Um-Strophoiden eines Dreiecks
|
|
|
- Ralf Pfaff
- vor 8 Jahren
- Abrufe
Transkript
1 Um-Strophoiden eines Dreiecks Eckart Schmidt Es wird konstruktiv und analytisch untersucht, wie zu vorgegebenem Doppelpunkt einem Dreieck eine Strophoide umbeschrieben werden kann. Geometrie der Strophoide Eine Strophoide ist konstruktiv festgelegt durch eine Gerade q, einen Punkt Q auf dieser Geraden und einen Pol P. Punkte der Strophoide erhält man, wenn man zu einem Geradenpunkt die Verbindungsgerade zum Pol mit einem Kreis durch den Doppelpunkt Q zum Schnitt bringt [1]. ndererseits ist eine Strophoide das Inverse einer gleichseitigen Hyperbel, sofern der Mittelpunkt des Inversionskreises auf der Hyperbel liegt ([], S.515. Dieser Mittelpunkt wird zum Doppelpunkt der Strophoide. Spiegelt man den Doppelpunkt erst am Zentrum der gleichseitigen Hyperbel und dann am Inversionskreis, erhält man den Pol. Die Gleichung einer gleichseitigen Hyperbel ist in einem geeigneten kartesischen Koordinatensystem x y = 1. Doppelpunkt Q und Pol P liegen symmetrisch zum Zentrum. 1 Verschiebt man den Ursprung in den Hyperbelpunkt Q ( q;, q dreht das Koordinatensystem um den Winkel δ mit
2 cotδ = q, so dass der Pol P auf der positiven neuen bszissen-chse liegt, und geht dann zu Polarkoordinaten über 1 cosδ sinδ ( r cosϕ; r sinϕ = ( x q; y, q sinδ cosδ so erhält man die Gleichung sin( ϕ + δ r ( ϕ =. sin δ sin(ϕ + δ Spiegelt man abschließend an einem Kreis um Q durch den Pol, so gewinnt man die Gleichung der Strophoiden zu P ϕ =0 sin(ϕ + δ r ( ϕ =, sin δ sin( ϕ + δ in der δ der nstiegswinkel der Strophoiden-Geraden ist und der bstand des Pols vom Doppelpunkt. sin δ Die Strophoiden-Gerade ist dann die Tangente im Doppelpunkt an die gleichseitige Hyperbel. Betrachtet man einen Inversionskreis durch den Pol, so schneidet dieser die Strophoide in drei weiteren Punkten P 1, P, P 3 mit 4δ (i + 1 π ϕi = +, 3 3 die ein gleichseitiges Dreieck bilden. Bzgl. dieses Dreiecks erweist sich die Strophoide als isogonal invariant, wobei das isogonale Bild des Pols der Fernpunkt der symptoten bzw. der Fernpunkt der Strophoiden-Geraden ist.
3 Um-Strophoiden eines Dreiecks Nach diesen Vorüberlegungen lässt sich einem Dreieck BC bei vorgegebenem Doppelpunkt Q wie folgt eine Strophoide umschreiben von Sonderfällen vorerst abgesehen: Man wähle einen Inversionskreis um Q und spiegele die Ecken, B, C des Dreiecks in, B, C. Jetzt betrachte man die gleichseitige Hyperbel durch, B, C, Q. Diese liefert nach Rückspiegelung eine Um-Strophoide des Dreiecks. Den Pol erhält man, indem man Q erst am Zentrum der gleichseitigen Hyperbel und dann am Inversionskreis spiegelt. Die Strophoiden-Gerade ist die Hyperbeltangente in Q. Das isogonale Bild einer Um-Strophoide ergibt wieder eine Um-Strophoide. Entartete Um-Strophoiden Ist Q ein Punkt auf der Seite B, so auch auf B und die gleichseitige Hyperbel durch, B, C, Q entartet zu einem orthogonalen Seite-Höhe-Paar im Dreieck B C. Nach Rückspiegelung erhält man wieder die Seite B und einen symmetrischen Kreis durch Q und C. Die gleichseitige Hyperbel der Punkte, B, C, Q entartet aber ebenso zu einem orthogonalen Seite-Höhe-Paar des Dreiecks B C, wenn Q Punkt einer Höhe dieses Dreiecks ist. Liegt Q z.b. auf der Höhe h c, so erhält man die orthogonalen Geraden B und QC, die nach Rückspiegelung die Gerade QC und einen dazu symmetrischen Kreis durch Q,, B liefern.
