Hans Walser Schnittpunkte
|
|
|
- Paul Pohl
- vor 6 Jahren
- Abrufe
Transkript
1 Hans Walser Schnittpunkte Die Bildsequenzen sind als Bilder ohne Worte konzipiert. Farbreihenfolge: Dunkelgrün, blau, rot. Nach Bedarf werden auch andere Farben verwendet. Die drei kleinen Bilder im Querstreifen deuten die Entstehung der Gesamtfigur an. Gegebenenfalls finden sich unterhalb der Figur Literaturangaben oder Hinweise auf Anregungen, die zu diesen Figuren geführt haben. Letzte Änderung 17. Januar 2016
2 Hans Walser: Schnittpunkte Schnittpunkt 501
3 Hans Walser: Schnittpunkte Schnittpunkt 502
4 Hans Walser: Schnittpunkte Schnittpunkt 503
5 Hans Walser: Schnittpunkte Schnittpunkt 504
6 Hans Walser: Schnittpunkte Schnittpunkt 505
7 Hans Walser: Schnittpunkte Schnittpunkt 506
8 Hans Walser: Schnittpunkte Schnittpunkt 507
9 Hans Walser: Schnittpunkte Schnittpunkt 508
10 Hans Walser: Schnittpunkte Schnittpunkt 509
11 Hans Walser: Schnittpunkte Schnittpunkt 510
12 Hans Walser: Schnittpunkte Schnittpunkt 511
13 Hans Walser: Schnittpunkte Schnittpunkt 512
14 Hans Walser: Schnittpunkte Schnittpunkt 513
15 Hans Walser: Schnittpunkte Schnittpunkt 514
16 Hans Walser: Schnittpunkte Schnittpunkt 515
17 Hans Walser: Schnittpunkte Schnittpunkt 516
18 Hans Walser: Schnittpunkte Schnittpunkt 517
19 Hans Walser: Schnittpunkte Schnittpunkt 518
20 Hans Walser: Schnittpunkte Schnittpunkt 519
21 Hans Walser: Schnittpunkte Schnittpunkt 520
22 Hans Walser: Schnittpunkte Schnittpunkt 521
23 Hans Walser: Schnittpunkte Schnittpunkt 522
24 Hans Walser: Schnittpunkte Schnittpunkt 523
25 Hans Walser: Schnittpunkte Schnittpunkt 524
26 Hans Walser: Schnittpunkte Schnittpunkt 525
27 Hans Walser: Schnittpunkte Schnittpunkt 526 Winkelhalbierende, Mittelparallele und Tangenten
28 Hans Walser: Schnittpunkte Schnittpunkt 527 Konfokale Parabeln
29 Hans Walser: Schnittpunkte Schnittpunkt 528 Winkelhalbierende und Tangenten
30 Hans Walser: Schnittpunkte Schnittpunkt 529 Winkelhalbierende und Tangenten
31 Hans Walser: Schnittpunkte Schnittpunkt 530 Winkelhalbierende und Tangenten
32 Hans Walser: Schnittpunkte Schnittpunkt 531 Winkelhalbierende und Tangenten
33 Hans Walser: Schnittpunkte Schnittpunkt 532 Tangenten, innere und äußere Winkelhalbierende
34 Hans Walser: Schnittpunkte Schnittpunkt 533 Hyperbeln im Dreieck
35 Hans Walser: Schnittpunkte Schnittpunkt 534 Nagel-Punkt
36 Hans Walser: Schnittpunkte Schnittpunkt 535 Zwei Ellipsen und eine Hyperbel
37 Hans Walser: Schnittpunkte Schnittpunkt 536
38 Hans Walser: Schnittpunkte Schnittpunkt 537
39 Hans Walser: Schnittpunkte Schnittpunkt 538
40 Hans Walser: Schnittpunkte Schnittpunkt 539 Kegelschnitte im Arbelos
41 Hans Walser: Schnittpunkte Schnittpunkt 540
42 Hans Walser: Schnittpunkte Schnittpunkt 541
43 Hans Walser: Schnittpunkte Schnittpunkt 542
44 Hans Walser: Schnittpunkte Schnittpunkt 543
45 Hans Walser: Schnittpunkte Schnittpunkt 544
46 Hans Walser: Schnittpunkte Schnittpunkt 545
47 Hans Walser: Schnittpunkte Schnittpunkt 546
48 Hans Walser: Schnittpunkte Schnittpunkt 547
49 Hans Walser: Schnittpunkte Schnittpunkt 548
50 Hans Walser: Schnittpunkte Schnittpunkt 549
51 Hans Walser: Schnittpunkte Schnittpunkt 550
52 Hans Walser: Schnittpunkte Schnittpunkt 551 Zwei Ellipsen und eine Hyperbel
53 Hans Walser: Schnittpunkte Schnittpunkt 552 Zwei Parabeln und Winkelhalbierende
54 Hans Walser: Schnittpunkte Schnittpunkt 553 Zwei Parabeln und äußere Winkelhalbierende
55 Hans Walser: Schnittpunkte Schnittpunkt 554 Drei Parabeln mit gemeinsamem Brennpunkt
56 Hans Walser: Schnittpunkte Schnittpunkt 555
57 Hans Walser: Schnittpunkte Schnittpunkt 556
58 Hans Walser: Schnittpunkte Schnittpunkt 557
