine gerade Zahl ist, ist die Aussage sowohl wahr, wenn auf der Rückseite ein Vokal ist, als auch wenn ein Konsonant auf der Rückseite ist. Die Karte mit dem E muss überprüft werden, denn die Aussage ist nur wahr, falls auf der Rückseite eine gerade Zahl ist. Die Karte mit der 7 muss ebenfalls überprüft werden, da die Aussage nur wahr ist, falls auf der Rückseite ein Konsonant steht. Anmerkung: In einem psychologischen Experiment wählten die meisten Teilnehmer die E und die 4, obwohl es nicht notwendig ist, die 4 umzudrehen, siehe dazu 2 Aufgabe übernommen von

7 10 Wason, Peter C. 1968: "Reasoning about a Rule". Quarterly Journal of Experimental Psychology 20. S

Elemente der Mathematik - Winter 2016/2017

Elemente der Mathematik - Winter 2016/2017 4 Elemente der Mathematik - Winter 2016/2017 Prof. Dr. Peter Koepke, Regula Krapf Lösungen Übungsblatt 2 Aufgabe 6 (4 Punkte). Bestimmen Sie mit Hilfe von Wahrheitstafeln, welche der folgenden aussagenlogischen

Mehr

Vorkurs Mathematik im Sommersemester 2018

Vorkurs Mathematik im Sommersemester 2018 Vorkurs Mathematik im Sommersemester 2018 Dr. Regula Krapf Lösungen Übungsblatt 1 Aufgabe 1. Gegeben seien folgende Aussagen: A: Es ist kalt. B: Es schneit. Drücken Sie die nachfolgenden Sätze als aussagenlogische

Mehr

Vorkurs Mathematik - SoSe 2017

Vorkurs Mathematik - SoSe 2017 3 Vorkurs Mathematik - SoSe 2017 Regula Krapf Lösungen Übungsblatt 2 Aufgabe 1. Zeigen Sie, dass die beiden Aussagen ( x : P(x)) ( x : Q(x)) und x : (P(x) Q(x)). nicht dasselbe ausdrücken. Wie sieht es

Mehr

Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden:

Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden: Übungsaufgaben 1. Aufgabe 1 Welcher der folgenden Sätze ist eine Aussage, welcher eine Aussageform, welcher ist keines von beiden: a. x ist eine gerade Zahl. Aussageform b. 10 ist Element der Menge A.

Mehr

Dr. Regula Krapf Sommersemester Beweismethoden

Dr. Regula Krapf Sommersemester Beweismethoden Vorkurs Mathematik Dr. Regula Krapf Sommersemester 2018 Beweismethoden Aufgabe 1. Überlegen Sie sich folgende zwei Fragen: (1) Was ist ein Beweis? (2) Was ist die Funktion von Beweisen? Direkte Beweise

Mehr

De Morgan sche Regeln

De Morgan sche Regeln De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 2016 Prof Dr Matthias Lesch, Regula Krapf Übungsblatt 7 Aufgabe 23 9 Punkte In der folgenden Aufgabe sei mit baryzentrischen Koordinaten immer die baryzentrischen Koordinaten

Mehr

Beweistechniken. Vorkurs Informatik - SoSe April 2014

Beweistechniken. Vorkurs Informatik - SoSe April 2014 Vorkurs Informatik SoSe14 07. April 2014 Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Motivation Wozu Beweise in der Informatik? Quelle: http://www.nileguide.com Wozu Beweise in der

Mehr

Logik in der Schule. Bildungsplan 2004 (Zitat:) Begründen. Elementare Regeln und Gesetze der Logik kennen und anwenden

Logik in der Schule. Bildungsplan 2004 (Zitat:) Begründen. Elementare Regeln und Gesetze der Logik kennen und anwenden 1 Nr.2-21.04.2016 Logik in der Schule Bildungsplan 2004 (Zitat:) Begründen Elementare Regeln und Gesetze der Logik kennen und anwenden Begründungstypen und Beweismethoden der Mathematik kennen, gezielt