4 Es stellt sich die Frage, für welche Punkte Q des Bezugsdreiecks BC diese Entartung eintritt. Geht man dieser Frage mit baryzentrischen Koordinaten nach, so ergeben sich Zirkularkurven, isogonal invariant mit Pivot-Punkten in den Fernpunkten der Höhen. Wählt man den Fernpunkt der Höhe h c als Pivot-Punkt einer isogonal-invarianten Zirkularkurve, so lautet die Gleichung in baryzentrischen Koordinaten SB ( c y b z x + S ( a z c x y + c ( a y b x z = 0. Benutzt werden die Conway-bkürzungen: S = a + b + c,... und S =. Für jeden Punkt Q einer Zirkularkurve schneiden sich die Verbindungsgerade QC und der Kreis k(q,,b auf der Zirkularkurve, hier liegen diese Schnittpunkte diametral. Der Spezialfall
5 Ist Q=I die Inkreismitte des Dreiecks BC, so ist Q gleichzeitig Höhenschnitt H des gespiegelten Dreiecks B C und jeder Kegelschnitt durch, B, C, Q=H ist eine gleichseitige Hyperbel. Die Zentren liegen auf dem Neun-Punkte-Kreis von B C. Spiegelt man Q=H an einem Zentrum, so liegt dieser Punkt auf dem Umkreis von B C und nach Rückspiegelung auf dem Umkreis von BC. Damit ist jede Strophoide, deren Doppelpunkt die Inkreismitte ist und deren Pol auf dem Umkreis liegt eine Um-Strophoide. Diese Um-Strophoiden mit Doppelpunkt in der Inkreismitte sie seien als UI-Strophoiden angesprochen erweisen sich als isogonal invariant ([3], S. 4. Damit ist das isogonale Bild des Pols der Fernpunkt der Strophoiden-Geraden durch die Inkreismitte. Gleichungen der Um-Strophoiden Stellt man sich der ufgabe, die Gleichung einer Um-Strophoide zu vorgegebenem Doppelpunkt in baryzentrischen Koordinaten zu erarbeiten, so führt dies zu aufwändigen Rechnungen und das Ergebnis ist nicht zumutbar darstellbar. Hier sei exemplarisch die Gleichung für die Strophoide der Euler-Geraden angegeben: S x [ y( S + S 4S S z( S + S 4S S ] zykl B = ( a b ( b c ( c a xyz. Doppelpunkt ist der Höhenschnitt H und der Pol liegt im isogonalen Bild des am Umkreis gespiegelten Höhenschnitts S SB SC H *( : : 4S b c 4SB c a 4SC a b mit dem ETC-Index X65 [4]. Drei weitere Punkte sind X316, X671 und S 3S S 3SB S 3SC ( : : S ( S S SB ( S SB SC ( S SC das isogonale Bild des Vierfach-Winkelpunktes, von dem man die Seiten unter dem Vierfachen des Gegenwinkels (mod 180 sieht. B C C
6 Für UI-Strophoiden kann eine Gerade durch die Inkreismitte vorgegeben werden, z.b. mit der Gleichung α x + β y + γ z = 0. Die zugehörige UI-Strophoide mit dem Pol im Umkreispunkt P ( a ( α β ( α γ : b ( β α( β γ : c ( γ α( γ β hat dann die Gleichung ( a α sbβ scγ x( c y + b z zykl = [ ab ( a b( α β + bc( b c( β γ + ca( c a( γ α] xyz mit s = a + b + c, s = a b + c, s = a + b c. B C Ein naheliegendes Beispiel erhält man zur Verbindungsgeraden der Inkreismitte mit dem Schwerpunkt. us der Gleichung dieser Geraden ( b c x + ( c a y + ( a b z = 0 ergibt sich eine einfache Gleichung der UI-Strophoiden zu ( b c x( c y + b z = ( a b( b c( c a xyz zykl mit dem Pol a b c ( : : (ETC-Index 106. a + b + c a b + c a + b c uf dieser Um-Strophoiden liegen z.b. die am Umkreis gespiegelte Inkreismitte (X36 als auch die am Feuerbach-Punkt gespiegelte Inkreismitte (X80. Geometrie der UI-Strophoiden Zu einem vorgegebenen Pol P auf dem Umkreis lässt sich wie folgt eine UI-Strophoide konstruieren: Man spiegelt, B, C an einem Inversionskreis um I durch den Pol P, betrachtet die gleichseitige Hyperbel durch die Punkte, B, C, P und erhält nach Rückspiegelung dieser Hyperbel die UI-Strophoide. Für die Winkelhalbierenden entartet die UI-Strophoide; für Seitenparallelen fällt der Pol in die Gegenecke. Symmetrische Strophoiden erhält man für Pole, deren Wallace-Gerade parallel zu der Verbindungsgeraden mit der Inkreismitte verläuft.