59 Hans Walser: Schnittpunkte Schnittpunkt 558 Drei Ellipsen
60 Hans Walser: Schnittpunkte Schnittpunkt 559 Drei Ellipsen und Euler-Gerade
61 Hans Walser: Schnittpunkte Schnittpunkt 560 Drei Hyperbeln
62 Hans Walser: Schnittpunkte Schnittpunkt 561
63 Hans Walser: Schnittpunkte Schnittpunkt 562
64 Hans Walser: Schnittpunkte Schnittpunkt 563
65 Hans Walser: Schnittpunkte Schnittpunkt 564
66 Hans Walser: Schnittpunkte Schnittpunkt 565 Zwei Ellipsen und eine Hyperbel
67 Hans Walser: Schnittpunkte Schnittpunkt 566
68 Hans Walser: Schnittpunkte Schnittpunkt 567
69 Hans Walser: Schnittpunkte Schnittpunkt 568
70 Hans Walser: Schnittpunkte Schnittpunkt 569 Thaleskreise über harmonischen Punktepaaren
71 Hans Walser: Schnittpunkte Schnittpunkt 570 Thaleskreise über harmonischen Punktepaaren
72 Hans Walser: Schnittpunkte Schnittpunkt 571 Henu so de
73 Hans Walser: Schnittpunkte Schnittpunkt 572
74 Hans Walser: Schnittpunkte Schnittpunkt 573
75 Hans Walser: Schnittpunkte Schnittpunkt 574
76 Hans Walser: Schnittpunkte Schnittpunkt 575
77 Hans Walser: Schnittpunkte Schnittpunkt 576
78 Hans Walser: Schnittpunkte Schnittpunkt 577
79 Hans Walser: Schnittpunkte Schnittpunkt 578
80 Hans Walser: Schnittpunkte Schnittpunkt 579
81 Hans Walser: Schnittpunkte Schnittpunkt 580
82 Hans Walser: Schnittpunkte Schnittpunkt 581 Beliebige gleichschenklige Dreiecke
83 Hans Walser: Schnittpunkte Schnittpunkt 582
84 Hans Walser: Schnittpunkte Schnittpunkt 583 Höhenfußpunkte
85 Hans Walser: Schnittpunkte Schnittpunkt 584
86 Hans Walser: Schnittpunkte Schnittpunkt 585 Beliebige Punkte auf den Höhen
87 Hans Walser: Schnittpunkte Schnittpunkt 586
88 Hans Walser: Schnittpunkte Schnittpunkt 587 Herausspiegeln
89 Hans Walser: Schnittpunkte Schnittpunkt 588
90 Hans Walser: Schnittpunkte Schnittpunkt 589 Auch so geht s.
91 Hans Walser: Schnittpunkte Schnittpunkt 590
92 Hans Walser: Schnittpunkte Schnittpunkt 591
93 Hans Walser: Schnittpunkte Schnittpunkt 592
94 Hans Walser: Schnittpunkte Schnittpunkt 593 Reuleaux
95 Hans Walser: Schnittpunkte Schnittpunkt 594 Reuleaux
96 Hans Walser: Schnittpunkte Schnittpunkt 595 Reuleaux
97 Hans Walser: Schnittpunkte Schnittpunkt 596 Reuleaux
98 Hans Walser: Schnittpunkte Schnittpunkt 597 Reuleaux
99 Hans Walser: Schnittpunkte Schnittpunkt 598 Reuleaux
100 Hans Walser: Schnittpunkte Schnittpunkt 599
101 Hans Walser: Schnittpunkte Schnittpunkt 600
102 Hans Walser: Schnittpunkte Literatur Baptist, Peter (1992): Die Entwicklung der neueren Dreiecksgeometrie. Mannheim: B.I.Wissenschaftsverlag. ISBN Donath, Emil (1976): Die merkwürdigen Punkte und Linien des ebenen Dreiecks. Berlin: Deutscher Verlag der Wissenschaften, 3. Auflage Eddy, R.H. / Fritsch, R. (1994): The Conics of Ludwig Kiepert: A Comprehensive Lesson in the Geometry of the Triangle. Mathematics Magazine. Vol. 67, No. 3, June 1994, p Euklid (1980): Die Elemente. Nach Heibergs Text aus dem Griechischen übersetzt und herausgegeben von Clemens Thaer. Darmstadt: Wissenschaftliche Buchgesellschaft. ISBN X G.-M., F. (1920/1991): Exercices de Géométrie. Sixième édition. Tours - Paris: Mame - de Gigord Réimpression de la 6e édition publieé par Mame et De Gigord en Sceaux: Gabay ISBN Götzl, Dieter (2006): Besondere Linien im Dreieck eine Verallgemeinerung. MNU Der mathematische und naturwissenschaftliche Unterricht. 59/8, S , ISSN Haag, Wilfried (2003): Wege zu geometrischen Sätzen. Stuttgart: Klett. ISBN Hauptmann, W. (1995): Erzeugung merkwürdiger Punkte. PM Praxis der Mathematik 37, S. 8 Hoehn, Larry (2001): Extriangles and Excevians. Mathematics Magazine, Vol. 74, No. 5, p Jacobi, C. F. A. (1825): De triangulorum rectilineorum proprietatibus quibusdam nondum satis cognitis. Naumburg. Kimberling, Clark (1998): Triangle Centers and Central Triangles. Congr. Numer. 129, p