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 06 Prof. Dr. Matthias Lesch, Regula Krapf Übungsblatt 8 Aufgabe 7 (8 Punkte). Ein Parallelogramm ist ein Rechteck ABCD mit Seiten a, b, c, d wie unten dargestellt, mit

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken

Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Susanna Pohl Vorkurs Mathematik TU Dortmund 09.03.2015 Aussagen, Logik und Beweistechniken Aussagen und Logik Motivation

Mehr

Vorkurs Mathematik Logik und Beweismethoden 1

Vorkurs Mathematik Logik und Beweismethoden 1 Vorkurs Mathematik Logik und Beweismethoden 1 Saskia Klaus 05. Oktober 2016 Dieser Vortrag wird schon seit vielen Jahren im Vorkurs gehalten und basiert auf der Arbeit vieler verschiedener Menschen, deren

Mehr

Summen- und Produktzeichen

Summen- und Produktzeichen Summen- und Produktzeichen Ein großer Vorteil der sehr formalen mathematischen Sprache ist es, komplizierte Zusammenhänge einfach und klar ausdrücken zu können. Gerade auch diese Eigenschaft der Mathematik

Mehr

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 24 Die Booleschen Junktoren Till Mossakowski Logik 2/ 24 Die Negation Wahrheitstafel

Mehr

Diskrete Strukturen WS 2018/19. Gerhard Hiß RWTH Aachen

Diskrete Strukturen WS 2018/19. Gerhard Hiß RWTH Aachen Diskrete Strukturen WS 2018/19 Gerhard Hiß RWTH Aachen Erster Teil: Grundlagen Kapitel 1, Mathematische Grundbegriffe 1.1 Aussagen Begriff (Aussage) Sprachlicher Ausdruck, welcher entweder wahr oder falsch

Mehr

Musterlösung Grundbegriffe der Mathematik Frühlingssemester 2016, Aufgabenblatt 1

Musterlösung Grundbegriffe der Mathematik Frühlingssemester 2016, Aufgabenblatt 1 Musterlösung Grundbegriffe der Mathematik Frühlingssemester 01, Aufgabenblatt 1 Aufgabenblatt 1 0 Punkte Aufgabe 1 Welche der folgenden Ausdrücke sind Aussagen, welche sind Aussageformen und welche sind

Mehr

Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben

Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Fachbereich Mathematik Vorkurs Mathematik WS 2012/13 Dies ist eine Sammlung von Aufgaben, die hauptsächlich Mittelstufenstoff wiederholen. Dabei

Mehr

Aufgaben zu Kapitel 1

Aufgaben zu Kapitel 1 11 Berechnungsmodus Mittlere Anzahl Tage pro Jahr Ohne Schalttage 365 Alle 4 Jahre ein Schalttag 365,5 Alle 100 Jahre kein Schalttag 365,4 Alle 400 Jahre ein Schalttag 365,45 Die Differenz zum tatsächlichen

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil

Mehr

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Lineare Algebra Analytische Geometrie I* Übungsaufgaben, Blatt Musterlösungen Aufgabe. Es seien A, B, C Teilmengen einer Menge X. Zeige: i A B C =

Mehr

Übungsaufgaben Einführung in die Geometrie, mathematische Grundlagen II, Serie 3 SoSe 2013

Übungsaufgaben Einführung in die Geometrie, mathematische Grundlagen II, Serie 3 SoSe 2013 Übungsaufgaben Einführung in die Geometrie, mathematische Grundlagen II, Serie 3 SoSe 2013 Gieding 06.05.2013-12.05.2013 Definitionen und Definieren Aufgabe 3.01 SoSe 2013 S Die Begriffe Winkel, Schenkel

Mehr

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2017

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2017 Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe17 Ronja Düffel 22. März 2017 Logik und Beweise > Motivation Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Logik und Beweise

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 29.09. - Freitag 9.10.2015 Vorlesung 2 Mengen, Zahlen, Logik Kai Rothe Technische Universität Hamburg-Harburg Mittwoch 30.09.2015 Mengen.................................