7 UI-Strophoiden schneiden den Inversionskreis neben dem Pol noch in den Ecken eines gleichseitigen Dreiecks P 1 P P 3. Sie sind somit UI-Strophoiden der Dreiecke BC und P 1 P P 3 und damit isogonal invariant bzgl. beider Dreiecke. Dabei haben die Punkte, B, C, P 1, P, P 3 einen gemeinsamen Umkegelschnitt. Bildet man diesen Umkegelschnitt isogonal bzgl. des gleichseitigen Dreiecks P 1 P P 3 ab, so erhält man eine Gerade. Diese Gerade schneidet die Dreiecksseiten von BC in den gleichen Punkten, in denen sie auch von der Strophoiden geschnitten werden. Damit liegen die von, B, C verschiedenen Schnittpunkte der UI-Strophoiden mit den Dreiecksseiten kollinear auf einer Geraden mit der Gleichung x = 0. aα s B β s γ zykl C Der wichtigste geometrische Bezug dieser UI-Strophoiden liegt sicher darin, dass sie die Ortslinien der isogonalen Brennpunkte einbeschriebener Kegelschnitte sind ([3], S.4, deren Zentren auf der Strophoiden-Geraden liegen. Für das obige konkrete Beispiel sind dies z.b. die Brennpunkte der Steiner-Ellipse.
8 Literatur [1] E. H. Loockwood: Book of Curves. Cambridge, t The University Press, [] G. Kohn: Ebene Kurven dritter und vierter Ordnung. Enzyklopädie der mathematischen Wissenschaften III C 5. Erster Teil, B.G. Teubner, Leipzig [3] J.-P. Ehrmann, Bernard Gibert: Special Isocubics in the Triangle Plane. [4] C. Kimberling: Encyclopedia of Triangle Centers. Eckart Schmidt - Hasenberg 7 - D 43 Raisdorf [email protected]
Geometrie der Triplex-Punkte. Anmerkungen zu K.Mütz: Die Triplex-Punkte und die Eulersche Gerade eines Dreiecks (PM 2/45. Jg. 2003) Eckart Schmidt
Geometrie der Triplex-Punkte Anmerkungen zu K.Mütz: Die Triplex-Punkte und die Eulersche Gerade eines Dreiecks (PM 2/45. Jg. 2003) Eckart Schmidt In einem Dreieck ABC lässt sich zu jedem Innenwinkel z.b.
Zwischen In- und Umkreis. Eckart Schmidt
Zwischen In- und Umkreis Eckart Schmidt Dreiecke mit gleichem In- und Umkreis sind eingangs Gegenstand dieser Ausarbeitung Perspektive Zwischendreiecke erhält man für die Büschelpunkte von In- und Umkreis
Sehnenvierecke mit Inkreismittenquadrat. 1. Vorbemerkung. 2. Inkreismitten
Sehnenvierecke mit Inkreismittenquadrat Eckart Schmidt 1. Vorbemerkung Betrachtet werden konvexe Sehnenvierecke ABCD mit den Inkreismitten I 1, I, I 3, I 4 der Teildreiecke ABC, BCD, CDA, DAB. Es ist bekannt,
Lösungen der Übungsaufgaben III
Mathematik für die ersten Semester (. Auflage): Lösungen der Übungsaufgaben III C. Zerbe, E. Ossner, W. Mückenheim 6. Man konstruiere die Winkelhalbierende eines beliebigen Winkels analog zur Konstruktion
Begründen in der Geometrie
Nr.6 9.6.2016 Begründen in der Geometrie Didaktische Grundsätze Zuerst die geometrischen Phänomene erkunden und kennenlernen. Viel zeichnen! Vierecke, Kreise, Dreiecke, Winkel, Strecken,... In dieser ersten
a' c' Aufgabe: Spiegelung an den Dreiecksseiten und Anti-Steinersche Punkte Darij Grinberg
ufgabe: Spiegelung an den Dreiecksseiten und nti-steinersche Punkte Darij Grinberg Eine durch den Höhenschnittpunkt H eines Dreiecks B gehende Gerade g werde an den Dreiecksseiten B; und B gespiegelt;
Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Bayerischen Staatsministeriums für Unterricht und Kultus.
bschlussprüfung 2014 Prüfungsdauer: 150 Minuten Diese Lösung wurde erstellt von ornelia Sanzenbacher. Sie ist keine offizielle Lösung des ayerischen Staatsministeriums für Unterricht und Kultus. ufgaben
Lösungen IV ) β = 54,8 ; γ = 70,4 106) a) 65 b) 65 (115?) d) 57,5
(Stark 7 S. 6ff) Lösungen IV. a) gleichschenklig 0) a) () α = β = 6,7 () β = 7,8 ; γ = 4,4 () α = 4 ; γ = (4) α = β = (80 γ)/ b) 79,6 und 0,8 oder 0, und 0, c) α = β = 64 ; γ = d) gleichschenklig; zwei
Übungsaufgaben Geometrie und lineare Algebra - Serie 1
Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß
Klausurenkurs zum Staatsexamen (WS 2013/14): Lineare Algebra und analytische Geometrie 7
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 3/4): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr, Thema 3, Aufgabe 4) Im R 3 seien die beiden Ebenen E : 6x+4y z = und E : +s +t 4 gegeben.