103 Hans Walser: Schnittpunkte Klemenz, Heinz (2003): Merkwürdiges im Dreieck. VSMP Bulletin, herausgegeben vom Verein Schweizerischer Mathematik- und Physiklehrer, No 91, S Reuleaux, F. (1875): Lehrbuch der Kinematik. Braunschweig: Vieweg. goog/lehrbuchderkine01reulgoog.pdf Walser, Hans ( ): Schlusspunkt. Didaktik der Mathematik, 18 (1990) bis 22 (1994), jeweils letzte Heftseite Walser, Hans (1993): Die Eulersche Gerade als Ort "merkwürdiger Punkte". Didaktik der Mathematik (21), Walser, Hans (1994): Eine Verallgemeinerung der Winkelhalbierenden. Didaktik der Mathematik (22), S Walser, Hans (2000): Lattice Geometry and Pythagorean Triangles. ZDM Zentralblatt für Didaktik der Mathematik. Jahrgang 32, Heft 2, S Walser, Hans (2003): Eine Schar von Schnittpunkten im Dreieck. Praxis der Mathematik (2/45), S Walser, Hans (2006): 99 Points of Intersection. Examples Pictures Proofs. Translated by Peter Hilton and Jean Pedersen. The Mathematical Association of America. ISBN Walser, Hans (2012): 99 Schnittpunkte. Beispiele Bilder Beweise. 2. Auflage. EAGLE, Edition am Gutenbergplatz: Leipzig. ISBN Walser, Hans (2013): Der Goldene Schnitt. 6., bearbeitete und erweiterte Auflage. Mit einem Beitrag von Hans Wußing über populärwissenschaftliche Mathematikliteratur aus Leipzig. Edition am Gutenbergplatz, Leipzig. ISBN Walser, Hans (2013): DIN A4 in Raum und Zeit. Silbernes Rechteck Goldenes Trapez DIN-Quader. Edition am Gutenbergplatz, Leipzig ISBN
104 Hans Walser: Schnittpunkte Wildberger, Norman J. (2010): Chromogeometry. The Mathematical Intelligencer. Volume 32, Number 1. Springer. p
Hans Walser Schnittpunkte
Hans Walser Schnittpunkte 101-200 Die Bildsequenzen sind im Sinne einer minimal art als Bilder ohne Worte konzipiert. Dabei wurde folgende grafische Systematik verwendet: Ausgangspunkt Folgepunkt Schnittpunkt
Abb. 1: Kiepert-Hyperbel
Hans Walser, [20150124] Kiepert-Hyperbel 1 Die Kiepert-Hyperbel Der Kegelschnitt durch die drei Eckpunkte eines Dreieckes sowie dessen Schwerpunkt und Höhenschnittpunt ist immer eine gleichseitige Hyperbel
Abb. 1: Konstruktionsfolge
Hans Walser, [20180501] DIN-Format, Goldener Schnitt und gleichseitiges Dreieck 1 Worum geht es? Die klassische Konstruktion eines Rechtecks im DIN-Format (Walser 2013b) wird iteriert und führt zum gleichseitigen
2.1 Radienverhältnis 2 1 In diesem Fall berühren sich die grünen Kreise untereinander (Abb. 2). Der rote Radius ist 2 1, der grüne Radius 1.
Hans Walser, [20170526] Kreispackungen Anregung: Heinz Klaus Strick, Leverkusen. Siehe auch (Strick 2017, S. 269f). 1 Ausgangslage Wir arbeiten mit zwei Kreisscharen (Abb. 1). Abb. 1: Zwei Kreisscharen
Hans Walser Schließungsfiguren mit Periodenlänge 6
Hans Walser Schließungsfiguren mit Periodenlänge 6 Die Bildsequenzen sind im Sinne einer minimal art als Bilder ohne Worte konzipiert. Gegebenenfalls finden sich unterhalb der Figur Literaturangaben oder
Abb. 2: Grafische Lösung
Hans Walser, [20170320] Prozentuale Veränderungen Anregung: A. B., F. 1 Worum geht es? Ausgehend von einer Prozent-Aufgabe werden Probleme mit prozentualen Veränderungen besprochen. 2 Die Aufgabe Die Aufgabe
Hans Walser, [ a] Pentagramma mirificum Anregung: [Heinrich 2010]
Hans Walser, [011019a] Pentagramma mirificum Anregung: [Heinrich 010] 1 Worum es geht Ein Pentagramma mirificum ist ein sphärisches Pentagramm mit rechten Winkeln an den Spitzen. Die Abbildung zeigt ein
Die Trapeze sind offensichtlich gleichschenklig und haben die Basiswinkel 60. Sind sie auch ähnlich?