Mehr

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2015

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2015 Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe15 Ronja Düffel 23. März 2015 Logik und Beweise > Motivation Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Logik und Beweise

Mehr

Vorkurs Beweisführung

Vorkurs Beweisführung Vorkurs Beweisführung Fachschaft Mathematik und Informatik 30.08.2013 Agenda 1 Einleitung 2 Direkter Beweis 3 Widerspruchsbeweis 4 Vollständige Induktion 5 Aussagen widerlegen 6 Gleichheit von Mengen 7

Mehr

Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1

Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1 Grundbegriffe der Informatik Musterlösung zu Aufgabenblatt 1 Aufgabe 1.1 ( Punkte) Schreiben Sie die Definitionen von Injektivität und Surjektivität einer Funktion als prädikatenlogische Formeln auf. Lösung

Mehr

Logik und Mengen. Hans spielt Tennis und Q : * Aussagen. Formalisieren Sie die folgenden Aussagen mit Hilfe von P :

Logik und Mengen. Hans spielt Tennis und Q : * Aussagen. Formalisieren Sie die folgenden Aussagen mit Hilfe von P : Prof. Dr. M. Helbig Mathematik Übung Logik und Mengen * Aussagen. Formalisieren Sie die folgenden Aussagen mit Hilfe von P : Hans spielt Tennis und Q : Hans läuft gern : 1. Wenn Hans Tennis spielt, dann

Mehr

Beweistechniken. Vorkurs Informatik - SoSe April 2013

Beweistechniken. Vorkurs Informatik - SoSe April 2013 Vorkurs Informatik SoSe13 09. April 2013 Wozu Beweise in der Informatik?... um Aussagen wie 1 Das Programm erfüllt die gewünschte Aufgabe. 2 Das Programm führt zu keiner Endlosschleife. 3 Zur Lösung dieser

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 9. November 2016 Weitere Begriffe Eine Zuweisung von Wahrheitswerten W bzw. F

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Grundlagen der Mathematik Lösungsskizzen 2 Präsenzaufgaben (P2) Wir betrachten drei Teilmengen der natürlichen Zahlen: - A = {n

Mehr

ERRATA. Übungsblatt 4a: Aufgabe 3 : Definition der Teilbarkeit (Skript S.62)

ERRATA. Übungsblatt 4a: Aufgabe 3 : Definition der Teilbarkeit (Skript S.62) Logik und Beweise ERRATA Übungsblatt 4a: Aufgabe 3 : Definition der Teilbarkeit (Skript S.62) Aufgabe 5 : Beweise folgende Aussage: 25 ist keine Primzahl Tipp: Beweis durch Widerspruch Logik und Beweise

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematik - Sommer 2016 Prof. Dr. Matthias Lesch, Regula Krapf Lösungen Übungsblatt 9 ufgabe 31 (6 Punkte). Konstruieren Sie mit Zirkel und Lineal alle Dreiecke mit folgenden ngaben: (a)

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 01.12.2017 (Teil 1) 22. November 2017 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler 22. November 2017

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: Lösung 1. Übung Elemente der Algebra WS017/18 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 3x+4y 1}.

Mehr

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10

Lineare Algebra I. Anhang. A Relationen. Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA. Wintersemester 2009/10 Fakultät für Mathematik Fachgebiet Mathematische Informatik Anhang Lineare Algebra I Heinz H. GONSKA, Maria D. RUSU, Michael WOZNICZKA Wintersemester 2009/10 A Relationen Definition A.1. Seien X, Y beliebige

Mehr

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf

Mehr

Zusammenfassung: Beweisverfahren

Zusammenfassung: Beweisverfahren LGÖ Ks VMa 11 Schuljahr 216/217 Zusammenfassung: Beweisverfahren Inhaltsverzeichnis Teilbarkeitslehre... 1 Mathematische Sätze... 1 Bedingungen für innere Extremstellen... 3 Beweisverfahren... 3 Für Experten...

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Lennéstraße 43, 1. OG pinger@uni-bonn.de September/Oktober 2017 JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Vorkurs Mathematik September/Oktober

Mehr

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016 Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe16 Ronja Düffel 21. März 2016 Logik und Beweise Wozu Beweise in der Informatik?... um Aussagen wie 1 Das Programm erfüllt die gewünschte Aufgabe.