Einige Ergebnisse der euklidischen Geometrie
1 Teil I Einige Ergebnisse der euklidischen Geometrie In Teil I setzen wir den euklidischen Raum als bekannt voraus (aus der Schule oder aus der Vorlesung Lineare lgebra und nalytische Geometrie). Da wir
1. Mathematikschulaufgabe
1.0 Gegeben ist die Funktion f: y = 1 ( ) 1 x + in G= x. 1.1 Tabellarisiere f für x = [ -1; 7 ] mit x = 1 sowie für x =,5 und x =,5. 1. Zeichne den Graphen von f. Für die Zeichnung: 1 LE = 1 cm - 1 x 8-1
Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte
Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,
Kurven. Mathematik-Repetitorium
Kurven 7.1 Vorbemerkungen, Koordinatensysteme 7.2 Gerade 7.3 Kreis 7.4 Parabel 7.5 Ellipse 7.6 Hyperbel 7.7 Allgemeine Gleichung 2. Grades Kurven 1 7. Kurven 7.1 Vorbemerkungen, Koordinatensysteme Koordinatensystem
Inhaltsverzeichnis INHALTSVERZEICHNIS 1
INHALTSVERZEICHNIS 1 Inhaltsverzeichnis 1 Die Parabel 2 1.1 Definition................................ 2 1.2 Bemerkung............................... 3 1.3 Tangenten................................ 3 1.4
Oktaeder. Bernhard Möller. 22. Dezember 2010
Oktaeder Bernhard Möller. Dezember 00 Ein Oktaeder ist ein regelmäßiges Polyeder, dessen Oberfläche aus acht kongruenten, gleichseitigen Dreiecken besteht. Jedes Oktaeder kann einem Würfel so einbeschrieben
Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) =
Mathematische Probleme SS 13 Donnerstag 136 $Id: quadratischtexv 18 13/08/1 09:49:46 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen Nachdem wir in der letzten Sitzung die Hauptachsentransformation
Projektionskurve Abiturprüfung LK Bayern 2003
Projektionskurve Abiturprüfung LK Bayern 03 In einem kartesischen Koordinatensystem des R 3 ist die Ebene H: x 1 + x 2 + x 3 8 = 0 sowie die Schar von Geraden ( a 2 ) ( ) 3a g a : x = 0 a 2 + λ 3a 8, λ
Lösungen zum Thema Geometrie. Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt.
Lösungen zum Thema Geometrie Lösungen zur Aufg. 0: a) Gib an, um welche besondere Linie im Dreieck es sich jeweils handelt. Höhe h c Winkelhalbierende w α Mittelsenkrechte ms c Seitenhalbierende s c b)
Stufen- und Wechselwinkel sind genau dann gleich groß, wenn die Geraden g und h parallel sind.
1 Sätze über Winkel Geradenkreuzung: Zwei Geraden, die sich in einem Punkt schneiden, nennt man eine Geradenkreuzung. α α Nebeneinander liegende Winkel heißen Nebenwinkel, sie β ergeben zusammen stets
Geometrie: I. Vorkenntnisse Übungenn
Geometrie: I. Vorkenntnisse Übungenn Übung 1: Konstruiere ein Dreieck mit Hilfe folgender Angaben: Grundseite c = 10 cm, Höhe h = 4 cm, Winkel γ = 60. 6 Ist die Konstruktion eindeutig? Kann man das Dreieck
3. Ähnlichkeitsabbildungen
3. Ähnlichkeitsabbildungen 3.1 Definitionen: Ähnlichkeitsabbildungen, Dilatationen Bis jetzt haben wir Isometrien (Kongruenzabbildungen) betrachtet. Diese bbildungen wurden aufgebaut aus den Geradenspiegelungen.
entspricht der Länge des Vektorpfeils. Im R 2 : x =
Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.