Hans Walser, [20090625c] Fibonacci-Trapeze Anregung: [Deshpande 2009] 1 Hexagon mit angesetzten Quadraten 1.1 Basisfigur Wir basieren unsere Überlegungen auf folgender Figur. Einem zentralen Hexagon werden
Reuleaux-Zweiecke Arbeitskreis Geometrie der GDM September 2016 Saarbrücken
Hans Walser Reuleaux-Zweiecke Arbeitskreis Geometrie der GDM 9. - 11. September 2016 Saarbrücken Zusammenfassung: Analog zum Reuleaux-Dreieck, das sich in verschiedenen Positionen ins immer gleiche Quadrat
Perlen der Mathematik
Claudi Alsina Roger B. Nelsen Perlen der Mathematik 20 geometrische Figuren als Ausgangspunkte für mathematische Erkundungsreisen Aus dem Englischen übersetzt von Thomas Filk ~ Springer Spektrum Inhaltsverzeichnis
1 Worum geht es? Aus vier stumpfen Rhombenhexaedern mit dem Diagonalenverhältnis Rhombendodekaeder zusammenbauen.
Hans Walser, [20110313b], [20131230g] Andocken Anregung: A. G., R. 1 Worum geht es? Aus vier stumpfen Rhombenhexaedern mit dem Diagonalenverhältnis Rhombendodekaeder zusammenbauen. 2 lässt sich das Rhombendodekaeder.
In der Schule lernen wir den Satz des Pythagoras: Die Flächensumme der beiden blauen Quadrate ist gleich der Fläche des schwarzen Quadrates:
Hans Walser, [06045] Pythagoras-Schmetterling Das Phänomen Wir beginnen mit einem beliebigen rechtwinkligen Dreieck und zeichnen die übliche Pythagoras-Figur. Dann fügen wir zwei weitere Quadrate an (rot
a) b) Abb. 1: Würfel und Kantenmittenkugel
Hans Walser, [0180511] Drachenkörper Anregung: Werner Blum, Braunschweig 1 Worum es geht Ausgehend vom Würfel werden mit der immer gleichen Technik zuerst das Rhombendodekaeder und anschließend der Deltoidvierundzwanzigflächner
Pythagoreische Rechtecke Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fall Startdreieck
Hans Walser, [20040416a] Pythagoreische Rechtecke 1 Vier gleiche rechtwinklige Dreiecke 1.1 Allgemeiner Fall Wir starten mit einem beliebigen rechtwinkligen Dreieck in der üblichen Beschriftung. Startdreieck
n x n y n Tab.1: Zwei Beispiele
Hans Walser, [0404] Konvergente Fibonacci-Folgen Worum geht es? Die klassische Fibonacci-Folge,,,, 5, 8,,,... ist divergent. Wir untersuchen Beispiele von konvergenten Folgen mit der Rekursion: a n = pa
Springer-Lehrbuch. Ebene Geometrie. Bearbeitet von Max Koecher, Aloys Krieg
Springer-Lehrbuch Ebene Geometrie Bearbeitet von Max Koecher, Aloys Krieg erweitert, überarbeitet 2008. Taschenbuch. xii, 280 S. Paperback ISBN 978 3 540 49327 3 Format (B x L): 15,5 x 23,5 cm Gewicht:
Mathematik für die Sekundarstufe 1
Hans Walser Mathematik für die Sekundarstufe 1 Modul 400 Elementargeometrie Literatur und Inhalt last modified: 6. Juni 2014 Hans Walser www.walser-h-m.ch/hans Hans Walser: Modul 400, Elementargeometrie.
Hans Walser. Der Goldene Schnitt. Reduzierte Fassung des Skripts (ohne Fotos) NGW, Naturwissenschaftliche Gesellschaft Winterthur
Hans Walser Der Goldene Schnitt Reduzierte Fassung des Skripts (ohne Fotos) NGW, Naturwissenschaftliche Gesellschaft Winterthur Freitag, 1. Januar 018, 0:00 Uhr Grosser Physikhörsaal des Technikums Technikumstrasse
( 2 ) 2 π 1 4 π = 1 2 = A Dreieck
Hans Walser, [20130407] Die Möndchen von Hörhausen Ausarbeitung einer Idee von R. L. 1 Das Möndchen Der Hypotenuse eines rechtwinklig gleichschenkligen Dreiecks setzen wir gemäß Abbildung 1 ein Möndchen
Um-Strophoiden eines Dreiecks
Um-Strophoiden eines Dreiecks Eckart Schmidt Es wird konstruktiv und analytisch untersucht, wie zu vorgegebenem Doppelpunkt einem Dreieck eine Strophoide umbeschrieben werden kann. Geometrie der Strophoide
Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke
Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel
Hans Walser. Über Symmetrien und Ornamente
Hans Walser Über Symmetrien und Ornamente Hans Walser: Über Symmetrien und Ornamente 2/29 Inhalt 1 Was ist Symmetrie?...3 1.1 Der Würfel mit drei Farben...3 1.2 Quadratischer Punktraster...3 2 Punktraster
1 Yin Yang Figur Die Abbildung 1 zeigt das Yin Yang, wie es leibt und lebt. Es ist unter Farbwechsel punktsymmetrisch. Weiter hat es keine Symmetrien.