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Sommersemester 2018 Ronja Düffel 14. März 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis

Mehr

Der mathematische Beweis

Der mathematische Beweis Der mathematische Beweis Im Studium wird man wesentlich häufiger als in der Schule Beweise führen müssen. Deshalb empfiehlt es sich, verschiedene Beweisverfahren intensiv zu trainieren. Beweisstruktur

Mehr

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Aussagenlogik. Aussagen und Aussagenverknüpfungen

Aussagenlogik. Aussagen und Aussagenverknüpfungen Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

Mathematisch für Anfänger

Mathematisch für Anfänger Mathematisch für Anfänger Beiträge zum Studienbeginn von Matroids Matheplanet Bearbeitet von Martin Wohlgemuth 1. Auflage 2011. Taschenbuch. xvi, 320 S. Paperback ISBN 978 3 8274 2852 3 Format (B x L):

Mehr

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen

Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen Vor(schau)kurs für Studienanfänger Mathematik: Aussagen und Mengen 09.10.2014 Herzlich Willkommen zum 2. Teil des Vorschaukurses für Mathematik! Organisatorisches Der Vorkurs besteht aus sechs Blöcken

Mehr

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Mathematische Logik

Diskrete Strukturen. Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Mathematische Logik Diskrete Strukturen Sebastian Thomas RWTH Aachen https://www2.math.rwth-aachen.de/ds17/ Mathematische Logik Aussagen Begriff Aussage: Ausdruck, welcher entweder wahr oder falsch ist e Die RWTH Aachen hat

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker II (Sommersemester 2004) Lösungen zu Aufgabenblatt

Mehr

2.2.4 Logische Äquivalenz

2.2.4 Logische Äquivalenz 2.2.4 Logische Äquivalenz (I) Penélope raucht nicht und sie trinkt nicht. (II) Es ist nicht der Fall, dass Penélope raucht oder trinkt. Offenbar behaupten beide Aussagen denselben Sachverhalt, sie unterscheiden

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14 Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine

Mehr

Brückenkurs. Beweise. Anja Haußen Brückenkurs, Seite 1/23

Brückenkurs. Beweise. Anja Haußen Brückenkurs, Seite 1/23 Brückenkurs Beweise Anja Haußen 30.09.2016 Brückenkurs, 30.09.2016 Seite 1/23 Inhalt 1 Einführung 2 Sätze 3 Beweise 4 direkter Beweis Brückenkurs, 30.09.2016 Seite 2/23 Einführung Die höchste Form des

Mehr

Logik: aussagenlogische Formeln und Wahrheitstafeln

Logik: aussagenlogische Formeln und Wahrheitstafeln FH Gießen-Friedberg, Sommersemester 2010 Lösungen zu Übungsblatt 1 Diskrete Mathematik (Informatik) 7./9. April 2010 Prof. Dr. Hans-Rudolf Metz Logik: aussagenlogische Formeln und Wahrheitstafeln Aufgabe

Mehr

20. Landeswettbewerb Mathematik Bayern

20. Landeswettbewerb Mathematik Bayern 20. Landeswettbewerb Mathematik Bayern Lösungsbeispiele für die Aufgaben der 2. Runde 2017/2018 Aufgabe 1 Eine Folge a0,a1,... natürlicher Zahlen ist durch einen Startwert a 0 1 und die folgende Vorschrift

Mehr

Hinweis: Aus Definition 1 und 2 folgt, dass die Zahl 0 zu den geraden Zahlen zählt.

Hinweis: Aus Definition 1 und 2 folgt, dass die Zahl 0 zu den geraden Zahlen zählt. Der Satz vom ausgeschlossenen Dritten. Der Satz vom ausgeschlossenen Dritten besagt, dass für jeden (wahrheitsfähigen) Satz gilt: Entweder der Satz oder seine Negation ist wahr. Wenn m. a. W. gezeigt werden

Mehr

definieren eine Aussage A als einen Satz, der entweder wahr (w) oder falsch (f) (also insbesondere nicht beides zugleich) ist 1. Beispiel 1.1.