Lineare Algebra und analytische Geometrie II
Prof. Dr. H. Brenner Osnabrück SS 016 Lineare Algebra und analytische Geometrie II Vorlesung 37 Neben den drei Eckpunkten eines Dreieckes gibt es noch weitere charakteristische Punkte eines Dreieckes wie
Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $
$Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis
Aufgabe E 1 (8 Punkte)
Aufgabe E (8 Punkte) Auf einem Billardtisch (bei dem die Koordinatenachsen x = 0 und y = 0 als Banden dienen) liegen zwei Kugeln P( ) und Q(3 ) Die Kugel P soll so angestoßen werden, dass sie nach Reflexion
3. Mathematikschulaufgabe
Arbeitszeit 40min 1.0 Gegeben sind die Punkte A (-I1) und B (6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne
Übungsaufgaben zur Hyperbel (Nichtlineare analytische Geometrie der Ebene, Teil 3)
Übungsaufgaben zur Hyperbel (Nichtlineare analytische Geometrie der Ebene, Teil ) (7D, Realgymnasium, PM, WS 008/09) Diese Beispiele sollen durch jene für den dritten Teil der nichtlinearen analytischen
Zusammenstellung aus ehemaligen DDR Prüfungsaufgaben (Aufgabe 6)
(Aufgabe 6) 0. Klasse Abschlussprüfungen Jahrgänge 970 99 Fach Mathematik Material für Fachberater, gedacht als Beispiele für die Aufgabe der neuen brandenburger Prüfungsaufgaben 970 6 a) Ermitteln Sie
4. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 12 Saison 1964/1965 Aufgaben und Lösungen
4. Mathematik Olympiade 4. Stufe (DDR-Olympiade) Klasse 1 Saison 1964/1965 Aufgaben und Lösungen 1 OJM 4. Mathematik-Olympiade 4. Stufe (DDR-Olympiade) Klasse 1 Aufgaben Hinweis: Der Lösungsweg mit Begründungen
Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten
Ausgewählte Aufgaben zur Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Lehrplanabschnitt M 9.6 Fortführung der Raumgeometrie Ausführliche Hinweise zur Verwendung der folgenden
Vorkurs Mathematik Übungen zu Komplexen Zahlen
Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten
Die Mittelsenkrechte im deduktiven Aufbau
Nr.7 16.06.2016 Die Mittelsenkrechte im deduktiven Aufbau Bisher war die Mittelsenkrechte eine Ortslinie Jetzt wird deduktiv geordnet: - Definition der Mittelsenkrechte - Sätze zur Mittelsenkrechten 1
Unterrichtsreihe zur Parabel
Unterrichtsreihe zur Parabel Übersicht: 1. Einstieg: Satellitenschüssel. Konstruktion einer Parabel mit Leitgerade und Brennpunkt 3. Beschreibung dieser Punktmenge 4. Konstruktion von Tangenten 5. Beweis
Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV
Technische Universität Chemnitz Fakultät für Mathematik Dr. Uwe Streit Jan Blechschmidt Aufgabenkomplex 7 - Vektoren Übung Elementarmathematik im WS 202/3 Lösung zum Klausurvorbereitung IV. (5 Punkte -
Kapitel VI. Euklidische Geometrie
Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und
Die Ellipse gehört so wie der Kreis, die Hyperbel und die Parabel zu den Kegelschnitten.
DIE ELLIPSE Die Ellipse gehört so wie der Kreis, die Hyperbel und die Parabel zu den Kegelschnitten. Die Ellipse besteht aus allen Punkten, für die die Summe der Abstände von zwei festen Punkten - den
2.2A. Das allgemeine Dreieck
.A. Das allgemeine Dreieck Koordinatentransformation eines Dreiecks Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = (
Analytische Geometrie I
Analytische Geometrie I Rainer Hauser Januar 202 Einleitung. Geometrie und Algebra Geometrie und Algebra sind historisch zwei unabhängige Teilgebiete der Mathematik und werden bis heute von Laien weitgehend
Aufgaben Geometrie Lager
Schweizer Mathematik-Olympiade Aufgaben Geometrie Lager Aktualisiert: 26. Juni 2014 Starter 1. Zwei Städte A und B liegen auf verschiedenen Seiten eines Flusses. An welcher Stelle muss eine Brücke rechtwinklig
Repetition Begriffe Geometrie. 14. Juni 2012
Repetition Begriffe Geometrie 14. Juni 2012 Planimetrie 1. Strahlensatz Planimetrie 1. Strahlensatz Werden zwei sich schneidende Geraden von zwei Parallelen geschnitten, so verhalten sich die Abschnitte
Mathematische Formeln für das Studium an Fachhochschulen
Mathematische Formeln für das Studium an Fachhochschulen von Richard Mohr. Auflage Hanser München 0 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 446 455 4 Zu Inhaltsverzeichnis schnell und portofrei
37 II.1. Abbildungen
37 II.1. Abbildungen "Abbildung" und "Funktion" sind verschiedene Namen für denselben Begriff, der charakterisiert ist durch die Angabe der Definitionsmenge ("Was wird abgebildet?"), der Wertemenge ("Wohin
1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)
Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus
Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006. Alexander Bobenko und Ivan Izmestiev. Geometrie
Aufgaben des MSG-Zirkels 8b Schuljahr 2005/2006 Alexander Bobenko und Ivan Izmestiev Technische Universität Berlin Geometrie Aufgabe G.1 Berechne die Innenwinkelsumme eines n-ecks. Aufgabe G.2 Zeige, dass
Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:
Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:
P 0 f (0) schneidet die Gerade mit der Gleichung x Ermitteln Sie die Koordinaten von S.