Hans Walser, [20130505] Yin Yang Eine nostalgische fraktale Erinnerung. Anregung: Strick (2013) 1 Yin Yang Figur Die Abbildung 1 zeigt das Yin Yang, wie es leibt und lebt. Abb. 1: Yin Yang Es ist unter
a) b) Abb. 1: Rechtwinklig gleichschenkliges Dreieck und Wurzel-2-Dreieck
Hans Walser, [09030] Wurzel--Dreieck Anregung: Horst Steibl, Braunschweig Worum geht es? Das rechtwinklig gleichschenklige Dreieck (Abb. a) hat das Seitenverhältnis ::. Wir vertauschen nun die beiden Längen
Konjugierte Punkte. Eckart Schmidt
Konjugierte Punkte Eckart Schmidt Schon Ende des 19 Jahrhunderts waren Winkelund Seiten-Gegenpunkte Bestandteil geometrischer Betrachtung [1] Die zugehörige isogonale und isotome Verwandtschaft sind heute
Hinweise und Texte zum Seminar Didaktik der Mathematik für das Lehramt an Gymnasien und Gesamtschulen
Hinweise und Texte zum Seminar Didaktik der Mathematik für das Lehramt an Gymnasien und Gesamtschulen Ab ca. 3.9. liegen im Geschäftszimmer bei Frau Raczynski Disketten mit Beispieltexten bereit, die zum
Kapitel I. Grundlagen der ebenen euklidischen Geometrie... 5 Einleitung Affine Ebenen... 7
Inhaltsverzeichnis Prolog. Die Elemente des Euklid... 1 1. Euklid 2. Axiome 3. Über die Sprache der Geometrie Kapitel I. Grundlagen der ebenen euklidischen Geometrie... 5 Einleitung... 5 1. Affine Ebenen...
a) b) Abb. 1: Die klassische Aufgabe a) b) Abb. 2: Umkehrung
Hans Walser, [20180528] Sehwinkel bei Kegelschnitten Anregung: N. Th.-Sch., V. 1 Wie das Problem entstand Eine klassische Aufgabe im Abiturtraining geht so: Gegeben sind eine Punkt und eine Parabel (Abb.
Hans Walser. Das DIN-Format
Hans Walser Das DIN-Format Kolloquium über Mathematik, Informatik und Unterricht Donnerstag, 0. November 04, 7:5 Uhr ETH Zürich, Hörsaal HG G Zusammenfassung Das DIN-Format ist mehr als ein Stück Papier
Modul 206 Regelmäßige Vielecke!
Modul 206 Regelmäßige Vielecke! Regelmäßige Vielecke In- und Umkreise Gleichseitiges Dreieck h = 3 2 s s h r r s r = 2 3 h = 3 3 s ρ = 1 3 h = 3 6 s s A = 3 4 s2 Gleichseitiges Dreieck Gleichseitiges Dreieck
Die Kreispotenz und die Sätze von Pascal und Brianchon
1 Die Kreispotenz und die Sätze von Pascal und Brianchon 26. September 2007 1 Kreispotenz Zur Konstruktion der Potenzlinie zweier Kreise k 1 und k 2, die sich nicht schneiden, wähle man sich einen Hilfskreis
Unterhaltsame Geometrie
C. Stanley Ogi Ivy Unterhaltsame Geometrie Mit 132 Bildern.» vleweg Titel der Orginalausgabe Excursions in Geometry erschienen im Verlag Oxford University Press, NY übersetzung: Klaus Wigand Verlagsredaktion:
Hans Walser! Vergessene Vierecke!
Hans Walser Vergessene Vierecke www.walser-h-m.ch/hans/ Drei Fragen und eine Lehrerfrage Frage: Briefumschlagvierecke? Demo Briefumschläge Frage: Briefumschlagvierecke? Demo Briefumschläge Frage: Briefumschlagvierecke?
Entdeckung von Analogien mit Cabri 3D am Beispiel Dreieck Tetraeder
Heinz Schumann am Beispiel Dreieck Tetraeder Erschienen in: math. did. 27 (2004) Bd. 1, 82-100 (Wiedergabe hier auszugsweise, insbesondere nur die Abbildungen) Nicht alles ist analog. Zusammenfassung:
Der Goldene Schnitt! Hans Walser!