definieren eine Aussage A als einen Satz, der entweder wahr (w) oder falsch (f) (also insbesondere nicht beides zugleich) ist 1. Beispiel 1.1. 22 Kapitel 1 Aussagen und Mengen 1.1 Aussagen Wir definieren eine Aussage A als einen Satz, der entweder wahr w) oder falsch f) also insbesondere nicht beides zugleich) ist 1. Beispiel 1.1. 2 ist eine

Mehr

11. Beschreiben Sie die disjunktive und die konjunktive Normalform eines logischen Ausdrucks!

11. Beschreiben Sie die disjunktive und die konjunktive Normalform eines logischen Ausdrucks! Kapitel 3 Logik Verständnisfragen Sachfragen 1. Was ist eine logische Aussage? 2. Wie ist die Konjunktion und die Disjunktion definiert? 3. Beschreiben Sie das Exklusive Oder, die Implikation und die Äquivalenz!

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 018/19 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de c 018 Steven Köhler Wintersemester 018/19 Inhaltsverzeichnis Teil 1 Teil Teil

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

Grundbegriffe für dreiwertige Logik

Grundbegriffe für dreiwertige Logik Grundbegriffe für dreiwertige Logik Hans Kleine Büning Universität Paderborn 1.11.2011 1 Syntax und Semantik Die klassische Aussagenlogik mit den Wahrheitswerten falsch und wahr bezeichnen wir im weiteren

Mehr

Logik. III Logik. Propädeutikum Holger Wuschke. 19. September 2018

Logik. III Logik. Propädeutikum Holger Wuschke. 19. September 2018 III Propädeutikum 2018 19. September 2018 III λoγóς="das Wort" (math.) befasst sich mit Denition Aussage Eine Aussage p ist ein sinnvolles sprachliche Gebilde mit der Eigenschaft, entweder wahr oder falsch

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

Eine Aussage ist ein Satz der Umgangssprache, der wahr oder falsch sein kann. Man geht von dem Folgenden aus:

Eine Aussage ist ein Satz der Umgangssprache, der wahr oder falsch sein kann. Man geht von dem Folgenden aus: Karlhorst Meyer Formallogik Die Umgangssprache ist für mathematische Bedürfnisse nicht exakt genug. Zwei Beispiele: In Folge können u. U. Beweise, die in Umgangssprache geschrieben werden, nicht vollständig,

Mehr

Kapitel 2. Aufgaben. Verständnisfragen

Kapitel 2. Aufgaben. Verständnisfragen Kapitel 2 Aufgaben Verständnisfragen Aufgabe 2.1 Welche der folgenden Aussagen sind richtig? Für alle x R gilt: 1. x >1 ist hinreichend für x 2 > 1. 2. x >1 ist notwendig für x 2 > 1. 3. x 1 ist hinreichend

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Aufgabe G.1: Definitionen, Begriffsbildungen

Aufgabe G.1: Definitionen, Begriffsbildungen Aufgabe G.1: Definitionen, Begriffsbildungen a) Der Begriff Dreieck sei definiert. Definieren Sie den Begriff Innenwinkel eines Dreiecks. (2 Punkte) b) Definieren Sie den Begriff Inneres eines Winkels

Mehr

Logik/Beweistechniken

Logik/Beweistechniken Mathematikvorkurs bei Marcos Soriano Logik/Beweistechniken erstellt von: Daniel Edler -II- Inhaltsverzeichnis 1 Logik/Beweistechniken 1 1.1 Allgemeine Vorgehensweise......................... 1 2 Konjunktion/Disjunktion

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Ronja Düffel WS2018/19 01. Oktober 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis der

Mehr

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: Lösung 1. Übung Elemente der Algebra WS018/19 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 7x+3y 6}.