Zentralabitur 015 im Fach Mathematik Analysis 1 Im nebenstehenden Bild sind die Graphen dreier Funktionen f, g und h dargestellt Geben Sie an, bei welcher der drei Funktionen es sich um eine Stammfunktion
Analytische Geometrie, Vektorund Matrixrechnung
Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?
2.2C. Das allgemeine Dreieck
.C. Das allgemeine Dreieck Jedes Dreieck läßt sich nach geeigneter Drehung und Verschiebung in ein Dreieck mit den Eckpunkten A = ( x, 0 ), B = ( y, 0 ), C = ( 0, z ) (x, y, z > 0) transformieren. Die
In der Zeichnung unten sind α und β, β und γ, γ und δ, δ und α Nebenwinkel. Scheitelwinkel sind α und γ oder β und δ.
Entdeckungen an Geraden- und Doppelkreuzungen Schneiden sich zwei Geraden, so entstehen vier Winkel mit Scheitel im Schnittpunkt. Jeweils zwei gleichgroße Winkel liegen sich dabei gegenüber man nennt diese
Abschlussprüfung 2010 an den Realschulen in Bayern
Prüfungsdauer: 50 Minuten bschlussprüfung 00 an den Realschulen in ayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: ufgabe Nachtermin.0 ie nebenstehende Skizze zeigt ein Schrägbild des Würfels
Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K
Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und
5 Sphärische Trigonometrie
$Id: sphaere.tex,v 1.5 2013/08/13 17:21:33 hk Exp $ 5 Sphärische Trigonometrie m Ende der letzten Sitzung hatten wir mit der Untersuchung sphärischer Dreiecke begonnen. Gegeben war eine Sphäre K, oder
Dualität in der Elementaren Geometrie
1 Dualität in der Elementaren Geometrie Holger Stephan Weierstraß Institut für Angewandte Analysis und Stochastic (WIAS) e-mail: [email protected] url: www.wias-berlin.de/people/stephan FU Berlin,
Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE
Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse
Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung Aufgabe 1 1.Weg (kurz und einfach):
Nachklausur zur Einführung in die Geometrie im SS 2002 Lösung ufgabe 1 1.Weg (kurz und einfach): C! **C* Umlaufsinn erhalten Verschiebung oder Drehung Verbindungsgeraden *, *, CC* nicht parallel Drehung
Kegelschnitte. Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de. 14. April 2004
Kegelschnitte Thomas Peters Thomas Mathe-Seiten www.mathe-seiten.de 14. April 004 In diesem Artikel untersuchen wir eine Reihe von Kurven, die unter dem Überbegriff Kegelschnitte zusammengefasst werden.
Skript zur Vorlesung Elementare und analytische Geometrie
Robert Labus Skript zur Vorlesung Elementare und analytische Geometrie Studienkolleg für ausländische Studierende Universität Kassel Wintersemester 2016/2017 Inhaltsverzeichnis 1 Elementargeometrie 1 1.1
1.7. Die indirekte (umgekehrte) Proportionalität. a x heisst umgekehrte (indirekte) Proportionalität.
34 1.7. Die indirekte (umgekehrte) Proportionalität a Die Funktion f : y = a 0, 0 heisst umgekehrte (indirekte) Proportionalität. Spezialfall a = 1: f: Bilde den Kehrwert der gegebenen Zahl. An der Stelle
Prüfungsteil 2, Aufgabe 5 Analytische Geometrie
Abitur Mathematik Nordrhein-Westfalen 1GK Abitur Mathematik: Prüfungsteil, Aufgabe 5 Analytische Geometrie Nordrhein-Westfalen 1 GK Aufgabe a (1) 1. SCHRITT: DIE VEKTOREN, UND BERECHNEN 1 3 5 3 5 1. SCHRITT:
Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg. Vorlesung 2: Kongruenzabbildungen in geometrischen Aufgaben
1 Mathematisches Institut II 15.06.2004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: usgewählte Methoden zur ufgabenlösung Vorlesung 2: Kongruenzabbildungen in geometrischen ufgaben
2.5. Aufgaben zu Dreieckskonstruktionen
2.5. Aufgaben zu Dreieckskonstruktionen Aufgabe 1 Zeichne das Dreieck AC mit A( 1 2), (5 0) und C(3 6) und konstruiere seinen Umkreis. Gib den Radius und den Mittelpunkt des Umkreises an. Aufgabe 2 Konstruiere
Der Punkt von Fermat 1
Der Punkt von Fermat 1 Geometrie Der Punkt von Fermat Autor: Peter Andree Inhaltsverzeichnis 9 Der Punkt von Fermat 1 9.1 Die Aufgabe von Fermat an Torricelli................... 1 9.2 Der klassische, analytische
1 Das Prinzip von Cavalieri
KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heiko Hoffmann SS 14 11.6.14 Höhere Mathematik II für die Fachrichtung Informatik 5. Saalübung 11.6.14 1 Das Prinzip von
Grundlagen Mathematik 7. Jahrgangsstufe
ALGEBRA 1. Grundlagen Grundlagen Mathematik 7. Jahrgangsstufe Menge der ganzen Zahlen Z = {..., -3, -2, -1, 0, 1, 2, 3,... } Menge der rationalen Zahlen Q = { z z Z und n N } (Menge aller n positiven und
Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans
Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans [email protected] Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen
Raumgeometrie - gerade Pyramide
1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne
Kegelschnitte. Evelina Erlacher 13. & 14. M arz 2007
Workshops zur VO Einfu hrung in das mathematische Arbeiten im SS 2007 Kegelschnitte Evelina Erlacher 13. & 14. M arz 2007 Denken wir uns einen Drehkegel, der nach oben als auch nach unten unbegrenzt ist.