Der Goldene Schnitt Hans Walser www.walser-h-m.ch/hans Der Goldene Schnitt Schönheit? Natur Geschichte Geometrie Zahlen Hans Walser www.walser-h-m.ch/hans Der Goldene Schnitt Was steckt hinter den Sternen?
Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie
Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Modul 12a: Fachdidaktische Bereiche juergen-roth.de/lehre/did_linalg_anageo/ Kapitel 4: Kegelschnitte 4.1 Inhalte Didaktik der Linearen
Rettet die Kegelschnitte Argumente für eine (digitale) Wiederbelebung eines in der Bildungs- und Kompetenzlandschaft vergessenen Themas der Geometrie
Hans-Georg Weigand, Universität Würzburg Hans-Georg Weigand, Universität Würzburg Rettet die Kegelschnitte Argumente für eine (digitale) Wiederbelebung eines in der Bildungs- und Kompetenzlandschaft vergessenen
Strophoiden. Eckart Schmidt
Strophoiden Eckart Schmidt Strophoiden sind als anallagmatische Kurven invariant gegenüber einer Kreisspiegelung; sie sind weiterhin das Inverse einer gleichseitigen Hyperbel, die Fußpunktkurve einer Parabel
A B. Geometrische Grundbegriffe zuordnen. Geometrische Grundbegriffe zuordnen.
Hinweis: Dieses Geometrieheft wurde im Zuge einer ergänzenden Lernbegleitung für die Jahrgangsstufe 4 erstellt und erhebt keinen Anspruch auf Vollständigkeit, bzw. wird fortlaufend weiterentwickelt Das
Dreieckssätze. Pythagoras und Co. W.Seyboldt SFZ 14/15
Dreieckssätze Pythagoras und Co 1 Pythagoras 300 v.chr.: Elemente des Euklid, Stoicheia unterteilt in 15 Bücher (Kapitel) I bis XV wobei die beiden letzten erst später dazu kamen, deshalb redet man oft
Hans Walser Kantenmodelle Kantenmodelle der platonischen Körper.
Hans Walser Kantenmodelle Kantenmodelle der platonischen Körper. Würfelmodell 1 Würfelmodell 1.1 Bauteil Wir bauen ein Kantenmodell mit einem Bauteil pro Kante, insgesamt also 12 Bauteilen. In der folgenden
Der Goldene Schnitt! Hans Walser!
Der Goldene Schnitt! Hans Walser! www.walser-h-m.ch/hans! 1! Drohne:!! Mutti, wie bin ich auf die Welt gekommen?! 1 1 2! Eine männliche Biene (Drohne)! hat nur eine Mutter (Königin)!! Unbefruchtetes Ei!
Pol-Polaren-Beziehung am Dreieck. Eckart Schmidt
Pol-Polaren-Beziehung am Dreieck Eckart Schmidt Zu einem Punkt P der Ebene eines Bezugsdreiecks ABC wird das Ceva-Dreieck P a P b P c betrachtet Die Perspektivachse dieser beiden Dreiecke sei die Polare
H. Humenberger, F. Embacher. Geometrische Iterationen Konvergenz von Dreiecksformen
H. Humenberger, F. Embacher Geometrische Iterationen Konvergenz von Dreiecksformen Konvergenz Folgen und Reihen (auch aus der Geometrie: meist unendliche geometrische Reihen), Analysis, etc. Konvergenz
Sekundarschulabschluss für Erwachsene. 1. Grundkonstruktionen 1.1 Zeichnen Sie alle Winkelhalbierenden ein. (3 P)
SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2013 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die
Hans Walser DIN
Hans Walser DIN 476 www.walser-h-m.ch/hans www.walser-h-m.ch/hans/vortraege/20180613 Werbung ISBN 978-3-937219-69-1 Leipzig: EdiLon am Gutenbergplatz, 2013 Seitenverhältnis DIN A4 Seitenverhältnis DIN
Rationale Punkte auf algebraischen Kurven
Rationale Punkte auf algebraischen Kurven THOMAS CHRIST, JÖRN STEUDING (Uni Würzburg) Würzburg, den 7. Oktober 2009 W-Seminare p.1/20 Kurven Kurven begegnen uns in allen Lebenslagen... p.2/20 Kurven Kurven
Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte)
SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2013 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60
1 Der Goldene Schnitt
Goldener Schnitt 1 Der Goldene Schnitt 1 1.1 Das regelmäßige Zehneck 1 1. Ein anderer Name für den Goldenen Schnitt 4 1.3 Der Goldene Schnitt in Zahlen 6 1.4 Die Potenzen von und 8 1.5 Drei Beispiele 10
Der Goldene Schnitt! Hans Walser!
Der Goldene Schnitt Hans Walser www.walser-h-m.ch/hans 1 Der Goldene Schnitt Wo steckt der Goldene Schnitt? 2 Der Goldene Schnitt 3 Der Goldene Schnitt Stetige Teilung (Euklid, 3. Jh. v. Chr.) 4 Der Goldene
Was haben die folgenden Dinge gemeinsam?