Mehr

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen

7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 2. Stufe (Kreisolympiade) Klasse 10 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik Syntax & Semantik. Motivation. Motivation

Motivation. Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik Syntax & Semantik. Motivation. Motivation Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik & Frank Heitmann heitmann@informatik.uni-hamburg.de Mit der Aussagenlogik lassen sich einfache Verknüpfungen zwischen (atomaren) Gebilden ausdrücken

Mehr

Einführung in die lineare Algebra und GeometrieWS 2018/19 October 30, 2018

Einführung in die lineare Algebra und GeometrieWS 2018/19 October 30, 2018 1 Beweisen Sie folgende Aussage: Das Produkt zweier ungeraden Zahlen ist ungerade Beweisen Sie folgende Aussage: Es gibt keine ganzen Zahlen n, m mit 8m + 4n = 100 [Hinweis: Beweisen Sie indirekt Nehmen

Mehr

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5

Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5 (Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei

Mehr

Vorkurs Aussagenlogik

Vorkurs Aussagenlogik Vorkurs -- 3. ussagenlogik..25 ussagenlogik Rechnen mit Wahrheitswerten: oder, oder Digitalisieren und erechnen, eweisen erechenbarkeit, eweisbarkeit, Entscheidbarkeit: Vollständigkeit, Widerspruchsfreiheit!

Mehr

Rudolf Brinkmann Seite

Rudolf Brinkmann Seite Rudolf Brinkmann Seite 1 30.04.2008 Aussagen und Mengentheoretische Begriffe Aussagen und Aussageformen In der Mathematik spricht man von Aussagen, wenn für einen Sachverhalt entschieden werden kann, ob

Mehr

Logik. Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block Aussage

Logik. Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block Aussage Logik Die Logik ist in der Programmierung sehr wichtig. Sie hilft z.b. bei der systematischen Behandlung von Verzweigungen und Schleifen. z.b. if (X Y und Y>0) then Oder beim Beweis, dass ein Algorithmus

Mehr

Grundlegendes: Mengen und Aussagen

Grundlegendes: Mengen und Aussagen Kapitel 1 Grundlegendes: Mengen und Aussagen Wie jedes Fachgebiet hat auch die Mathematik eine eigene Fachsprache Ohne ihre Kenntnis wird man ein mathematisches Buch, selbst wenn es für Anwender geschrieben

Mehr

Q.E.D. Algorithmen und Datenstrukturen Wintersemester 2018/2019 Übung#2, Christian Rieck, Arne Schmidt

Q.E.D. Algorithmen und Datenstrukturen Wintersemester 2018/2019 Übung#2, Christian Rieck, Arne Schmidt Institute of Operating Systems and Computer Networks Algorithms Group Q.E.D. Algorithmen und Datenstrukturen Wintersemester 2018/2019 Übung#2, 01.11.2018 Christian Rieck, Arne Schmidt Einführendes Beispiel

Mehr

Vorkurs Mathematik 2014

Vorkurs Mathematik 2014 Vorkurs Mathematik 2014 WWU Münster, Fachbereich Mathematik und Informatik PD Dr. K. Halupczok Skript VK1 vom 4.9.2014 VK1: Logik und Beweise Einige Grundlagen der Logik Die Kunst des Schlussfolgerns Theorie

Mehr

Lösungen 3 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren

Lösungen 3 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren Lösungen 3 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren µfsr, TU Dresden Version vom 26. September 2016, Fehler und Verbesserungsvorschläge bitte an benedikt.bartsch@myfsr.de

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.11.2016 (Teil 2) 23. November 2016 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016

Mehr

Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst

Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst Potenzen mit ganzzahligen Exponenten Definition: Unter der n-ten Potenz einer beliebigen reellen Zahl a versteht man das n-fache Produkt von a mit sich selbst Man schreibt a n = b Dabei heißt a die Basis,

Mehr

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 23 Die Logik der Booleschen Junktoren Till Mossakowski Logik 2/ 23 Aussagenlogische

Mehr

Elementare Beweismethoden

Elementare Beweismethoden Elementare Beweismethoden Christian Hensel 404015 Inhaltsverzeichnis Vortrag zum Thema Elementare Beweismethoden im Rahmen des Proseminars Mathematisches Problemlösen 1 Einführung und wichtige Begriffe

Mehr

Aufgabe 13 (Markierungsalgorithmus). Gegeben ist die Formel F = (A D C) (E A) ( ( B D) E) A B (B D)