Bezeichnung: F F Jede Kongruenzabbildung lässt sich durch Hintereinander Ausführen von höchstens drei Geradenspiegelungen darstellen
3 6. Ähnlichkeitsabbildungen Bilde eine Figur durch Hintereinander Ausführen von Kongruenzabbildungen (Geradenspiegelungen, Drehungen, Translationen, Punktspiegelungen) und zentrischen Streckungen in eine
Beispiellösungen zu Blatt 3
µathematischer κorrespondenz- zirkel ufgabe 1 eispiellösungen zu latt 3 Mathematisches Institut Georg-ugust-Universität Göttingen Statistiken besagen, dass unter 1000 Menschen 35 zu hohen lutdruck haben.
GEOMETRIE (4a) Kurzskript
GEOMETRIE (4a) Kurzskript Dieses Kurzskript ist vor allem eine Sammlung von Sätzen und Definitionen und sollte ausdrücklich nur zusammen mit weiteren Erläuterungen in der Veranstaltung genutzt werden.
Schwerpunktfach AM/PH, 2011 KEGELSCHNITTE
Schwerpunktfach AM/PH, 011 KEGELSCHNITTE 5. Kreis und Ellipse 5.1. Grundkonstruktionen am Kreis Konstruktion 1: Konstruiere einen Kreis, welcher durch die gegebenen 3 Punkte A,B und C verläuft: C B A Konstruktionsbericht:
Geraden in R 2 Lösungsblatt Aufgabe 17.16
Aufgabenstellung: Berechne den Umkreismittelpunkt und den Umkreisradius des Dreiecks ABC. a. A 2 1, B 8 3, C 5 6 b. A 1 3, B 9 3, C 11 19 c. A 2 3, B 3 3, C 4 5 d. A 5 3, B 7 9, C 1 15 Lösung der Aufgabe:
Kegelschnitte. Mathematik I ITB. Kegelschnitte. Prof. Dr. Karin Melzer
Kegelschnitte 10.11.08 Kegelschnitte: Einführung Wir betrachten,,,. Literatur: Brücken zur Mathematik, Band 1 Grundlagen, Analytische Geometrie Kreis Denition als geometrischer Ort: Der geometrische Ort
Wiederholung Winkel. Berechnung des Winkels zwischen zwei Vektoren
Wiederholung Winkel Das entscheidende Mittel zur Bestimmung von Winkeln ist das Skalarprodukt. Das Skalarprodukt lässt sich nämlich sehr komfortabel koordinatenweise berechnen, zugleich hängt es aber mit
1. Grundlegendes in der Geometrie
1. Grundlegendes Geometrie 1. Grundlegendes in der Geometrie 1. 1 Übliche ezeichnungen Punkte bezeichnen wir mit Grossbuchstaben:,,,D,... P 1,P 2,P 3,...,,,... Strecken und deren Masszahl, sowie Geraden
Trigonometrie und Planimetrie
Trigonometrie und Planimetrie Hinweis: Die Aufgaben sind in 3 Gruppen gegliedert (G): Grundlagen, Basiswissen einfache Aufgaben (F): Fortgeschritten mittelschwere Aufgaben (E): Experten schwere Aufgaben
Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte
AB Mathematik Experimentieren mit GeoGebra Merke Alle folgenden Aufgaben sind mit dem Programm GEOGEBRA auszuführen! Eine ausführliche Einführung in die Bedienung des Programmes erfolgt im Unterricht.