Was haben die folgenden Dinge gemeinsam? Parthenon zu Athen Mona Lisa von Leonardo da Vinci Nautilus Berliner Fernsehturm CN Tower Obelix Brüder Grimm Ananas Rose Biene Apple Das goldene Zeitalter Der
Name und des Einsenders
Titel der Einheit Stoffgebiet Name und Email des Einsenders Ziel der Einheit Inhalt Voraussetzungen Konstruktion von Kegelschnitten Geometrie Andreas Ulovec [email protected] Verwenden von Dynamischer
Literatur zu geometrischen Konstruktionen
Literatur zu geometrischen Konstruktionen Hadlock, Charles Robert, Field theory and its classical problems. Carus Mathematical Monographs, 19. Mathematical Association of America, Washington, D.C., 1978.
Konstruktionen am Dreieck
Winkelhalbierende Die Winkelhalbierende halbiert den jeweiligen Innenwinkel des Dreiecks. Sie agieren als Symmetrieachse. Dadurch ist jeder Punkt der Winkelhalbierenden gleich weit von den beiden Schenkeln
Didaktik des Sachrechnens
Didaktik des Sachrechnens 6. Geometrie in der Anwendung Eine Auswahl Pont de la Caille, Frankreich (eigenes Foto) 1 6. Geometrie in der Anwendung Eine Auswahl 6.1 Satzgruppe des Pythagoras 6.2 Ähnlichkeit
Hans Walser DIN 476 ISO h- m.ch/hans
Hans Walser DIN 476 ISO 476 www.walser- h- m.ch/hans Werbung GDM Basel Tag für Lehrerinnen und Lehrer Mi, 11. Februar 2015 Workshop 11.00 Uhr bis 12.15 Uhr Hans Walser Das DIN- Format Zwei A4 BläSer, Querformat
Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) =
Mathematische Probleme SS 13 Donnerstag 136 $Id: quadratischtexv 18 13/08/1 09:49:46 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen Nachdem wir in der letzten Sitzung die Hauptachsentransformation
Beweise und Widerlegungen
Beweise und Widerlegungen Alberto Abbondandolo Ruhr-Universität Bochum Tag der offenen Tür 2015 Einige Polyeder Einige Polyeder V = 4, S = 6, F = 4 V = 8, S = 12, F = 6 Einige Polyeder V = 4, S = 6, F
Euklid von Alexandria
Euklid von Alexandria lebte ca. 360 v. Chr. bis ca. 280 v. Chr. systematisierte in 13 Büchern ( Elemente ) das mathematische Wissen der Antike - bis ins 19. Jahrhundert nach Bibel das am meisten verbreitete
Sekundarschulabschluss für Erwachsene. Geometrie A 2014
SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für
Analytische Geometrie
Analytische Geometrie für Studierende der Technik und zum Selbststudium Von Dr. Adolf Hess Professor am kantonalen Technikum in Wintertbur Dritte Auflage Mit 105 Textabbildungen Springer-Verlag Berlin
Alte Sätze neu entdeckt (2) Folgerungen aus dem Satz von Ceva (Satz des Menelaos)
1) Begründe, möglicherweise durch einen Widerspruchsbeweis, dass auch der Kehrsatz des Satzes von Ceva wahr ist, d.h. in Kurzform (mit den vorherigen Bezeichnungen): AD DB @ BE EC @ CF FA 1 Y AE, BF, CD
Hans Walser. Puzzles. Tag der Mathematik. Do, 4. Februar 2016, Graz. Technische Universität Graz. Hörsaal HS P2 (Petersgasse 16),
Hans Walser Puzzles Tag der Mathematik Do, 4. Februar 2016, Graz Technische Universität Graz Hörsaal HS P2 (Petersgasse 16), 15.40-16.40 Uhr Zusammenfassung Es kommen verschiedene Aspekte der Zerlegungsgleichheit
Back to the Roots. Hans-Jürgen Elschenbroich
Back to the Roots Heron Pythagoras Die Medienberatung NRW ist ein Angebot des Medienzentrums Rheinland und des Westfälischen Landesmedienzentrums. 2 Zitat Willst du mehr wissen, so suche morgen aus der
Schulcurriculum Ludwig-Uhland-Gymnasium Mathematik Klasse 7 u. 8 Seite 1 von 5
Schulcurriculum Ludwig-Uhland-Gymnasium Mathematik 7 u. 8 Seite 1 von 5 Kapitel 7.1a: Mathematik in der Praxis: Prozentrechnen Dauer: ca. 15 h 7 Prozentrechnung Vertiefendes Üben Modellieren b Kapitel
Anwendungsorientierte Mathematik. 26. Sitzung des Arbeitskreises am
Anwendungsorientierte Mathematik 26. Sitzung des Arbeitskreises am 15.05.2007 RNZ, 14. Mai 2007 Überblick W. Buhmann: Informationen aus dem RP C. Höger: Aktuelles, Literatur & Internet O. Fell: An apple(t)
Winkeldreiteilung. Michael Schmitz
www.mathegami.de Februar 2010 Winkeldreiteilung Michael Schmitz Zusammenfassung Im folgenden Beitrag geht es um die Dreiteilung eines beliebigen Winkels mit Hilfe von Zirkel und Lineal. Da eine solche
1.2 Sonderfälle a) Für b = 0 wird die Ellipse zu einer Strecke und wir erhalten den gewöhnlichen Thaleskreis.
Hans Walser, [0180604], [018077] Thaleskreis an Ellipse und Hyperbel 1 Ellipse 1.1 Thaleskreis Die Menge der Punkte, von denen aus eine Ellipse unter einem rechten Winkel gesehen wird, ist ein Kreis (Abb.