Aufgabe 13 (Markierungsalgorithmus). Gegeben ist die Formel F = (A D C) (E A) ( ( B D) E) A B (B D) INTA - Lösungshinweise zum Übungsblatt 4, Version 1.0α. Wenn sie Fehler finden oder Ihnen etwas auch nach dem Gespräch mit ihren Kommilitonen noch unklar ist, dann schicken sie mir bitte eine Email! Aufgabe

Mehr

die Menge S = {(x,y) : x 2 = y 2 +1,x R} wohl aussehen könnte. Die Antwort ist hier: Interessant ist auch y 2 = x 3 x:

die Menge S = {(x,y) : x 2 = y 2 +1,x R} wohl aussehen könnte. Die Antwort ist hier: Interessant ist auch y 2 = x 3 x: die Menge S = {(x,y) : x 2 = y 2 +1,x R} wohl aussehen könnte. Die Antwort ist hier: Interessant ist auch y 2 = x 3 x: 40 Ganz wichtig für die Wirtschaftswissenschaft ist es, sich Ungleichungen klar zu

Mehr

Musterbeispiele: Aussagenlogik (Lösung)

Musterbeispiele: Aussagenlogik (Lösung) Musterbeispiele: Aussagenlogik (Lösung) 3.0 VU Formale Modellierung Lara Spendier, Gernot Salzer WS 2011 Aufgabe 1 Gegeben seien die folgenden Aussagen: A: Es ist eiskalt. B: Es schneit. Drücken Sie die

Mehr

Vollständige Induktion

Vollständige Induktion Kantonsschule Olten Hardwald 4600 Olten Vollständige Induktion Andreas Stoll Andreas Pulfer Erfänzungsfach Anwendungen der Mathematik (2017/18) 1 Beweisen 1.1 Axiome und Prämissen Bei einem Beweis wird

Mehr

Einführung in die Semantik, 5. Sitzung Aussagenlogik

Einführung in die Semantik, 5. Sitzung Aussagenlogik Einführung in die, 5. Sitzung Aussagenlogik Göttingen 9. November 2006 Aussagenlogik Warum die formalen Sprachen der Logik? formale Sprachen haben wie jede Sprache ein Vokabular, eine und eine. Die Relation

Mehr

48. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen

48. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen 48. Österreichische Mathematik-Olympiade Gebietswettbewerb für Fortgeschrittene Lösungen 30. März 017 Aufgabe 1. Es seien x 1, x,..., x 9 nicht negative reelle Zahlen, für die gilt: x 1 + x +... + x 9

Mehr

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade

1993 III Aufgabe. In einem kartesischen Koordinatensystem sind die Gerade 993 III Aufgabe In einem kartesischen Koordinatensystem sind die Gerade = g : X mit R sowie die beiden Punkte A( -) und C(- 2 ) gegeben. A und C bestimmen die Gerade h..a) Begründen Sie, dass der Mittelpunkt

Mehr

Hausaufgaben Negation Aussagen Implikation Äquivalenz Zusammenfassung. Elementare Logik. Diskrete Strukturen. Uta Priss ZeLL, Ostfalia

Hausaufgaben Negation Aussagen Implikation Äquivalenz Zusammenfassung. Elementare Logik. Diskrete Strukturen. Uta Priss ZeLL, Ostfalia Elementare Logik Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Elementare Logik Slide 1/26 Agenda Hausaufgaben Negation Aussagen Implikation Äquivalenz Zusammenfassung

Mehr

mathe plus Aussagenlogik Seite 1

mathe plus Aussagenlogik Seite 1 mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 3 Was Hänschen nicht lernt, lernt Hans nimmermehr Volksmund Was Hänschen nicht lernt, lernt Hans nimmermehr hat heute keine

Mehr

Brückenkurs Mathematik. Dienstag Freitag

Brückenkurs Mathematik. Dienstag Freitag Brückenkurs Mathematik Dienstag 2.10. - Freitag 12.10. Vorlesung 1 Logik, Mengen, Zahlen Kai Rothe Technische Universität Hamburg Dienstag 2.10. Tagesablauf 9:00-10:30 Vorlesung Audimax I 10:30-11:00 Pause

Mehr