4.7 Übungsaufgaben. Polarisiere folgende Kurven (Formen): 1.) oder: 3 Wendestellen kein (0 ) (1 ) vorhanden 3. Ordnung 4. Klasse.
4.7 Übungsaufgaben Polarisiere folgende Kurven (Formen): 1.) 3 Dornspitzen kein ( 0 ) ( 1 ) vorhanden 3. Klasse 4. Ordnung 3 Wendestellen kein (0 ) (1 ) vorhanden 3. Ordnung 4. Klasse oder: 2.) 2 Schnabelspitzen
TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik
TEHNISHE UNIVERSITÄT MÜNHEN Zentrum Mathematik Prof. Dr. Dr. Jürgen Richter-Gebert, Martin von Gagern Geometriekalküle WS 00/ Lösungen u ufgabenblatt (0. Oktober 00) Präsenaufgaben ufgabe. Dualität. Gegeben
Klausur zur Einführung in die Geometrie im SS 2002
Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt
Testprüfung (Abitur 2013)
Testprüfung (Abitur 2013) Steve Göring, [email protected] 3. April 2013 Bearbeitungszeit: Zugelassene Hilfsmittel: 270 Minuten Taschenrechner (nicht programmierbar, nicht grafikfähig), Tafelwerk Name: Punkte:
Brückenkurs Mathematik
Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 3 Geometrie Doris Bohnet Universität Hamburg - Department Mathematik Mi 8.10.2008 1 Geometrie des Dreiecks 2 Vektoren Länge eines Vektors Skalarprodukt Kreuzprodukt
Geogebra-Kennenlernen
Geogebra-Kennenlernen Schülerzirkel Mathematik, Universität Stuttgart Peter Lesky, 2010/11 Mit dem Programm Geogebra könenn geometrische Konstruktionen einfach (und sehr genau) durchgeführt werden. Außerdem
Trigonometrie - Zusammenfassende Übungen Raumgeometrie Vorbereitung auf die Abschlussprüfung
1.0 Das Quadrat ABCD mit der Seitenlänge a cm ist Grundfläche eines Würfels mit der Deckfläche EFGH, wobei E über A, F über B usw. liegen. Zur Grundfläche ABCD parallele Ebenen schneiden die Würfelkanten
Konstruktion des isoperimetrischen Punktes
Konstruktion des isoperimetrischen Punktes C. und M. Reinsch Dreieck in der komplexen Ebene Ecken: A, B, C. Seiten: a = B C, b = C A, c = A B. Kreise: A(u) um A mit Radius u, B(v) um B mit Radius v, C(w)
Funktionen (linear, quadratisch)
Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)
Abiturprüfung 2000 LK Mathematik Baden-Württemberg
Abiturprüfung 000 LK Mathematik Baden-Württemberg Aufgabe I 1 Analysis ( )² Gegeben ist die Funktion f durch f ( ) = ; D f. Ihr Schaubild sei K. ( 4) a) Geben Sie die maimale Definitionsmenge D f an. Untersuchen
Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus
Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch
3. Mathematikschulaufgabe
1. Bestimme m so, dass die quadratische Gleichung nur 1 Lösung hat: 4x² - mx + 5m = 0 2.0 Von einer zentrischen Streckung sind A (-3/3), A (2/-2), B (-5/-1), B (2,5/-1) und C(-5/3) bekannt. 2.1 Konstruiere
Karoline Grandy und Renate Schöfer
Karoline Grandy und Renate Schöfer 1 Lemma 1 (Haruki) In einem Kreis seien zwei sich nicht schneidende Sehnen AB und CD gegeben. Außerdem wähle einen beliebiger Punkt P auf dem Kreisbogen zwischen A und
SAE. Geometrie B Name: Sekundarschulabschluss für Erwachsene
SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: nichtprogrammierbarer Taschenrechner, Geometrie-Werkzeug Maximal erreichbare Punktzahl: 60 Für die
Analytische Geometrie
Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u
++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen dx+ey+f = 0 1.1
Hauptachsentransformation. Einleitung Schneidet man den geraden Kreiskegel mit der Gleichung = + und die Ebene ++ + = 0 so erhält man eine quadratische Gleichung mit zwei Variablen +2 + +dx+ey+f = 0. Die
Geometrie Modul 4b WS 2015/16 Mi HS 1
Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere
Arbeitsblatt Geometrie / Trigonometrie
Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Arbeitsbltt Geometrie / Trigonometrie Dozent: - rückenkurs Mthemtik 2016 Modul: Mthemtik Dtum: 2016
DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )
Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon
Dreieckskonstruktionen
Dreieckskonstruktionen 1. Quelle: VER C 2008 Lösung: ja, nein, ja, ja, nein 2. Wähle aus den vorgegebenen Größen jeweils drei aus und überlege anhand einer Skizze, ob aus den ausgewählten Größen ein Dreieck