ANALYTISCHEN GEOMETRIE DER EBENE.
DIE ELEMENTE DEB ANALYTISCHEN GEOMETRIE DER EBENE. ZUM GEBRAUCH AN HÖHEREN LEHRANSTALTEN SOWIE ZUM SELBSTSTUDIUM DARGESTELLT UND MIT ZAHLREICHEN ÜBUNGSBEISPIELEN VERSEHEN VON DR. H. GANTER UND DE. F. RUDIO
Hans Walser. Raumgeometrie. Modul 1 Der Würfel Lernumgebung, Teil 1
Hans Walser Raumgeometrie Modul 1 Der Würfel Lernumgebung, Teil 1 Hans Walser: Modul 1, Der Würfel. Lernumgebung, Teil 1 ii Inhalt 1 Der 12-7-5-Würfel... 1 2 Schnittpunkte am Quader... 2 3 Zwölf oder dreizehn
Test zur Geometrischen Kreativität (GCT-DE)
Pädagogische Hochschule in Schwäbisch Gmünd Institut für Mathematik und Informatik Abteilung Informatik Test zur Geometrischen Kreativität (GCT-DE) Erstellt von Mohamed El-Sayed Ahmed El-Demerdash Master
Seminar für LAGym/LAB: Analytische Geometrie
Seminar für LAGym/LAB: Analytische Geometrie Ingo Runkel und Peter Stender Euklidische Vektorräume und Geometrie E1: Lineare Gleichungssysteme - Affiner Unterraum eines Vektorraumes. Lineare Gleichungssysteme
Didaktik der Linearen Algebra Grundlagen aus der SekI
Didaktik der Linearen Algebra Grundlagen aus der SekI SS 2010 Oliver Passon [email protected] Material zur Veranstaltung unter: www.psiquadrat.de Prozess- und Inhaltskompetenzen Kommunizieren, Argumentieren
Gittergeometrie und pythagoreische Dreiecke
Alfred Hoehn und Hans Walser Gittergeometrie und pythagoreische Dreiecke Dieser Artikel wurde von der Praxis der Mathematik zur Publikation angenommen und erscheint demnächst. Kurzfassung Werden in einem
Dynamische Geometriesoftware innerhalb und außerhalb der Geometrie
Dynamische Geometriesoftware innerhalb und außerhalb der Geometrie Andreas Ulovec, Fakultät für Mathematik, Universität Wien Dynamische Geometriesoftware (wir verwenden Euklid DynaGeo) kommt im Unterricht
Hans Walser DIN h m.ch/hans
Hans Walser DIN 476 www.walser h m.ch/hans Hans Walser Aspekte: Grenzpunkte Ähnliche Teile Silbernes Rechteck www.walser h m.ch/hans Hans Walser Aspekte: Grenzpunkte Ähnliche Teile Silbernes Rechteck www.walser
Hans Walser Arbeitskreis Geometrie Herbsttagung September 2012, Saarbrücken Tagungsthema: Begriffsbilden im Geometrieunterricht
Hans Walser Arbeitskreis Geometrie Herbsttagung 14. 16. September 2012, Saarbrücken Tagungsthema: Begriffsbilden im Geometrieunterricht Vergessene Vierecke Zusammenfassung Es werden drei Vierecke vorgestellt,
Berührungen Hans Walser März Forum für Begabungsförderung in Mathematik FH Südwestfalen in Soest
Berührungen Hans Walser 17.-19. März 2016 19. Forum für Begabungsförderung in Mathematik FH Südwestfalen in Soest Mit einfachen Modellen und/oder dynamischer Geometriesoftware lassen sich verschiedene
Vom Strahlensatz zum Strahlensatz
Hans Walser Vom Strahlensatz zum Strahlensatz www.walser- h- m.ch/hans Faltgeometrie Faltgeometrie: Marken am unteren Rand Drei Marken (Beispiel 1:1) Drei Marken (Beispiel 4:1) Faltgeometrie: Wenden und
B) Konstruktion des geometrischen Mittels und geometrisches Wurzelziehen :
Seite I Einige interessante elementargeometrische Konstruktionen Ausgehend von einigen bekannten Sätzen aus der Elementargeometrie lassen sich einige hübsche Konstruktionen herleiten, die im folgenden
